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Mannan oligosaccharides (MOS) have been studied and applied as a feed additive,
whereas their regulation on the growth performance and immunity of aquatic animals
lacks consensus. Furthermore, their immunoprotective effects on the freshwater fish
Megalobrama amblycephala have not been sufficiently studied. Thus, we investigated the
effects of dietary MOS of 0, 200, and 400 mg/kg on the growth performance, non-specific
immunity, intestinal health, and resistance to Aeromonas hydrophila infection in juvenileM.
amblycephala. The results showed that the weight gain rate of juvenile M. amblycephala
was not significantly different after 8 weeks of feeding, whereas the feed conversion ratio
decreased in the MOS group of 400 mg/kg. Moreover, dietary MOS increased the survival
rate of juvenileM. amblycephala upon infection, which may be attributed to enhanced host
immunity. For instance, dietary MOS increase host bactericidal and antioxidative abilities
by regulating the activities of hepatic antimicrobial and antioxidant enzymes. In addition,
MOS supplementation increased the number of intestinal goblet cells, and the intestine
was protected from necrosis of the intestinal folds and disruption of the microvilli and
junctional complexes, thus maintaining the stability of the intestinal epithelial barrier. The
expression levels of M. amblycephala immune and tight junction-related genes increased
after feeding dietary MOS for 8 weeks. However, the upregulated expression of immune
and tight junction-related genes in the MOS supplemental groups was not as notable as
that in the control group postinfection. Therefore, MOS supplementation might suppress
the damage caused by excessive intestinal inflammation. Furthermore, dietary MOS
affected the richness and composition of the gut microbiota, which improved the gut
health of juvenile M. amblycephala by increasing the relative abundance of beneficial gut
org June 2022 | Volume 13 | Article 8636571
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microbiota. Briefly, dietary MOS exhibited significant immune protective effects to juvenile
M. amblycephala, which is a functional feed additive and immunostimulant.
Keywords: mannan oligosaccharides, Megalobrama amblycephala, non-specific immunity, intestinal health,
immunoprotective effects
INTRODUCTION

According to their biological functions, oligosaccharides may be
divided into nutritional oligosaccharides, which are digested and
absorbed to provide energy, and functional oligosaccharides,
which are not easily digested but have special biological
functions. Compared to probiotics, oligosaccharides can reach
the intestinal tract and avoid inactivation. Thus, functional
oligosaccharides are considered ideal feed additives; these
include chitooligosaccharides, mannan oligosaccharides
(MOS), fructooligosaccharides, soy oligosaccharides,
xylooligosaccharides, and isomaltose (1, 2).

MOS have been widely studied and used as a feed additive in
livestock and poultry cultures, but their application in
aquaculture is relatively rare (3, 4). Several studies have
arides; MR, mannose receptor; CFU,
al dose; muc2, mucin 2; RTgutGC,
l cell line; MS-222, 3-aminobenzoic
P, acid phosphatase; AKP, alkaline
xide dismutase; GST, glutathione S-
toxylin and eosin staining; AB-PAS,
aining; TEM, transmission electron
tive reverse transcription polymerase
3-phosphate dehydrogenase; FLASH,
OTUs, operational taxonomic units;
gorithm; PCoA, principal coordinates
; LEfSe, LDA effect size; NMDS, non-

org 2
revealed the effects of MOS on growth performance and the
feed conversion ratio of aquatic animals (5); however, the results
are not consistent, which might be related to factors such as MOS
supplemental levels, culture environment, dietary nutrient levels,
animal species, and the developmental stage (5, 6). In addition,
studies on crucian carp (7), Labeo rohita (8), and other fish have
shown that MOS supplementation can improve the survival rate
of juvenile fish upon bacterial infection. The protective
mechanisms of MOS might include improving the gut
microbiota, reducing the colonization of pathogens, and
enhancing host antioxidative ability (5). For instance, MOS can
activate the MR/PKCd signaling pathway in Ctenopharyngodon
idella, thereby improving intestinal antioxidative ability (9).

The mechanical barrier, composed of intestinal epithelial
cells, is the most important barrier in the intestinal mucosa.
MOS play a protective role in the intestinal epithelial barrier by
regulating the expression of tight junction proteins in chickens,
rats, and pigs. For example, MOS reduce intestinal mucosal
barrier damage in rats with acute pancreatitis by increasing the
expression of claudin-1, ZO-1, and mucin 2 (muc2) (10). In
addition, MOS have also been shown to protect the intestinal
epithelial barrier of pigs by upregulating the expression of ZO-1
and claudin-1 following Escherichia coli infection (11).
Furthermore, the immunoprotective effects of MOS are related
to its protection of the integrity of the intestinal mucosal barrier,
including the enhancement of the tight junction structures
between intestinal epithelial cells and maintenance of the
June 2022 | Volume 13 | Article 863657
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length and density of the microvilli (6, 12). An established in
vitro model using the Oncorhynchus mykiss intestinal epithelial
cell line (RTgutGC) showed that MOS exhibit better protective
effects on intestinal immunity and barrier functions than
nucleotides and b-glucan (13).

However, the protective effects and mechanisms of MOS upon
intestinal infection inMegalobrama amblycephala, one of the major
freshwater fish in China, have not been sufficiently studied.
Recently, because of the degradation of germplasm resources and
environmental pollution, diseases have occurred frequently during
M. amblycephala culture, among which the most serious is bacterial
septicemia caused by infection with Aeromonas hydrophila. The
infectious processes of A. hydrophila occur mainly through the
intestinal tract, which penetrates the intestinal mucosal barrier and
then proliferates and infects other parts of the host (14). Therefore,
under the current background of antibiotic reduction and
substitution, it is of great significance to develop antibiotic
substitutes that can maintain intestinal health and intestinal
mucosal barrier stability for the healthy culture ofM. amblycephala.

Considering the immune regulatory functions of MOS,
including enhancement of non-specific immunity, anti-
infection ability, and the intestinal health of cultured animals,
this study aimed to explore the protective effects of MOS in
alleviating intestinal barrier injury in juvenile M. amblycephala
upon bacterial infection. This study provides new ideas for
regulating fish intestinal immunity and a theoretical basis for
developing new immune agents and antibiotic substitutes.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Animal Care and Use
Committee of Jiangsu Ocean University (protocol no. 2020-37;
Frontiers in Immunology | www.frontiersin.org 3
approval date: September 1, 2019). All animal procedures were
performed in accordance with the Guidelines for the Care and
Use of Laboratory Animals in China.

Dietary Formulation
On the basis of the nutritional requirements ofM. amblycephala,
an isonitrogenous and isoenergy basal diet was prepared with
fish, soybean, cottonseed, and rapeseed meal as protein sources,
soybean oil as a lipid source, and wheat middling as a
carbohydrate source. The experimental diets of the MOS200
and MOS400 groups were formulated by supplementing MOS of
200 and 400 mg/kg (Alltech, Beijing, China) in the basal diet,
respectively, and the components are shown in Table 1. First, all
powdered ingredients were weighed and mixed for 10 min, and
distilled water was added to the premixed dry ingredients and
mixed for 15 min. Then, a proper pelletizing aperture
(approximately 1.5 mm) was set according to the size of the
experimental fish, and the diets were broken up into granules and
dried in a drying oven to ensure a moisture content below 10%.

Fish Rearing and Growth Performance
Analysis
Juvenile M. amblycephala, obtained from a fish farm in
Guangzhou, China, were fed with commercial feed for
temporary rearing and taming for 2 weeks before the culture
experiment. Fish husbandry was conducted in an indoor
freshwater recirculating system consisting of 18 fiberglass tanks
(90 L per tank) with equal supplemental aeration and water flow
(1 L/min). In total, 495 experimental fish with a body weight of
0.87 ± 0.05 g were randomly assigned into three groups,
including the control, MOS200, and MOS400 groups, and each
group had three replicates (55 fish per tank). The experimental
fish were cultured for 8 weeks and fed four times daily (8:00,
TABLE 1 | Ingredients and nutrient composition of the experimental diets (%).

Ingredients Groups

Control MOS200 MOS400

Fish meal 8.00 8.00 8.00
Soybean meal 20.80 20.80 8.00
Cottonseed meal 15.00 15.00 15.00
Rapeseed meal 18.00 18.00 15.00
Wheat middling 30.00 30.00 30.00
Soybean oil 5.00 5.00 5.00
Ca(H2PO4)2 2.00 1.98 1.96
MOS – 0.02 0.04
Choline 0.30 0.30 0.30
Vitamin premix1) 0.40 0.40 0.40
Mineral premix2) 0.50 0.50 0.50
Total 100 100 100
Nutrient levels3)

Moisture 6.88 6.89 6.91
Crude protein 37.10 36.78 36.91
Crude lipid 8.43 8.41 8.28
Ash 7.50 7.51 7.51
June 2022 | Volume 13 | Artic
1) Vitamin premix for each kilogram of feed: VE, 50 mg; VA, 5,000 IU; VB1, 8 mg; VK, 5 mg; VB6, 8 mg; VD, 2,000 IU; VB2, 10 mg; pantothenic acid, 30 mg; VB12, 0.03 mg; folic acid, 3 mg;
niacin, 30 mg; inositol, 100 mg; biotin, 0.4 mg; VC, 180 mg.
2) Mineral premix for each kilogram of feed: Mg, 300 mg; Zn, 150 mg; Fe, 170 mg; Co, 0.25 mg; Cu, 4 mg; Mn, 22 mg; Se, 0.4 mg.
3) Calculated values.
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11:00, 14:00, and 17:00) to apparent satiation (approximately 3%
of the body weight), and the water was renewed every day to
maintain acceptable water quality. The water temperature was
maintained at 26°C–28°C; the pH was approximately 7.2;
ammonia, nitrogen, and nitrite were lower than 0.1 mg/L; and
dissolved oxygen was greater than 6.0 mg/L.

The initial and final body weight and total feed intake were
measured before and after the rearing experiment, respectively.
The relevant growth index calculation formulas are specified
below.

Weight gain rate  WGRð Þ 
=  100% 

� final body weight - initial body weightð Þ=initial body weigh

Feed conversion ratio  FCRð Þ  ¼ total feed intake  gð Þ=weight gain ð

Bacterial Challenge and
Sample Collection
The bacterial challenge was performed after 8 weeks of culture as
previously described (15), and experimental fish from the
control, MOS200, and MOS400 groups (55 fish per tank) were
assigned to two categories for calculating mortality (20 fish per
tank) and sample collection (35 fish per tank), respectively. Then,
the experimental juvenile fish with a body weight of 4.21 ± 0.19 g
were injected intraperitoneally with 0.1 ml (1 × 106 CFU/ml) of
A. hydrophila (LD50 dose). Three individuals from each tank
were randomly dissected after anesthetized with 3-aminobenzoic
acid ethyl ester methane sulfonate (MS-222; Merck KGaA,
Darmstadt, Germany), and the hepatopancreas and intestines
were removed at 0, 4, 12, 24, and 72 h postinfection (hpi). The
hepatopancreas was homogenized for enzyme activity analysis,
and the intestines were collected for histological assay, gut
microbiota sequencing, and gene expression analysis.
Analyses of Antimicrobial and Antioxidant
Enzymes Activities
The excised hepatopancreas was weighed, and according to a ratio
of tissue weight (g) to phosphate-buffered saline volume (ml) of
1:9, the hepatopancreas samples were homogenized using a high-
throughput tissue crushing instrument. After centrifugation at
2,500 rpm for 10 min, the supernatant was extracted to determine
the activities of hepatic antimicrobial and antioxidant enzymes.
The activities of acid phosphatase (ACP), alkaline phosphatase
(AKP), catalase (CAT), superoxide dismutase (SOD), glutathione
S-transferase (GST), and lysozyme (LZM) were determined using
the a corresponding enzyme activity detection kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China) according to
the manufacturer’s instructions.

Histological Assay
Hematoxylin and eosin (H&E) and Alcian blue (AB)–periodic
acid–Schiff (PAS) staining ofM. amblycephala intestinal sections
Frontiers in Immunology | www.frontiersin.org 4
were conducted to detect histological structures and goblet cell
distribution, as previously described (16, 17). Briefly, fresh mid-
intestinal tissues were fixed in 4% paraformaldehyde for 24 h at
4°C. Then, they were dehydrated with gradient ethanol, cleaned
in xylene substitute, embedded in paraffin blocks, and sectioned
at 4 mm thickness on a microtome. Subsequently, they were
floated in a 40°C water bath, adhered onto glass slides, and dried
in an oven at 40°C overnight. After deparaffinization and
rehydration, the slides were stained with H&E or AB-PAS
(Sigma, St. Louis, MO, USA). The sections were examined and
photographed using a light microscope (Nikon, Tokyo, Japan).
Then, a transmission electron microscopy (TEM) assay of the
intestinal samples was performed, as previously described (12).
The TEM micrographs (magnification, ×30,000) were obtained
to measure the length and integrity of the microvilli and the
pathological symptoms postinfection. All images were analyzed
using Image-Pro Plus 6.0 (National Institutes of Health,
Bethesda, MD, USA) to calculate the villus length, crypt depth,
microvillus length, and the number of goblet cells.

Total RNA Isolation and cDNA Preparation
Total RNA was extracted from the intestinal samples using the
RNA Easy Fast Tissue Kit (TIANGEN, Beijing, China),
according to the manufacturer’s instructions. The quality and
concentration of total RNA were determined by agarose gel
electrophoresis and NanoDrop 2000 (Thermo Fisher Scientific,
Wilmington, DE, USA), respectively. In addition, cDNA was
synthesized using the PrimeScript® RT reagent Kit with gDNA
Eraser (TaKaRa, Dalian, China) following the manufacturer’s
protocol and stored at −20°C for real-time quantitative reverse
transcription polymerase chain reaction (qRT-PCR).

Real-Time qRT-PCR Analysis
The expression patterns of tight junctions and immune-related
genes were analyzed using qRT-PCR, as previously reported (18).
Briefly, qRT-PCR was performed with an ABI StepOne Plus real-
time PCR system (PerkinElmer Applied Biosystems, CA, USA)
using the QuantiNova™ SYBR® Green PCR Kit (TaKaRa,
Dalian, China) according to the manufacturer’s protocol.
Relative expression levels of the target genes were measured in
terms of the threshold cycle (Ct) value using the 2−DDCt method
(19), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was selected as the internal reference according to the geNorm
software analysis (20). All the reactions were performed in
triplicate, and the primers are listed in Supplemental Table 1.
The gene expression levels in the control group were set as 1, and
the relative expression levels of the MOS supplemental groups
were presented as fold change.

High-Throughput Sequencing of
Intestinal Microorganisms
The total intestinal microbial genomic DNA was extracted for
16S rDNA high-throughput sequencing. The primer sequences
for V3–V4 region amplification were as follows: F: 5′-
NNNNNNNNACTCCTACGGGAGGCAGCAG-3′ and R: 5′-
GGACTACHVGGGTWTCTAAT-3′. The melting temperature
was 56°C, and amplification was conducted for 30 cycles. The
June 2022 | Volume 13 | Article 863657
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validated libraries were paired-end sequenced using an
Illumina HiSeq system (HiSeq reagent kit; Illumina, San
Diego, CA, USA). The raw data were preprocessed by
filtering out adapter contamination and low-quality sequences
to obtain clean reads. Paired-end clean reads with overlaps were
assembled into tags using Fast Length Adjustment of Short
reads (FLASH) software (v1.2.11; 21). Then, de-noised bacterial
tags were clustered to generate operational taxonomic units
(OTUs) with 100% sequence similarity using the Divisive
Amplicon Denoising Algorithm (DADA2) in the software
QIIMA2 (22).

Bacterial OTU representative sequences were taxonomically
classified using Mothur (v1.31.2) software based on the
Ribosomal Database Project (23). Chao 1, Shannon, and
Simpson indices were also calculated using Mothur, and
rarefaction curves were drawn using R (v3.0.3) software. A
beta-diversity analysis based on weighted UniFrac distance was
conducted using QIIME (v1.80) software and visualized using
principal coordinate analysis (PCoA) and heatmaps. In addition,
a linear discriminant analysis (LDA) effect size (LEfSe) analysis
was conducted using the LEfSe software (24).

Statistical Analysis
In the present study, data are presented as the mean ± standard
error (SE). Statistical significance was assessed using a one-way
analysis of variance (ANOVA), and multiple comparisons were
performed using the Tukey method in SPSS 25.0. Statistical
significance was set at P < 0.05.
RESULTS

Dietary MOS Improve the Feed Utilization
Efficiency of Juvenile M. amblycephala
The effects of MOS supplementation on growth performance and
the feed conversion ratio of juvenile M. amblycephala are
presented in Table 2. There was no significant difference in the
final weight and weight gain rate between the control and MOS
supplemental groups, but the feed conversion ratio of the
MOS400 group was significantly lower than that of the control
group, indicating that dietary MOS could improve the feed
utilization efficiency of juvenile M. amblycephala.
Frontiers in Immunology | www.frontiersin.org 5
Dietary MOS Increase the Survival Rate of
Juvenile M. amblycephala Postinfection
As shown in Figure 1, the cumulative mortality of all groups
increased markedly from 6 hpi and reached the maximum at 84
hpi. In addition, the mortality rate of the control group was
significantly higher than that of the MOS400 and MOS200 (200
mg/kg) groups at all time points. The final cumulative mortalities
of the control, MOS200, and MOS400 groups were 55.6%, 46.3%,
and 44.4%, respectively, indicating that MOS supplementation
had a significant immunoprotective effect on juvenile
M. amblycephala.

MOS Enhance the Activities of Hepatic
Antimicrobial and Antioxidant Enzymes
To assess the effects of MOS supplementation on the
antimicrobial and antioxidant functions of juvenile M.
amblycephala, we detected the activities of a series of hepatic
enzymes (Figure 2). The ACP activity increased significantly
upon infection with A. hydrophila in all groups, and that of the
MOS400 group was much lower, at 0 and 4 hpi to maintain host
homeostasis , but was notably induced in the MOS
supplemental groups at 12 and 24 hpi to enhance the
bactericidal effects. In addition, LZM activity was upregulated
in the control and MOS200 groups postinfection, and that of
the MOS400 group maintained relatively high levels at all time
points, indicating that dietary MOS enhanced host
antimicrobial ability. In contrast, AKP activity decreased
postinfection, and there was no significant difference between
the control and MOS200 groups, whereas that of the MOS400
group was lower at 0, 12, and 72 hpi, indicating that only MOS
supplementation of 400 mg/kg promoted an inflammatory
response upon infection.

Two of the antioxidant enzymes, SOD and GST, exhibited
similar tendencies; they were downregulated postinfection,
whereas these enzyme activities in the MOS200 and MOS400
groups were drastically higher than those of the control group at
most time points. Moreover, CAT activity increased prominently
postinfection in the control and MOS200 groups, and that of the
MOS supplemental groups was higher than that of the control
group at all time points, especially the MOS400 group that
maintained activity at a stable higher level. Thus, dietary MOS
enhanced the antioxidant ability of juvenile M. amblycephala by
increasing the activities of SOD, CAT, and GST.
TABLE 2 | Effect of dietary MOS on the growth performance and feed conversion ratio of juvenile M. amblycephala (mean ± SE).

Items Groups

Control MOS200 MOS400

Initial weight (g) 0.86 ± 0.05 0.87 ± 0.04 0.88 ± 0.06
Final weight (g) 4.12 ± 0.10 4.31 ± 0.12 4.12 ± 0.31
Weight gain rate (%) 369.04 ± 34.70 389.96 ± 44.40 358.36 ± 58.69
Feed conversion ratio 1.65 ± 0.05a 1.61 ± 0.08a 1.50 ± 0.05b

Survival rate (%) 100.00 ± 0.00 99.04 ± 1.64 98.09 ± 1.34
June 2022 | Volume 13
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Dietary MOS Maintain the Stability of
Intestinal Histology in Juvenile
M. amblycephala
To analyze the effects of MOS on the histological characteristics
and number of goblet cells upon infection, juvenile M.
amblycephala intestinal paraffin sections were prepared for
H&E and AB-PAS staining. No significant pathological
symptoms were observed in the MOS supplemental groups,
whereas typical vacuolization was observed at the end of the
intestinal villi of the control group at 72 hpi (Figure 3).
Combined with the results of the AB-PAS staining, it could be
concluded that the vacuolar structures of the control group were
not goblet cells but necrosis of the intestinal folds, indicating that
MOS supplementation could protect the intestines of M.
amblycephala from pathological injury. In addition, AB-PAS
staining revealed that the number of goblet cells notably
Frontiers in Immunology | www.frontiersin.org 6
increased upon bacterial infection in all groups, and those of
the MOS supplemental groups were much greater than those of
the control group, indicating that the goblet cells would form a
mucosal barrier to protect the epithelial cells (Figure 4; Table 3).

A TEM assay was conducted to estimate the effects of dietary
MOS on the ultrastructure of the intestines of juvenile M.
amblycephala, which showed no notable difference in the
intestinal ultrastructure between the MOS supplemental and
control groups before infection (Figures 5A–C). However,
significant disruption of the microvilli and junctional complex
was observed in the control group postinfection, which also
showed other pathological characteristics, including
disorganized histological structures, nuclear atypia, increased
pinocytotic vesicles, and partial necrocytosis (Figure 5D). In
contrast, the intestinal epithelial barriers of the MOS
supplemental groups were well-protected upon infection, but
necrocytosis was also observed in the MOS200 group
(Figures 5E, F). Furthermore, goblet cells were found in the
MOS400 group, which is consistent with the results of the AB-
PAS staining (Figure 5F). In addition, the villus length, crypt
depth, and microvillus length showed no significant differences
among the three groups (Table 3), which might have resulted in
the undifferentiated growth performance of M. amblycephala.

Dietary MOS Affect the Expression of M.
amblycephala Intestinal Immune and Tight
Junction-Related Genes
The expression of M. amblycephala intestinal immune and tight
junction-related genes was detected in the control and MOS
supplemental groups upon infection with A. hydrophila. The
expression levels of most detected genes were much higher in
the MOS supplemental groups after the 8-week feeding
experiment, especially in the MOS400 group, indicating that
FIGURE 1 | Dietary MOS decreased the mortality of juvenile M. amblycephala
post–bacterial infection. Different letters indicated significant differences among
groups (P < 0.05).
A B C

D E F

FIGURE 2 | Effects of MOS supplementation on the activities of hepatic antimicrobial and antioxidant enzymes of juvenile M. amblycephala. (A–F) showed the
enzymes activity of ACP, AKP, LZM, GST, SOD, and CAT, respectively. The asterisks indicated statistically significant differences among different groups at a certain
time point (P < 0.05).
June 2022 | Volume 13 | Article 863657
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MOS supplementation enhanced the immunity and tight
junctions of juvenile M. amblycephala (Figure 6). In addition,
the expression levels of these genes were induced upon infection
with A. hydrophila, whereas those of the immune genes and
related signal factors in the MOS supplemental groups were not
increased as significantly as those of the control group
postinfection, indicating that MOS supplementation suppressed
excessive intestinal inflammation and maintained homeostasis of
the host’s physiological functions. Moreover, the expression trend
of the muc2 gene was similar to that of other immune genes, and
the MOS supplemental groups maintained a higher expression
before 12 hpi, which is consistent with the number of goblet cells
detected by histological analysis.

The expression of tight junction-related genes also increased
postinfection, especially that of claudin-b with a hundredfold
upregulation, and the MOS supplemental groups maintained
gene expression at stable high levels after 12 hpi. However, the
expression levels of the occludin and ZO-1 genes in the MOS400
group were always lower than those in the other groups
Frontiers in Immunology | www.frontiersin.org 7
(Figure 6). Combined with the characteristics of intestinal
histology, the expression patterns reflected the diverse feedback
regulation in the three groups required to maintain the stability
of M. amblycephala intestinal tight junctions.

Dietary MOS Improve the Composition of
M. amblycephala Gut Microbiota
A gut microbiome analysis of juvenile M. amblycephala was
conducted using high-throughput 16S rDNA deep sequencing
technology (V3 and V4 regions). The mean obtained clean reads
of 14 samples were 134,743 with an average read utilization ratio
of 92.59%, and the sequencing coverage was greater than 0.99,
which was representative of the samples. As shown in Figure 7,
dietary MOS decreased the number of specific OTUs of the gut
microbiota. Bacterial richness and diversity were analyzed
according to the identified OTUs, and the MOS400 group
exhibited lower species richness (Chao 1 and Ace) and
diversity estimates (Shannon alpha and Simpson) than that in
the control group (P < 0.05; Table 4).
A B C

D E F

G H I

J K L

FIGURE 3 | Effects of MOS supplementation on the intestinal histological structures of juvenile M. amblycephala by H&E staining. (A–C) Mid-intestine sections of
control, MOS200, and MOS400 groups at 0 hpi, respectively. (D–F) Sections at 12 hpi. (G–I) Sections at 24 hpi. (J–L) Sections at 72 hpi. The pathological
symptoms were marked with triangle. Scale bars represented 50 µm (400×).
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Weighted UniFrac PCoA (principal coordinates analysis) and
NMDS (non-metric multidimensional scaling) analyses revealed
that the replicates of the control and MOS400 groups were not
clustered together, indicating that dietary MOS led to differences
in the gut microbial composition (Figure 8). The gut microbial
compositions of juvenile M. amblycephala fed with or without
dietary MOS at the phylum, genus, and species levels are shown
in Figure 9 and Supplemental Table 2. At the phylum level, the
highest relative abundance observed in both groups was
Frontiers in Immunology | www.frontiersin.org 8
Proteobacteria, accounting for over 50%. In addition, the
relative abundances of Bacteroidetes and Verrucomicrobia
were much higher in the control group, whereas Fusobacteria
and Firmicutes were more abundant in the MOS400 group
(Figure 9A). At the genus level, Aeromonas was the
predominant genus in both groups, and dietary MOS
significantly increased the proportion of Cetobacterium, but
decreased that of Reyranella and Flavobacterium (Figure 9B).
At the species level, dietary MOS decreased the relative
A B C

D E F

G H I

J K L

FIGURE 4 | Effects of MOS supplementation on the numbers of intestinal goblet cells by AB-PAS staining. (A–C) Mid-intestine sections of control, MOS200, and
MOS400 groups at 0 hpi, respectively. (D–F) Sections at 12 hpi. (G–I) Sections at 24 hpi. (J–L) Sections at 72 hpi. Goblet cells were marked with triangle. Scale
bars represented 50 µm (200×).
TABLE 3 | Statistical analysis of juvenile M. amblycephala intestinal histology fed with or without MOS (mean ± SE).

Items Groups

Control MOS200 MOS400

Villus length (mm) 133.55 ± 4.13 131.74 ± 3.76 126.75 ± 3.01
Crypt depth (mm) 29.71 ± 1.05 28.47 ± 0.62 30.96 ± 0.61
Microvillus length (mm) 1.04 ± 0.02 1.06 ± 0.03 1.01 ± 0.01
Goblet cells (N/mm2): 0 hpi 236.69 ± 47.41c 532.21 ± 80.83b 732.82 ± 189.55a

Goblet cells (N/mm2): 12 hpi 675.6 ± 79.35b 706.09 ± 140.08b 956.14 ± 169.97a

Goblet cells (N/mm2): 24 hpi 654.68 ± 148.08b 473.07 ± 105.45c 848.75 ± 183.68a

Goblet cells (N/mm2): 72 hpi 504.73 ± 125.75c 684.32 ± 166.39b 1122.24 ± 139.10a
June 2022 | Volume
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A B C

D E F

FIGURE 5 | Effects of MOS supplementation on the intestinal ultrastructure of M. amblycephala by TEM assay. (A–C) Mid-intestine sections of control, MOS200,
and MOS400 groups at 0 hpi, respectively. (D–F) Sections at 24 hpi. G, goblet cell. Scale bars represented 2 µm (8,000×).
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D E F
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J K L

FIGURE 6 | Expression patterns of M. amblycephala intestinal immune and tight junction related genes in the three groups upon infection. The detected genes
including MR (A), p38a (B), p38b (C), PKC (D), TNFa (E), IL-1b (F), IL-6 (G), CXCL8 (H), Muc2 (I), Occludin (J), Claudin-1 (K), and ZO-1 (L), and GAPDH was
selected as the reference gene. Data were shown as mean ± SE, differences were determined by one-way analysis of variance (ANOVA). The asterisks indicated
statistically significant differences among different groups at a certain time point (P < 0.05).
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abundance of dominant bacterial species Lysobacter brunescens,
Reyranella soli, and Reyranella massiliensis while upregulated the
abundance of Cetobacterium somerae and Aeromonas sharmana,
which became the two most dominant bacterial species in the
MOS400 group (Figure 9C).

LDA and LEfSe analysis were conducted to identify possible
discriminatory taxa between the two groups at the phylum to
genus levels. A total of 106 distinguishing taxa were detected
between the control and MOS400 groups, with an LDA score > 3
(Figure 10). Specifically, three phyla (Planctomycetes,
Verrucomicrobia, and Chlamydiae), eight classes, 17 orders, 25
families, and 33 genera were significantly more abundant in the
control group. In comparison, one phylum (Fusobacteria), two
Frontiers in Immunology | www.frontiersin.org 10
classes, three orders, five families, and nine genera were enriched
in the MOS400 group.
DISCUSSION

Effects of Dietary MOS on the Growth
Performance of Aquatic Animals
Previous studies have shown that supplementation with an
appropriate amount of MOS can improve feed utilization
efficiency and increase the growth of cultured animals. For
instance, supplementation with 0.2% MOS could significantly
increase the weight gain rate and specific growth rate of juvenile
Oreochromis niloticus and notably reduce the feed conversion
ratio, which has a remarkable promoting effect on the growth of
juvenile O. niloticus (25). In addition, supplementation with
MOS cou ld improve the g rowth per fo rmance o f
Ctenopharyngodon idellus, Oncorhynchus mykiss, Larimichthys
crocea, and Sparus aurata (9, 12, 26, 27).

In contrast, the present study found that dietary MOS
supplementation had no significant effect on the weight gain
rate of juvenile M. amblycephala but improved the feed
utilization efficiency, which was similar to the findings of the
study on Cyprinus carpio (28). The reasons for the different
effects might be multifactorial, such as the dietary MOS dosage,
experimental period, growth stages of the fish, digestive tract
characteristics, and gut microbiota composition of different fish
species. The digestive tracts of several fish were improved with
MOS supplementation, manifesting as an increased length of the
intestinal microvilli, villi, or folds, which might promote the
A B

FIGURE 8 | Comparison of gut microbial composition between the control and MOS400 groups with weighted UniFrac PCoA analysis (A) and non-metric
multidimensional scaling (NMDS) diagram (B).
TABLE 4 | Richness and diversity statistics of M. amblycephala gut microbiota (mean ± SE).

Sample Chao Ace Shannon Simpson Coverage

Control 225.43 ± 28.37a 225.45 ± 28.38a 3.91 ± 0.11a 0.05 ± 0.00b 1.00 ± 0.00
MOS400 132.00 ± 13.48b 132.00 ± 13.48b 3.06 ± 0.11b 0.11 ± 0.01a 1.00 ± 0.00
P-value 0.017 0.017 0.001 0.001 0.391
June 2022 | Volume 13 | Ar
The columns with different letter superscripts were significantly different (P < 0.05).
FIGURE 7 | Venn diagram analysis of OTU numbers in the control and
MOS400 groups.
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absorption and utilization of nutrients and improve growth
performance (16, 29, 30). However, the present study found
that the villi and microvilli lengths of juvenile M. amblycephala
were not affected by MOS supplementation, which was
consistent with the undifferentiated growth performance of M.
amblycephala. In addition, we found that dietary MOS increased
the abundance of C. somerae in the gut microbiota of M.
amblycephala, which has been shown to improve glucose
homeostasis and fish carbohydrate utilization (31), thereby
contributing to the improvement of feed utilization efficiency
in M. amblycephala.
Frontiers in Immunology | www.frontiersin.org 11
MOS Decrease the Mortality of Aquatic
Animals Upon Pathogenic Infection
The effects of dietary MOS on enhancing disease resistance in
aquatic animals have been previously reported. For example, MOS
supplementation decreases the cumulative mortality and
confinement stress caused by Vibrio anguillarum challenge in
Dicentrarchus labrax (32), similar to the results of studies on
Apostichopus japonicus, Carassius auratus gibelio, Litopenaeus
vannamei, and Haliotis discus hannai Ino (7, 33–35). This
indicates that MOS could enhance the resistance of aquatic
animals to pathogenic infection. Similarly, the present study also
A

B

C

FIGURE 9 | Dietary MOS affected the gut microbial composition of juvenile M. amblycephala. Relative abundance of gut microbiota at phylum (A), genus (B), and
species (C) levels.
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found that cumulative mortality in the short-term MOS
supplemental groups decreased significantly, revealing the
immunoprotective effects of MOS on juvenile M. amblycephala.
The possible reasons for this enhanced disease resistance of juvenile
M. amblycephalamight include activation of antioxidases, induced
expression of immune genes, maintenance of intestinal histological
structures, and improvement of the gut microbial composition (5),
which were further verified in the present study.
MOS Enhance the Activities of Hepatic
Antimicrobial and Antioxidant Enzymes
in Aquatic Animals
The antimicrobial enzymes, ACP, AKP, and LZM play important
roles in host defense and are thus common indicators for
evaluating host non-specific immunity (36). LZM can dissolve
glycoproteins on the surface of bacteria, and ACP is an enzyme
marker for lysosomes with bactericidal effects. Thus, the
upregulated activities of ACP and LZM reflected increased host
bactericidal effects, which have also been previously observed (7,
35, 37, 38). The activity of AKP was positively correlated with A.
hydrophila infection levels, and the resistance level of the host to
the pathogen was reflected by the significantly lower AKP activity
in the immune-stimulated groups (39). We found that AKP
activity in the MOS400 group decreased significantly compared
with that in other groups upon bacterial infection, indicating that
MOS supplementation increased host resistance to bacterial
infection (35). Thus, the activities of antimicrobial enzymes
revealed the enhanced host non-specific immunity of the MOS
supplemental groups, which might result in decreased mortality.

Excess hepatic free radicals produced by stimulation can be
scavenged by the antioxidant system, among which SOD, CAT,
and GST are important antioxidant enzymes. As the first line of
defense in the antioxidant system, SOD can directly capture and
dismutate O2− to produce H2O2, which is further cleared by CAT
Frontiers in Immunology | www.frontiersin.org 12
(40, 41). However, the antioxidant system (particularly SOD
activity) is inhibited when the superoxide anion concentration
generated in the body is greater than the scavenging capacity of
SOD. Thus, decreased activity of SOD is usually observed upon
infection, but the present study found much higher SOD activity
in the MOS400 group, indicating that dietary MOS could enhance
host antioxidant ability (29, 33). Furthermore, CAT activity was
more notably induced post-bacterial infection in the MOS
supplemental groups, thereby protecting cells from oxidative
damage. GST is a key enzyme catalyzing the initial step in the
glutathione binding reaction, and its activity was also inhibited
postinfection, whereas dietary MOS could maintain its activity in
the present study. Similar results have been reported in grass carp
(38). In summary, dietary MOS enhanced the antioxidant ability
of juvenile M. amblycephala by inducing or maintaining the
activities of SOD, CAT, and GST, which could assist in
increasing the survival rate of M. amblycephala upon infection.

The Effects of Dietary MOS on the
Intestinal Histology of Aquatic Animals
Studies have shown that dietary MOS can increase the intestinal
villus length and muscle layer thickness of Anguilla japonica (30).
Similarly, dietary MOS also increase the villus length in the
soybean meal group in European sea bass but had no significant
effect on the villus width (16). In addition, MOS supplementation
had a significant effect on the villus length of juvenile
Pangasianodon hypophthalmus but did not affect the villus
width and crypt depth (42). At the ultrastructural level, TEM
assays demonstrated that MOS supplementation could
significantly increase the intestinal microvilli length in juvenile
Pacific white shrimp (29) and the intestinal microvilli density and
length in Sparus aurata (12).

In contrast, dietary MOS showed no significant influence on
the intestinal villus width and length in Gulf sturgeon (Acipenser
oxyrinchus desotoi) (43). Similarly, the present study found that
FIGURE 10 | Cladogram revealing the polygenetic distribution of bacterial lineages associated with different groups. Different colors indicated different groups; nodes
in red or green represented the microbiome that played important roles in the control or MOS400 groups, whereas yellow nodes indicating the microbiome were not
vital in both groups. The circles were in order of phylum, class, order, family, and genus levels from inside to outside.
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dietary MOS had no significant effect on the lengths of the
intestinal villi and microvilli of juvenile M. amblycephala. The
different effects of dietary MOS on fish intestinal histological
structures might be related to the supplemental amount, species,
and growth stages of the experimental fish. The lengths of
intestinal villi and microvilli mainly affect the absorption of
nutrients. Thus, dietary MOS exhibited no significant effect on
the intestinal villi and microvilli length, resulting in
undifferentiated growth performance in M. amblycephala.
However, dietary MOS could assist in maintaining the stability
of the intestinal histological structures and increasing the
number of goblet cells upon infection, which might protect the
intestinal epithelial barrier in M. amblycephala, thereby
contributing to improved host immune defense ability and
decreased cumulative mortality.

The Effects of MOS on the Expression
of Immune-Related Genes in Various
Aquatic Animals
The effects of dietary MOS on fish immunity and other
biological functions could be relevant in activating or
inhibiting related signaling pathways, reflected as the
expression of pathway genes. In C. idella, the expression of
antioxidant-, apoptosis-, tight junction-, and immune-related
genes was regulated by dietary MOS, among which the
expression of most antioxidant and tight junction-related
genes was induced, whereas that of pro-apoptotic and pro-
inflammatory factors was reduced (38). Similarly, the
expression of antioxidant-related genes was also upregulated
in the intestines (9). Moreover, immune parameters, including
antibacterial and anti-inflammatory cytokines, were activated
in the spleen and kidneys by MOS supplementation, whereas
pro-inflammatory cytokine levels were inhibited (37).

However, the regulatory effects of dietary MOS on the
expression of immune-related genes exhibit variable patterns in
different species. For instance, the expression of pro-
inflammatory cytokines was induced by MOS supplementation
in Pacific white shrimp and O. niloticus (26, 35). Similarly, in the
present study, the expression of M. amblycephala pro-
inflammatory cytokines, tight junction-related genes, and
signaling factors was also increased after 8 weeks of feeding
with dietary MOS, indicating that MOS could enhance the
intestinal immunity and tight junctions of M. amblycephala.
However, the expression of pro-inflammatory cytokines in the
MOS supplemental groups was not upregulated as significantly
as that in the control group upon bacterial infection, revealing
that MOS supplementation reduced the damage caused by an
excessive intestinal inflammatory response. In addition, the
expression of tight junction-related genes also showed different
patterns in the control and MOS supplemental groups, which
could indicate different feedback regulation of the stability of the
junctional complex, as the ultrastructures of the control group
were partially disordered upon infection. Therefore, the gene
expression patterns indicated that dietary MOS not only
possessed immune-enhancing properties but could also prevent
excessive inflammation postinfection, thereby decreasing the
mortality caused by A. hydrophila infection.
Frontiers in Immunology | www.frontiersin.org 13
The Dietary MOS Regulate the Richness
and Composition of the Gut Microbiota
The gut microbiota of many teleosts is composed of a high
abundance of Proteobacteria, Fusobacteria, and Firmicutes (44–
47). Proteobacteria was found to be the predominant phylum in
the present study. The effect of MOS on the gut microbiota lacks
consensus (5, 12, 32, 48, 49). The addition of dietary MOS may
improve the gut microbial community by increasing the
abundance of beneficial bacteria, thus enhancing host disease
resistance, feed utilization, and growth performance. The present
study found that dietary MOS supplementation affected the gut
microbial diversity and composition, especially the abundance of
Verrucomicrobia, Bacteroidetes, Fusobacteria, and Firmicutes,
which could contribute to the improvement of feed utilization
and anti-infection ability.

In addition, dietary MOS increased the abundance of
Aeromonas and Cetobacterium in the intestines of juvenile M.
amblycephala, which were the dominant genera in the fish
intestines. Previously, Cetobacterium was isolated from several
fish intestines, which mainly consisted of C. somerae. Recently,
C. somerae has been developed as an aquatic probiotic strain with
lipid-lowering, anti-inflammatory, anti-apoptotic, and antiviral
functions. This species has also been reported to play a role in
regulating Danio rerio glucose homeostasis (31), and its
fermentation product could improve the gut health of C. carpio
and D. rerio (50, 51). Thus, it can be speculated that dietary MOS
improved the gut health of juvenileM. amblycephala by increasing
the relative abundance of beneficial bacteria.
CONCLUSIONS

In conclusion, this study revealed that dietary MOS improved
feed utilization efficiency, intestinal health, and resistance to
infection in juvenile M. amblycephala and can therefore be
used as a functional feed additive and immunostimulant. Most
importantly, MOS supplementation promoted intestinal health
by maintaining intestinal homeostasis and the balance between
enhancing anti-infection immunity and preventing excessive
inflammation with significant immune-protective effects in
juvenile M. amblycephala.
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