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Abstract

Entropy is an important index for describing the structure, function, and evolution of network.

The existing research on entropy is primarily applied to undirected networks. Compared

with an undirected network, a directed network involves a special asymmetric transfer. The

research on the entropy of directed networks is very significant to effectively quantify the

structural information of the whole network. Typical complex network models include near-

est-neighbour coupling network, small-world network, scale-free network, and random net-

work. These network models are abstracted as undirected graphs without considering the

direction of node connection. For complex networks, modeling through the direction of net-

work nodes is extremely challenging. In this paper, based on these typical models of com-

plex network, a directed network model considering node connection in-direction is

proposed, and the eigenvalue entropies of three matrices in the directed network is defined

and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and

in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are

calculated in directed nearest-neighbor coupling, directed small world, directed scale-free

and directed random networks. Through the simulation experiment on the real directed net-

work, the result shows that the eigenvalue entropy of the real directed network is between

the eigenvalue entropy of directed scale-free network and directed small-world network.

Introduction

In recent years, research pertaining to complex network topologies has garnered significant

attention. The understanding of network topology knowledge is related to the study of net-

work composition, function, and evolution. Many indicators reflect the features of a complex

network topology, such as network node degree, clustering coefficient, density, and network

diameter, etc [1–3]. Although these indicators can partly reflect the features of the network

topology, they cannot fully describe the whole and dynamic characteristics of the network.

Insufficient information for mapping the overall network topology is a concern to scholars. In

this regard, network entropy [4] is a crucial method. It was proposed by Shannon [5] and
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derived from the information content. Entropy is essential for applications in information sci-

ence, computer science, statistics, chemistry, astronomy, and other fields [6–8]. The definition

of entropy differs in these fields. Among them, graph entropy, also known as network entropy,

can describe the node relationship structure. Graph entropy has been widely investigated over

the years.

Problem model

Graph entropy [9] is a theoretical method used to quantify the complex performance of

graphs. In 1955, Rashevsky [10] first proposed the concept of graph entropy, which is based on

the vertices symmetric structure of chemical molecules. In 1956, Trucco [11] published an arti-

cle based on the entropy of molecular edges symmetry. In the literature [9], the entropy Ig(X)

of an undirected graph X is also given from the perspective of group theory.

Let Ai be the orbits of group G(X), and pi ¼
jAi j

n , 1� i� h. Then the structural information

content is

IgðXÞ ¼ �
Xh

i¼1

jAij

n
log
jAij

n
¼ �

Xh

i¼1

pilogpi:

The definition of entropy proposed above comes from different fields. Graph entropy based

on the in-direction of node connections is challenging for directed complex networks. Com-

pared with an undirected network, a directed network come down to a special asymmetric

transfer. It is more difficult to research graph entropy in directed networks than in undirected

networks.

Related work

Graph entropy can be classified based on the invariance of the graph as follows:

1. Degree-based vertex entropy [4], which evaluates the robustness of the network and mea-

sures the importance of the vertex. In the protein interaction network, it is used as an indi-

cator to determine the protein contribution.

2. Distance-based entropy, Bonchev and Trinajstic [12] proved that it is more sensitive than

other classical topological indicators in mathematical chemistry.

3. Subgraph-based structure entropy, Konstantinova and Paleev [13] described the informa-

tion metric of a subgraph, it is useful for investigating the overall properties of the graph.

4. Eigenvalue-based entropy [14] derived from entropy defined by Renyi [15].

Eigenvalue-based entropy, which depends on the adjacency matrix, has been extensively

investigated. Randic [16] applied eigenvalue multiplicity to distinguish different types of DNA

structures and control protein synthesis in 2001. Ivanciuc [17–19] investigated the materials

and spectra of molecular graphs. Sivakumar and Dehmer [14] proposed the entropy of eigen-

value-based modulus, and proved that eigenvalue-based modulus measures have a high recog-

nition rate for molecular structures. Therefore, eigenvalue-based entropy [20–22], which relies

on an adjacent matrix, is an important branch of multiple types of graph entropies. However,

the research objects mentioned above are all undirected graphs [23], and the connection direc-

tion of nodes is not considered in real networks.

Real networks have more important direction properties than undirected networks. In

1968, Mowshowitz [24] investigated the entropy of digraphs, which is originally developed to

obtain the entropy of digraphs [25, 26]. Since the matrix of the directed network is asymmetric
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[27, 28], it is very difficult to investigate eigenvalue-based entropy in a directed network [29–

31]. Moreover, investigations regarding eigenvalue-based entropy on a directed graph matrix

are scarce.

Research motivation

The research and application of eigenvalues based on the entropy of the directed graph is a

necessary condition to fill this knowledge gap. Therefore, this article will conduct research

from the following three aspects.

First, the definitions of the eigenvalue-based entropy of the adjacency, in-degree Laplacian,

and in-degree signless Laplacian matrices in a directed network are provided herein. The

eigenvalues of these matrices are typically complex numbers. Therefore, the corresponding

eigenvalue-based entropy is classified as the real part entropy, imaginary part entropy, and

modulus entropy.

Second, from typical models of complex networks, a model of directed network is proposed

that considers the in-direction of node connections, and the eigenvalue-based entropy of the

three matrices are calculated for the directed nearest-neighbour coupling, directed small-

world, directed scale-free, and directed random networks.

Finally, by analysing simulation experiments on a real directed network, the results show

that the eigenvalue-based entropy of the real directed network is between those of directed

small-world and directed scale-free networks. Additionally, simulation results are provided to

demonstrate the efficiency of the approach.

Basic concept and terminology

Let G = (V, E) be a finite undirected graph. The V(G) = {1, � � �, n} is the set of vertices and E(G)

= {e1, � � �, em} is the set of edges. Let A(G) and D(G) be the adjacency matrix and degree matrix

of the graph G, respectively. The Laplace matrix is denoted as L(G) = D(G) − A(G). The signless

Laplacian matrix [32] is denoted as Q(G) = D(G) + A(G).

In the literature [33], the adjacency matrix of the digraph is denoted as A−, in-degree Lapla-

cian matrix is denoted as L−, in-degree signless Laplacian matrix is denoted as Q−. Let G = (V,

E) be a digraph. The V = {1, 2, � � �, n} is the set of vertices. An ordered pair vertex (vj, vi) is an

edge of digraph, and the vertex vj walks to vertex vi, which is denoted as vj! vi. The in-degree

and out-degree of a vertex i are denoted as d�i and dþi , respectively. The vertex vi in-degree

sum is denoted as
P

vj!vi
d�i . The in-degree matrix and the out-degree matrix are defined as D−

and D+, respectively. The adjacency matrix A− of digraph G is denoted as:

A� ¼

0; if vi ¼ vj;

1; if vj ! vi;

0; otherwise:

8
><

>:

For digraphs, the adjacency matrix is asymmetric. The Laplacian matrix L− of digraph G is

denoted as:

L� ¼

d�i ; if vi ¼ vj;

� 1; if vj ! vi;

0; otherwise:

8
><

>:
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The in-degree Laplacian matrix Q− of digraph G is denoted as:

Q� ¼

d�i ; if vi ¼ vj;

1; if vj ! vi;

0; otherwise:

8
><

>:

Let {λ1, λ2, � � �, λn}, {μ1, μ2, � � �, μn} and {q1, q2, � � �, qn} be eigenvalue of the adjacency matrix,

in-degree Laplacian matrix and in-degree signless Laplacian matrix in directed network,

respectively. Since the asymmetry of the directed network matrix, most of its eigenvalue are

complex numbers, and there are positive and negative numbers among them. We propose a

novel entropy eigenvalue-based of the adjacency matrix, in-degree Laplacian matrix and in-

degree signless Laplacian matrix. Let the real part and imaginary part entropy be Re and Im,

respectively. The |λj| is the absolute value of the j eigenvalue of the adjacency matrix. The |μj| is

the absolute value of the j eigenvalue of the in-degree Laplacian matrix. The |qj| is the absolute

value of the j eigenvalue of the in-degree signless Laplacian matrix. Herein, there is no special

statement that a directed network is equivalent to a directed graph.

Next, we define the eigenvalue-based entropy of the three matrixes for directed networks.

1. The eigenvalue-based entropy of adjacency matrix for directed graph.

Definition 0.1 The entropy of real part is defined as

IðReðA� ÞÞ ¼ �
Xn

j¼1

jReðljÞj

Xn

k¼1

jReðlkÞj

jlog
jReðljÞj

Xn

k¼1

jReðlkÞj

:

Definition 0.2 The entropy of imaginary part is defined as

IðImðA� ÞÞ ¼ �
Xn

j¼1

jImðljÞj

Xn

k¼1

jImðlkÞj

log
jImðljÞj

Xn

k¼1

jImðlkÞj

:

Definition 0.3 The entropy of modulus is defined as

IðA� Þ ¼ �
Xn

j¼1

jljj

Xn

k¼1

jlkj

log
jljj

Xn

k¼1

jlkj

:

2. The eigenvalue-based entropy of in-degree Laplacian matrix.

Definition 0.4 The entropy of real part is defined as

IðReðL� ÞÞ ¼ �
Xn

j¼1

jReðmjÞj

Xn

k¼1

jReðmkÞj

log
jReðmjÞj

Xn

k¼1

jReðmkÞj

:

Definition 0.5 The entropy of imaginary part is defined as

IðImðL� ÞÞ ¼ �
Xn

j¼1

jImðmjÞj

Xn

k¼1

jImðmkÞj

log
jImðmjÞj

Xn

k¼1

jImðmkÞj

:

PLOS ONE Eigenvalue-based entropy in directed complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0251993 June 21, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0251993


Definition 0.6 The entropy of modulus is defined as

IðL� Þ ¼ �
Xn

j¼1

jmjj

Xn

k¼1

jmkj

log
jmjj

Xn

k¼1

jmkj

:

3. The eigenvalue-based entropy of in-degree signless Laplacian matrix.

Definition 0.7 The entropy of real part is defined as

IðReðQ� ÞÞ ¼ �
Xn

j¼1

jReðqjÞj

Xn

k¼1

jReðqkÞj

log
jReðqjÞj

Xn

k¼1

jReðqkÞj

:

Definition 0.8 The entropy of imaginary part is defined as

IðImðQ� ÞÞ ¼ �
Xn

j¼1

jImðqjÞj

Xn

k¼1

jImðqkÞj

log
jImðqjÞj

Xn

k¼1

jImðqkÞj

:

Definition 0.9 The entropy of modulus is defined as

IðQ� Þ ¼ �
Xn

j¼1

jqjj

Xn

k¼1

jqkj

log
jqjj

Xn

k¼1

jqkj

:

An example is given and used to calculate the eigenvalue entropy of the real part, imaginary

part and modulus of three matrices in a directed graph. Fig 1 shows a simple digraph G(V, E)

with 4 vertices and 5 arcs.

Fig 1. Directed graph of four vertices.

https://doi.org/10.1371/journal.pone.0251993.g001
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From Fig 1, we obtain the adjacency matrix, in-degree Laplacian matrix and in-degree sign-

less Laplacian matrix as follows,

A� ¼

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; L� ¼

1 � 1 0 0

0 2 � 1 0

0 0 1 � 1

� 1 � 1 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; Q� ¼

1 1 0 0

0 2 1 0

0 0 1 1

1 1 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

From Fig 1, we calculate eigenvalues of the three matrices, λ1 = 1.2207+0.0000i,
λ2 = −0.2481+1.0340i, λ3 = −0.2481 − 1.0340i, λ4 = −0.7245 +0.0000i, where λj(j = 1, 2, 3, 4) is

the eigenvalue of adjacency matrix, and i is an imaginary unit.

μ1 = 0.0000+0.0000i, μ2 = 1.5000+0.8660i, μ3 = 1.5000 − 0.8660i, μ4 = 2.0000 +0.0000i,
where μj(j = 1, 2, 3, 4) is the eigenvalue of in-degree Laplacian matrix, and i is an imaginary

unit.

q1 = 0.3820+0.0000i, q2 = 1.0000 − 0.0000i, q3 = 1.000+0.0000i, q4 = 2.6180+0.0000i, where

qj(j = 1, 2, 3, 4) is the eigenvalues of in-degree signless Laplacian matrix, and i is an imaginary

unit. The values above indicate that the eigenvalues are complex numbers. The eigenvalues

appear as conjugate pairs, such as λ2 and λ3, μ2 and μ3, q2 and q3.

From Definition 0.1 to 0.9, we calculate the entropy of the eigenvalue in Fig 1 (please refer

to Table 1).

Table 1 shows the nine eigenvalue-based entropy values of the three types of matrices for

the directed network from Fig 1, let I(Re(A−)), I(Im(A−)) and I(A−) be the real part, imaginary

part, and the modulus of the eigenvalue-based entropy on the adjacent matrix. Let I(Re(L−)), I
(Im(L−)) and I(L−) be denoted by the real part, imaginary part, and the modulus of the eigen-

value-based entropy on the in-degree Laplacian matrix. Let I(Re(Q−)), I(Im(Q−)) and I(Q−) be

denoted by the eigenvalue-based entropies on the in-degree signless Laplacian matrix. As

shown in Table 1, the numerical solution I(Im) is eigenvalue-based entropy of the imaginary

part in the three matrices. These results are consistent,

IðImðA� ÞÞ ¼ IðImðL� ÞÞ ¼ IðImðQ� ÞÞ ¼ 0:6931:

This result indicates that node connections are the same direction in the digraph. Hence,

the structural information can be captured by the eigenvalue-based entropy based on the three

types of matrix in the directed network.

Remark 0.1 In the literature [32], if digraph is regular of a certain degree d−, three matrices
are the adjacency and in-degree Laplacian and in-degree signless Laplacian. The relationship
between three matrices is as follow, so the adjacent spectrum is,

½l1; l2; � � � ; ln�; ð1Þ

Table 1. The eigenvalue-based entropy of three matricesfor the directed network of Fig 1 (n = 4).

Matrix Eigenvalue-based entropy

The real part The imaginary part The modulus

adjacent matrix I(Re(A−)) = 1.1718 I(Im(A−)) = 0.6931 I(A−) = 1.3696

in-degree Laplacian matrix I(Re(L−)) = 1.0889 I(Im(L−)) = 0.6931 I(L−) = 1.0962

in-degree signless Laplacian matrix I(Re(Q−)) = 1.1790 I(Im(Q−)) = 0.6931 I(Q−) = 1.3723

https://doi.org/10.1371/journal.pone.0251993.t001
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the Laplacian spectrum is,

½d� � l1; d� � l2; � � � ; d� � ln�; ð2Þ

the signless Laplacian spectrum is,

½d� þ l1; d� þ l2; � � � ; d� þ ln�: ð3Þ

When the eigenvalues are complex numbers, the real part of eigenvalues is a real number,

and in-degree is a real number. According to Eqs (1)–(3), the imaginary part entropy are

equivalent for a regular digraph, i.e.

IðImðA� ÞÞ ¼ IðImðL� ÞÞ ¼ IðImðQ� ÞÞ:

Directed complex network model

We utilize the in-degree of the vertices to define the three matrices of the directed network. Let
P

vj!vi
d�i denote the total number of arcs. It is the sum of the in-degrees of vertex vi that walks

from vertex vj to vertex vi. In recent years, scholars have conducted empirical research through

the analysis of computer technology networks, food networks, the world wide web, cell net-

works, circuit networks, etc. Directed network model has been proposed, and the characteris-

tics and simple applications of these directed network models have been investigated.

Schwartz [34] investigated the excesses of directed scale-free networks; Tadic [25] proposed a

directed network model representing the www network; Ramezanpour [26] investigated a

propagation process used in directed network [7] research. Murai [35] conducted a prelimi-

nary study on the spectrum properties [36] of a directed network. However, the modelling of

directed network in the in-degree direction of vi is insufficient. The in-degree direction is from

vj to vi. Herein, we propose a novel directed complex network model that is constructed

through algorithm improvement using a typically undirected complex network model.

Directed random network model

To construct a directed random network [37], we regenerate models by using undirected idea

of the Erdios and Renyi [15] in this paper, where the directions of the arcs are considered. Sub-

sequently, a directed random network model is proposed. The construction process is as

follows:

Step 1. Initially, set n as the total number of nodes and random connection probability p 2
(0, 1).

Step 2. Randomly select different t nodes from n nodes as the arc-end.

Step 3. Randomly generate a number p1 2 (0, 1),

Step 4. If p1 > p, select r nodes in Step 3 as an arc-head connected by Step 2, and generate

directed arcs.

Step 5. Repeat Steps 1–4 for each node vi, and select different nodes only once.

The arc number of the directed random network is pðnr Þ and the directed network does not

allow repetition arcs and loops.
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Directed small world network model

The undirected small-world network model is used to generate directed small-world network

[38]. Construction process is as follows:

Step 1. In the initial directed nearest-neighbour network, set n as the total number of nodes.

Randomly generate the reconnection probability p1 2 (0, 1).

Step 2. Randomly select the k nearest neighbour vi+1+k in the directed nearest-neighbour cou-

pling network and random walk to any node vi, and connect vi+1+k! vi to two nodes form-

ing an arc.

Step 3. Repeat Step 2 until all n different nodes are selected once.

Step 4. Generate a random number p1 2 (0, 1), if p1� p, then the arc will be randomised to

reconnect, otherwise, the arc will not be reconnected.

Reconnection strategy: first, shift down the original arc-head and then randomly select

another node as the arc-head from the unconnected nodes to connect with the original

node.

Step 5. Until all nodes in the network are traversed.

Directed scale-free network model

In 1999, Barabási and Albert [39] first proposed a network model derived from the dynamic

evolution of growth and preferential connection mechanisms, empirically demonstrating the

universal nature of a real network, where the number of nodes with large degrees is small in

the network, whereas the number of nodes with small degrees is large in the network. In an

undirected scale-free complex network [40, 41], the degree of a node obeys power-law distri-

bution [42], Zdeg(d)/ d−γ, where γ is the exponential value. The function Zdeg(d) increases as

the vertex degree d decays slowly. We construct a directed scale-free complex network, where

the in-degree of the node obeyed the power law distribution. The construction process of the

directed scale-free network is as follows:

Step 1. Initially, set the number of network nodes before the network growth m0; randomly

specify the number of newly generated m edges each time a new node is induced, and the

network size after growth is recorded as n.

Step 2. Before the growth of the network (the number of nodes is m0), randomly generate a

number p1 2 (0, 1). When the probability is p1, select a node vi as the arc-head and another

node vj as the arc-end connection, which randomly connects m0 nodes as a directed ran-

dom network.

Step 3. Growth mechanism: based on Step 2, in executing t = n−m0 time steps, add s nodes in

each time step, priority select m nodes of existed to connect with the newly added node s,
add m arc in each time, and calculate the cumulative in-degree connection probability

q ¼
Xn

i¼1

ðd�i Þ, q 2 (0, 1) of each node in the network. Let the total number of the network be

n. The network does not allow repetition arcs and loops.

Step 4. Preferential connection mechanism: In Step 3, m nodes are selected from the existing

nodes, and when the end of the arc is connected to the newly added node s, a new node s is

added in each time step based on the preferential probability p2 2 (0, 1), p2 ¼
d�i
Xn

i¼1

d�i

¼
d�i
q :
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The newly added nodes follow the mechanism of prioritising connections to known nodes

to form a directed scale-free network.

Directed nearest-neighbor coupling network model

The nearest-neighbour coupling network is a model that has been extensively investigated. In

this paper, we construct a directed nearest-neighbour coupling network. The node of the net-

work is arbitrarily selected to connect an arc with the nearest neighbour, and the direction of

the arc is randomly selected. The procedure to construct process is as follows:

Step 1. Initially, set a number as the kth nearest neighbours, n is the total number of nodes in

the directed network.

Step 2. Randomly select the k nearest-neighbour node in the network vi+1+k and walk to any

node vi, connect the node vi+1+k to vi forming an arc.

Step 3. Repeat Step 2 until all n different nodes are selected once.

The following examples verify the effectiveness of the algorithm for constructed the model.

The results show the directed networks of the directed nearest-neighbour coupling, directed

small-world, directed scale-free, and directed random. They are shown in Figs 2 and 3.

Simulation experiment and result analysis

To investigate the properties of the directed network model, a simulation experiment is per-

formed based on the number of directed network nodes n = 1000 and the probability of node

reconnection p = 0.1* 0.9. For each node in the nearest-neighbor network, its neighbors are

k = 1, 3, 5, 7, 9 and for each experimental result is the average result of 100 values. The simula-

tion experiment conditions are divided into the following two categories:

1. Fixed number of nodes in a directed network.

Fig 2. (a) directed nearest-neighbor coupled. (b) directed small-world network (n = 10, k = 2, p = 0.1).

https://doi.org/10.1371/journal.pone.0251993.g002
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2. Fixed number of nodes in a directed network and the average in-degree d�i of each node.

The results are shown in Tables 2–5. For the directed random, directed small-world,

directed scale-free, and directed nearest-neighbour coupling networks, their eigenvalue-based

entropy values are obtained from the first condition.

Based on information theory, entropy can reflect the irregular features of a network. The

smaller the entropy value is, the more regular the network is, while the larger the entropy value

is, the more irregular the network is. Based on the principle of entropy, we can assess the ran-

domness and disorder of a network. The larger the eigenvalue-based entropy is in a directed

network, the more dispersed the distribution of eigenvalue entropy is, thus the distribution of

nodes is more equilibrium. When the entropy based on eigenvalue is smaller, the distribution

of entropy is more concentrated. As a result, the distribution of nodes is more uneven.

The entropies of nine eigenvalues of adjacency matrix, in-degree Laplacian matrix and in-

degree signless Laplacian matrix in directed random network are shown in Table 2. The values

are obtained using the constructed directed random network. As shown in Table 2, the

Fig 3. (a) directed scale-free network n = 10. (b) directed random network (n = 10, p = 0.3).

https://doi.org/10.1371/journal.pone.0251993.g003

Table 2. The eigenvalue-based entropy of three matrices for directed random network.

Entropy Reconnection probability p
0.1 0.3 0.5 0.7 0.9

I(Re(A−)) 6.6023 6.3972 6.5180 6.5698 6.6105

I(Im(A−)) 6.5628 6.6307 6.6515 6.6535 6.6428

I(A−) 6.5652 6.6828 6.7310 6.7590 6.7757

I(Re(L−)) 6.7492 6.7616 6.7455 6.7067 6.6281

I(Im(L−)) 6.0982 6.1863 6.1739 6.0602 5.6040

I(L−) 6.7697 6.7618 6.7474 6.7074 6.6269

I(Re(Q−)) 6.7494 6.7619 6.7458 6.7069 6.6282

I(Im(Q−)) 6.1614 6.2073 6.1732 6.0242 5.5741

I(Q−) 6.7500 6.7621 6.7477 6.7077 6.6270

https://doi.org/10.1371/journal.pone.0251993.t002
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probability of node reconnection is p = 0.1* 0.9, therefore, the entropy value of the modular

of in-degree Laplacian I(L−) is 6.7697 > 6.7618 > 6.7474 > 6.7074 > 6.6269. The results show

that the eigenvalue-based entropy values decrease gradually. Intuitively, the direction of the

arc of the directed random network is random and diverse, and the entropy value of the imagi-

nary part should increase. However, As shown in Table 2, the results show that the probability

Table 5. The eigenvalue-based entropy of three matrices for directed nearest-neighbor coupled network.

Entropy The nearest neighbor number k
1 3 5 7 9

I(Re(A−)) 6.7630 6.5354 6.3920 6.2916 6.1803

I(Im(A−)) 6.7630 6.4923 6.3550 6.2588 6.1521

I(A−) 6.9078 6.6618 6.5210 6.4218 6.3115

I(Re(L−)) 6.6009 6.7883 6.8334 6.8538 6.8695

I(Im(L−)) 6.7630 6.4923 6.3550 6.2588 6.1521

I(L−) 6.7630 6.8497 6.8713 6.8872 6.8888

I(Re(Q−)) 6.6009 6.8328 6.8644 6.8773 6.8867

I(Im(Q−)) 6.7630 6.4923 6.3550 6.2588 6.1521

I(Q−) 6.7630 6.8347 6.8620 6.8745 6.8842

https://doi.org/10.1371/journal.pone.0251993.t005

Table 3. The eigenvalue-based entropy of three matrices for directed small-world network.

Entropy Reconnection probability p
0.1 0.3 0.5 0.7 0.9

I(Re(A−)) 6.4492 6.5803 6.6571 6.6828 6.6784

I(Im(A−)) 6.4160 6.5941 6.6588 6.6871 6.6754

I(A−) 6.5873 6.7375 6.8155 6.8230 6.8282

I(Re(L−)) 6.8376 6.8316 6.8125 6.8050 6.7868

I(Im(L−)) 6.2828 6.5347 6.6182 6.6181 6.6026

I(L−) 6.8609 6.8370 6.8250 6.8027 6.7989

I(Re(Q−)) 6.8565 6.8372 6.8139 6.8056 6.7872

I(Im(Q−)) 6.3182 6.5442 6.6231 6.6146 6.5969

I(Q−) 6.8555 6.8360 6.8250 6.8027 6.7996

https://doi.org/10.1371/journal.pone.0251993.t003

Table 4. The eigenvalue-based entropies of the three matrices for directed scale-free network.

Entropy Network node m0! 1000

100 ⇢ 1000 200 ⇢ 1000 500 ⇢ 1000 700 ⇢ 1000 900 ⇢ 1000

I(Re(A−)) 6.4721 6.3983 5.9254 6.1207 6.3287

I(Im(A−)) 6.4656 6.3491 5.9090 6.1341 6.3411

I(A−) 6.6179 6.0769 6.0648 6.6269 6.7102

I(Re(L−)) 5.6766 5.8970 6.2675 6.4271 6.6790

I(Im(L−)) 6.3716 6.2206 5.7339 5.6420 5.7285

I(L−) 6.1932 6.1431 6.2678 6.6666 6.6279

I(Re(Q−)) 5.6766 5.8971 6.2676 6.4271 6.6790

I(Im(Q−)) 6.3716 6.1944 5.7251 5.5416 5.5762

I(Q−) 5.6842 6.1431 6.2678 6.6666 6.6279

https://doi.org/10.1371/journal.pone.0251993.t004
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of node reconnection increases and the entropy of imaginary part of eigenvalue decreases. As

shown in Table 2, with a fixed reconnection probability, when the reconnection probability is

p = 0.1, the modular and real part entropies of the three types of matrices do not differ signifi-

cantly. The value I(Re(�))’ I(�)> I(Im(�)) is larger than the entropy value of the imaginary

part in the corresponding matrix, where � is the wildcard of A−, L− and Q−. This indicates

increasingly irregular connections between nodes in the directed random network, and the

increasing equilibrium in the distribution of directed arcs.

The entropies of nine eigenvalues of adjacency matrix, in-degree Laplacian matrix and in-

degree signless Laplacian matrix in the directed small-world network are shown in Table 3.

The probability of node reconnection is p = 0.1 * 0.9. When the probability increases with the

increase of entropy, the results show that the direction of the arc tends to diverge and become

erratic When the reconnection probability p = 0.1, the real part and modular entropy of these

matrix exhibit I(Re(L−)) > I(Re(A−)) and I(L−)> I(A−) and I(Re(Q−)) > I(Re(A−)) and I(Q−)>

I(A−), respectively. The imaginary part entropy exhibits I(Im(L−)) < I(Im(A−)) and I(Im(Q−))

< I(Im(A−)). The results show that the directed small-world network is more random, and the

direction of arc tends to be centralized. Through the analysis of the above results, it is found

that the directed small-world network is a process from the directed regular network to the

directed random network.

The eigenvalue-based entropies of the three matrices for directed scale-free network are

shown in Table 4. When the initial nodes are a percentage of the overall network nodes from

0%*50%, the entropy value decreased from 6.4721 to 5.9254. When the node ratio is 50%

*90%, the entropy value increased from 5.9254 to 6.3287. Hence, the result shows that the

node connection is in the priority select probability p2 increases, and the directions of arcs

become increasingly concentrated. Therefore, the entropy value decreases gradually. The

entropy value fluctuates with the node degree obeying the power law, which is consistent with

the structural characteristics of directed scale-free networks. When the node ratio is between

70% and 90%, the entropy value will increase. When the network nodes are in a certain pro-

portion, the directed network appears to be chaotic and irregular. As shown in Table 4, I(Re
(A−)) > I(Re(L−)) > I(Re(Q−)), I(Im(A−)) > I(Im(L−)) > I(Im(Q−)). The result I(Im(A−)) <

I(Im(L−)) < I(Im(Q−)), I(A−)) < I(L−)) < I(Q−)) indicates that as the connected nodes of the

directed network increased with the priority select probability p2, the directed scale-free net-

work nodes obey power law distribution.

Table 5 shows the directed nearest-neighbor coupling network. When the nearest neigh-

bour k = 9, I(Im(A−)) = I(Im(L−)) = I(Im(Q−)) = 6.1521, the values of the imaginary part

entropy are identical. This verifies that the directions of the node connections are consistent in

the directed nearest-neighbour coupling network. By analysing the entropy value of the imagi-

nary part in Table 5, When the number of neighbors k in the nearest-neighbour coupling net-

work increases, the entropy decreases: 6.7630 > 6.4923 > 6.3550 > 6.2588 > 6.1521. This

indicates that the network direction become increasingly concentrated. The experimental sim-

ulation results of the directed nearest-neighbour network are consistent with the theoretical

analysis.

To sum up, the values of nine eigenvalue-based entropies of three types of matrices are

obtained experimentally in this study. Tables 2–5 show that eigenvalue-based entropy can

effectively quantify the structural characteristics of the directed network model.

According to Tables 2–5, a better visualization structure is shown in Figs 4 and 5.

Figs 4 and 5 show the features of (a) the directed random network. (b) directed small-world

network. (c) directed scale-free network. (d) directed nearest-neighbour coupling network.

The network nodes at the start of the scale-free directed network shown in Fig 5 are nor-

malised: proportion of Horizontal coordinate ¼ m0

total number of nodes in the network.
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As shown in Figs 4 and 5, the characteristics of the eigenvalue-based entropy of the directed

network are as follows:

First, we can obtain the entropy values as the fluctuations in the directed scale-free network,

as shown in Fig 5(c).
Second, in Figs 4 and 5, by comparing the entropy values of the imaginary parts I(Im(A−))

and I(Im(L−)) and I(Im(Q−)), we find that the entropy of the imaginary part of the three matri-

ces in the directed nearest-neighbour coupling network is consistent. This indicates that the

directions of the arcs are identical in the directed nearest-neighbour coupling network. How-

ever, the eigenvalue-based entropies of the other directed networks do not exhibit this feature.

Third, we compare and observe the entropy of the imaginary part of the three matrices for

the directed scale-free network shown in Fig 5(c). When the initial network nodes are changed

from 10% to 50%, I(Im(A−)) reached a low value, and I(Im(A−)) increased gradually from 50%

to 90%. However, in the 10%*90% range, I(Im(L−)) and I(Im(Q−)) decreases gradually. It

Fig 4.

https://doi.org/10.1371/journal.pone.0251993.g004

Fig 5.

https://doi.org/10.1371/journal.pone.0251993.g005
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shows that the node direction changes concentrated when the in-degree of the node increases

in the scale-free network. Moreover, it can be seen that the eigenvalue-based entropy of the in-

degree Laplacian matrix and the in-degree unsigned Laplacian matrix can better reflect the

characteristics of power-law in the directed scale-free network.

For the fixed number of nodes and arcs, that is, under the second experimental condition,

the entropy results of the eigenvalues of the directed network with average penetration <

d�i ¼ 100 > are shown in Table 6 and Fig 6.

Table 6 shows the average in-degree < d�i ¼ 100 > of the four generated models of the

directed complex network, and the eigenvalue-based entropy of the three matrices for

n = 1000. As shown in Table 6, the imaginary part entropy of the eigenvalue-based entropy in

the directed nearest-neighbour coupling network, i.e. Im(A−), Im(L−) and Im(Q−) are consis-

tent, whereas the eigenvalue-based entropy for the directed scale-free network change

significantly.

Fig 6 shows the eigenvalue-based entropy results when the average in-degree is

< d�i ¼ 100 >. The columns of each cluster in Fig 6 show eigenvalue-based entropy of the (a)

directed random network, (b) directed small world network, (c) directed scale-free network,

(d) directed nearest neighbor coupling network, which corresponding to adjacency and the in-

degree Laplacian and in-degree signless Laplacian matrices.

Table 6. The Eigenvalue-based entropy of three matrices for the directed generated network on the average in-degree.

Entropy directed network

random small world scale-free NN coupling

I(Re(A−)) 6.5654 6.5295 4.9618 6.6479

I(Im(A−)) 6.5690 6.4838 5.0305 6.5948

I(A−) 6.6440 6.6254 5.1702 6.7629

I(Re(L−)) 6.7429 6.7002 6.1542 6.7361

I(Im(L−)) 6.5195 6.4588 4.8956 6.5948

I(L−) 6.7556 6.7334 6.1552 6.7447

I(Re(Q−)) 6.7434 6.7203 6.1548 6.7892

I(Im(Q−)) 6.5161 6.4922 4.8941 6.5948

I(Q−) 6.7562 6.7269 6.1559 6.8547

https://doi.org/10.1371/journal.pone.0251993.t006

Fig 6. Eigenvalue-based entropy of three matrix for the directed construction network:< d�i ¼ 100 >, n = 1000.

https://doi.org/10.1371/journal.pone.0251993.g006
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Fig 6 shows the nine eigenvalue-based entropies and the standard deviations of the four

models of directed complex networks. The pillars in Fig 6 represent the eigenvalue-based

entropies, and the whiskers in Fig 6 represent the standard deviations of the eigenvalue-based

entropies. The standard deviation represents the degree of dispersion between the eigenvalue-

based entropy of the directed network and its mean value.

Eigenvalue-based entropy of real complex network

To prove the efficiency of the model, we investigate the real directed network. The dataset of

the real directed network are from the data [43] of a large European research institution. The

dataset contained 1,005 member nodes and 25,571 arcs. Table 7 shows the eigenvalue-based

entropy of the real directed network. It is convenient to compare them with a real directed net-

work dataset, which the number of nodes in the constructed network model is selected

n = 1000.

The columns of each cluster in Fig 7 show eigenvalue entropy generated of the (a) directed

random network, (b) directed small world network, (c) directed scale-free network, (d)

directed nearest neighbor coupling network, (e) real directed network, which corresponding

to adjacency and the in-degree Laplacian and in-degree signless Laplacian matrices. Further-

more, Fig 7 shows the eigenvalue-based entropy of the three matrices for directed construction

networks vs. the real directed network. Fig 7. The eigenvalue-based entropy of three matrices

for the directed construction networks vs. real directed network.

In addition, Fig 7 shows the eigenvalue-based entropies of the constructed directed and real

directed networks under the condition of average in-degrees < d�i ¼ 100 > and n = 1000. The

entropy of real directed European E-mail network is in the middle of directed small world

Table 7. The Eigenvalue-based entropy of three matrices for the European mailnetwork.

Matrix Eigenvalue-based entropy

The real part The imaginary part The modulus

adjacent matrix I(Re(A−)) = 6.1620 I(Im(A−)) = 6.3017 I(A−) = 6.2457

in-degree Laplacian matrix I(Re(L−)) = 6.3814 I(Im(L−)) = 5.4244 I(L−) = 6.3814

in-degree signless Laplacian matrix I(Re(Q−)) = 6.4194 I(Im(Q−)) = 5.2737 I(Q−) = 6.4194

https://doi.org/10.1371/journal.pone.0251993.t007

Fig 7.

https://doi.org/10.1371/journal.pone.0251993.g007
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network and directed scale-free network, so the real directed network has the structural char-

acteristics of directed small world network and directed scale-free network.

Conclusion

In this paper, we investigate the directional characteristic of node connections in directed

complex networks by modelling directed nearest-neighbour coupling, directed small-world,

directed scale-free, and directed random networks. We define the entropy of the eigenvalues

of the adjacency matrix, in-degree Laplacian matrix, and in-degree signless Laplacian matrices

in the directed network. Through the entropy of the eigenvalues of the three matrices, the

directional characteristics of the directed network can be captured. i.e. The simulation results

show that the entropy of the eigenvalues of the directed complex network can described the

structural characteristics of the directed network, and the real directed complex network has

characteristics of small world and scale-free. The Definitions and methods demonstrate the

effectiveness of eigenvalue-based entropy of the adjacency, in-degree Laplacian, and in-degree

signless Laplacian matrices. It can capture the structural characteristics of directed network,

and the research results can be applied to other real directed networks.

Supporting information

S1 Text.

(TXT)

S2 Text.

(TXT)

Acknowledgments

We thank the editors and the anonymous reviewers for their professional and valuable sugges-

tions. We thank the Tibetan Information Processing and Machine Translation Key Laboratory

of Qinghai Province (Grant No. 2020-ZJ-Y05) and the Key Laboratory of Tibetan Information

Processing Ministry of Education and Tibetan Information Processing Engineering Technol-

ogy and Research Center of Qinghai Province.

Author Contributions

Data curation: Jing Liang.

Formal analysis: Haixing Zhao.

Methodology: Yan Sun.

Visualization: Xiujuan Ma.

Writing – original draft: Yan Sun.

Writing – review & editing: Haixing Zhao.

References
1. Newman ME. Fast algorithm for detecting community structure in networks[J]. Physical Review E Stat

Nonlin Soft Matter Phys, 2004, 69(6 Pt 2):066133. https://doi.org/10.1103/PhysRevE.69.066133

2. Newman ME. Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality[J].

Physical Review E Statal Nonlinear and Soft Matter Physics, 2001, 64(1):016132. https://doi.org/10.

1103/PhysRevE.64.016132

PLOS ONE Eigenvalue-based entropy in directed complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0251993 June 21, 2021 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251993.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0251993.s002
https://doi.org/10.1103/PhysRevE.69.066133
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1103/PhysRevE.64.016132
https://doi.org/10.1371/journal.pone.0251993


3. Newman M E. Scientific collaboration networks. I. Network construction and fundamental results[J].

Physical Review E Statal Nonlinear and Soft Matter Physics, 2001, 64(1):016131. https://doi.org/10.

1103/PhysRevE.64.016131 PMID: 11461355

4. Cao S, Dehmer M, Shi Y. Extremality of degree-based graph entropies[J]. Information Sciences, 2014,

278:22–33. https://doi.org/10.1016/j.ins.2014.03.133

5. Shannon CE. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27

(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

6. Hansen K, Mika S, Schroeter T, et al. Benchmark data set for in silico prediction of ames mutagenicity

[J]. Journal of Chemical Information Modeling, 2009, 49(9):2077–2081. https://doi.org/10.1021/

ci900161g PMID: 19702240

7. Leicht EA, Newman ME. Community Structure in Directed Networks[J]. Physical review letters, 2008,

100(11):316–319. https://doi.org/10.1103/PhysRevLett.100.118703

8. Li X, Wei M. Graph entropy:recent results and perspectives[J]. Mathematical Foundation and Applica-

tion of graph entropy, 2016, 6: 133–182. https://doi.org/10.1002/9783527693245.ch5

9. Mowshowitz A. Entropy and the complexity of graphs: I. an index of the relative complexity of a graph

[J]. Bull. Math. Biophysics, 1968, 30(1):175–204. https://doi.org/10.1007/BF02476948

10. Rashevsky N. Life, information theory, and topology[J]. Bulletin of Mathematical Biophysics, 1955, 17

(3):229–235. https://doi.org/10.1007/BF02477860

11. Trucco E. A note on the information content of graphs[J]. Bulletin of Mathematical Biology, 1956, 18

(2):129–135.

12. Bonchev D, Trinajsti N. Information theory, distance matrix, and molecular branching[J]. Chemical

Physics, 1977, 67(10):4517–4533.

13. Konstantinova EV, Paleev AA. Sensitivity of topological indices of polycyclic graphs[J]. Physical system,

1990, 136:38–48.

14. Sivakumar L, Dehmer M, Varmuza K. Uniquely discriminating molecular structures using novel eigen-

value-based descriptors[J]. Match Communications in Mathematical and in Computer Chemistry, 2012,

67(1):147–172.

15. Erdios P, Renyi A. On random graphs[J]. Publicationes Mathematicae, 1959, 6:290–297.

16. Randic M, Vracko M, Novic M. ChemInform abstract: eigenvalues as molecular descriptors[J]. ChemIn-

form, 2001, 32(30):147–211.

17. Ivanciuc O, Balaban TS, Balaban AT. Chemical graphs with degenerate topological indices based on

information on distances[J]. Journal of Mathematical Chemistry, 1993, 14(1):21–33. https://doi.org/10.

1007/BF01164452

18. Ivanciuc O, Ivanciuc T, Klein D J, et al. Wiener Index Extension by Counting Even/Odd Graph Dis-

tances[J]. J Chem Inf Comput, 2001, 41(3):536–549. https://doi.org/10.1021/ci000086f PMID:

11410028

19. Ivanciuc O, Teodora I, Mircea VD. Polynomials and spectra of molecular graphs[J]. Rouman Chem.

Quart. review, 1999, 7(1):41–67.

20. Broder A, Kumar R, Raghavan P, et al. Graph structure in the Web[J]. Computer Networks, 2000, 33

(1):309–320. https://doi.org/10.1016/S1389-1286(00)00083-9

21. Juhász F. The asymptotic behaviour of lovász’ function for random graphs[J]. Combinatorica, 1982, 2

(2):153–155. https://doi.org/10.1007/BF02579314

22. Randic M, Muller WR, Knop JV. The characteristic polynomial as a structure discriminator[J]. Journal of

Chemical Information Computer Sciences, 1997, 28(6):1072–1077. https://doi.org/10.1021/ci970242r

23. Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering[J].

Advances in neural information processing systems, 2001, 14(6):585–591.

24. Mowshowitz A. Entropy and the complexity of graphs. II. The information content of digraphs and infinite

graphs[J]. Bull. Math. Biophysics, 1968, 30(2):225–240. https://doi.org/10.1007/BF02476692

25. Ramezanpour A, Karimipour V. Simple models of small world networks with directed links[J]. Physical

Review E Statistical Nonlinear and Soft Matter Physics, 2002, 66(3):036128. https://doi.org/10.1103/

PhysRevE.66.036128

26. Tadic B. Dynamics of directed graphs:the world-wide web[J]. Physical A: Statistical Mechanics and Its

Applications, 2001, 293(1-2):273–284. https://doi.org/10.1016/S0378-4371(01)00014-0

27. Fan C. Laplacians and the cheeger inequality for directed graphs[J]. Annals of Combinatorics, 2005, 9

(1):1–19. https://doi.org/10.1007/s00026-005-0237-z

28. Rada J. Bounds for the energy of normal digrahs[J]. Linear Multilinear Algebra, 2012, 60(3):323–332.

https://doi.org/10.1080/03081087.2011.596539

PLOS ONE Eigenvalue-based entropy in directed complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0251993 June 21, 2021 17 / 18

https://doi.org/10.1103/PhysRevE.64.016131
https://doi.org/10.1103/PhysRevE.64.016131
http://www.ncbi.nlm.nih.gov/pubmed/11461355
https://doi.org/10.1016/j.ins.2014.03.133
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1021/ci900161g
https://doi.org/10.1021/ci900161g
http://www.ncbi.nlm.nih.gov/pubmed/19702240
https://doi.org/10.1103/PhysRevLett.100.118703
https://doi.org/10.1002/9783527693245.ch5
https://doi.org/10.1007/BF02476948
https://doi.org/10.1007/BF02477860
https://doi.org/10.1007/BF01164452
https://doi.org/10.1007/BF01164452
https://doi.org/10.1021/ci000086f
http://www.ncbi.nlm.nih.gov/pubmed/11410028
https://doi.org/10.1016/S1389-1286(00)00083-9
https://doi.org/10.1007/BF02579314
https://doi.org/10.1021/ci970242r
https://doi.org/10.1007/BF02476692
https://doi.org/10.1103/PhysRevE.66.036128
https://doi.org/10.1103/PhysRevE.66.036128
https://doi.org/10.1016/S0378-4371(01)00014-0
https://doi.org/10.1007/s00026-005-0237-z
https://doi.org/10.1080/03081087.2011.596539
https://doi.org/10.1371/journal.pone.0251993


29. Ayyaswamy S, Balachandran S, Gutman I. Upper bound for the energy of strongly connected digraphs

[J]. Applicable Analysis Discrete Mathematics, 2011, 5(1):37–45. https://doi.org/10.2298/

AADM101121030A

30. Sabidussi G. The composition of graphs[J]. Duke Mathematical Journal, 1959, 26(4):693–696. https://

doi.org/10.1215/S0012-7094-59-02667-5

31. Zhou D, Grant D. Model dependence of the activation energy derived from nonisothermal kinetic data

[J]. Journal of Physical Chemistry A, 2004, 108(19):4239–4246. https://doi.org/10.1021/jp037917f
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