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Alcohol (ethanol) use and misuse is a costly societal issue that can affect an individual
across the lifespan. Alcohol use and misuse typically initiates during adolescence and
generally continues into adulthood. Not only is alcohol the most widely abused drug by
adolescents, but it is also one of the most widely abused drugs in the world. In fact, high
rates of maternal drinking make developmental ethanol exposure the most preventable
cause of neurological deficits in the Western world. Preclinical studies have determined
that one of the most consistent effects of ethanol is its disruption of hippocampal
neurogenesis. However, the severity, persistence, and reversibility of ethanol’s effects
on hippocampal neurogenesis are dependent on developmental stage of exposure and
age at assessment. Complicating the neurodevelopmental effects of ethanol is the
concurrent development and maturation of neuromodulatory systems which regulate
neurogenesis, particularly the cholinergic system. Cholinergic signaling in the
hippocampus directly regulates hippocampal neurogenesis through muscarinic and
nicotinic receptor actions and indirectly regulates neurogenesis by providing anti-
inflammatory regulatory control over the hippocampal environmental milieu. Therefore,
this review aims to evaluate how shifting maturational patterns of the cholinergic system
and its regulation of neuroimmune signaling impact ethanol’s effects on adult
neurogenesis. For example, perinatal ethanol exposure decreases basal forebrain
cholinergic neuron populations, resulting in long-term developmental disruptions to the
hippocampus that persist into adulthood. Exaggerated neuroimmune responses and
disruptions in adult hippocampal neurogenesis are evident after environmental,
developmental, and pharmacological challenges, suggesting that perinatal ethanol
exposure induces neurogenic deficits in adulthood that can be unmasked under
conditions that strain neural and immune function. Similarly, adolescent ethanol
exposure persistently decreases basal forebrain cholinergic neuron populations,
increases hippocampal neuroimmune gene expression, and decreases hippocampal
neurogenesis in adulthood. The effects of neither perinatal nor adolescent ethanol are
mitigated by abstinence whereas adult ethanol exposure-induced reductions in
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hippocampal neurogenesis are restored following abstinence, suggesting that ethanol-
induced alterations in neurogenesis and reversibility are dependent upon the
developmental period. Thus, the focus of this review is an examination of how ethanol
exposure across critical developmental periods disrupts maturation of cholinergic and
neuroinflammatory systems to differentially affect hippocampal neurogenesis in adulthood.
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INTRODUCTION

The birth, maturation, and functional integration of new neurons,
termed neurogenesis, is a critical developmental process
originally thought to be isolated to fetal and early neonatal
development wherein bursts of new neurons aggregate to form
the various regions of the central nervous system (Altman and
Das, 1965). In humans, neurogenesis associated with the
developmental formation of the brain occurs across gestation,
with cortical structures forming prior to the hippocampus and the
hippocampal dentate gyrus not demonstrating mature
cytoarchitecture until 34 weeks, making it one of the last
structures to mature in humans (Arnold and Trojanowski,
1996) and rodents (for review see (Snyder, 2019)). This rapid
maturation of the human nervous system during the human third
trimester of pregnancy has been colloquially termed the “brain
growth spurt” and corresponds to the first 10 days of postnatal life
in rodents, where rodent hippocampal development similarly
peaks (West et al., 1986). The developmental view that
neurogenesis terminates near birth in humans and in the early
neonatal period in rodents theoretically left mammals with a
finite number of neurons for the duration of their lifespan and led
to the erroneous conclusion that any subsequent loss of neurons
through drug use, stress, traumatic brain injury, or insult was
permanent. However, this dogma has been challenged over the
last several decades with emerging evidence indicating that select
mammalian brain regions continue to generate and functionally
integrate new neurons to varying degrees throughout the lifespan
(for review see (Gross, 2000; Ming and Song, 2005)). One region
of continuous neurogenesis is the subventricular zone of the
lateral ventricles; the other, which is the focus of the current
review, is the subgranular zone of the hippocampal dentate gyrus
(Altman and Das, 1965). It is important to note that while this
review will focus on findings surrounding markers of adult
neurogenesis from rodent studies, the prevalence of adult
neurogenesis in humans remains an ongoing scientific debate.
For example, while doublecortin is a conventional marker of
neurogenesis in rodents, recent single-nucleus RNA-seq data
question its validity as a comparable marker of adult
neurogenesis in humans (Franjic et al., 2022). These findings
highlight the center of this debate, which predominantly consists
of technical issues in identification and labeling of adult newborn
neurons in humans. See Kempermann et al. (2018) for more
insight regarding this critical discussion.

In contrast, functional integration of adult hippocampal
newborn neurons in rodents has been critically linked to brain
health, plasticity, and cognitive function, broadly, but also more

specifically to discrete roles in spatial processing and pattern
separation (Clelland et al., 2009) as well as cognitive flexibility
(Anacker and Hen, 2017) and reversal learning (Garthe and
Kempermann, 2013). The unique role of adult hippocampal
neurogenesis in cellular and behavioral plasticity is supported
by evidence that loss of neurogenesis, which occurs with age as
well as with exposure to stress, drugs, or disease, is tightly coupled
to loss of cognitive function in these domains (Burghardt et al.,
2012; Winner and Winkler, 2015; Anacker and Hen, 2017).
Similarly, restoration of hippocampal neurogenesis through
lifestyle or therapeutic interventions can recover cognitive
functioning (Abdipranoto et al., 2008). As such, restoration of
neurogenesis has emerged as a central factor to be considered in
various cognitive therapeutic interventions (Abdipranoto et al.,
2008).

Disentangling the mediators of hippocampal neurogenesis has
led to a pharmacopeia of drug manipulations, highlighting the
complex interweaving of multiple systems including trophic
support, proinflammatory factors, and various
neuromodulatory systems (Macht et al., 2020a). Of the
neuromodulatory systems which influence neurogenesis,
cholinergic regulation of hippocampal neurogenesis is unique
in that cholinergic receptors not only directly regulate
proliferation of neuroprogenitor cells (Kotani et al., 2006,
2008), but the cholinergic system also indirectly modulates the
hippocampal environmental milieu through anti-inflammatory
feedback actions (Conejero-Goldberg et al., 2008; Rosas-Ballina
and Tracey, 2009; Gnatek et al., 2012; Li L. et al., 2019) and
mediation of glial-derived trophic support (Blondel et al., 2000;
Wu et al., 2004; Takarada et al., 2012; Pöyhönen et al., 2019). As
such, co-disruption of the basal forebrain cholinergic system and
neuroimmune signaling pathways can have cascading
repercussions on neural health and cognitive function, leading
to a predisposition toward neurological disorders that manifest
across development and aging.

In this review, we will focus on a common disruptor of both
the basal forebrain cholinergic system and hippocampal
neurogenesis: ethyl alcohol (ethanol). Ethanol exposure exerts
adverse consequences on the brain throughout the lifespan, with
deficits evident from exposure during perinatal development
through adulthood. The spectrum of ethanol’s adverse effects
produces enormous individual, interpersonal, and societal costs.
For example, the robust teratogenic effects of ethanol exposure in
utero coupled with high rates of ethanol intake in pregnant
women (30.3% drink alcohol at some point during pregnancy;
8.3% binge drink at some point during pregnancy) (Ethen et al.,
2009) makes fetal alcohol spectrum disorder (FASD) the most
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preventable neurological disorder in the Western world (Clarke
and Gibbard, 2003). Of note, these estimates on drinking during
pregnancy can vary slightly across studies depending on
inclusion criteria, type of assessment, and whether estimates
are assessing changes over time within a population or
comparisons between populations. Similarly, ethanol is one
of the first and most prevalent drugs to be used and misused
by youth (Patrick and Schulenberg, 2014). Furthermore,
adolescents are also more likely than any other age group to
engage in binge (4–5+ drinks in 2 h) and high-intensity (10+
drinks/session) drinking patterns, which result in high blood
ethanol concentrations (BECs) (Chung et al., 2018; Patrick and
Terry-McElrath, 2019). The prevalence and adverse effects of
ethanol intake continue into adulthood where ethanol use and
misuse is associated with even more fatalities than the ongoing
opioid epidemic (Esser et al., 2020; Spencer et al., 2020; Mattson,
2021). However, the long-term effects of ethanol exposure on
adult hippocampal neurogenesis, cholinergic function, and
subsequently on adult cognitive function are highly
dependent on the developmental window of exposure. In this
review, we will examine the interaction of ethanol exposure
across distinct perinatal, adolescent, and adult developmental
windows on the maturing cholinergic neurotransmitter and
neuroimmune signaling systems in relation to alterations in
adult hippocampal neurogenesis (see Figure 1).

Each section of this review will discuss the adult impact of
ethanol exposure on these systems during discrete
neurodevelopmental windows: perinatal, adolescence, and
adulthood. Incubation effects, persistence, and reversibility will
be discussed, with sex differences highlighted when applicable.
The goal of this review is to highlight the molecular
underpinnings of ethanol’s impact on hippocampal
neurogenesis across the continuum of the lifespan.

FETAL ALCOHOL SPECTRUM DISORDER
(FASD) AND THE LASTING
DEVELOPMENTAL CONSEQUENCES IN
ADULTHOOD

Teratogenic disruptions during perinatal (i.e., surrounding birth,
which includes in utero and neonatal) development induce long-
lasting neurodevelopmental consequences on neurological structure
and function due to alterations in development of neurocircuitry and
other neurobiological systems, permanently shifting maturational
trajectories in both the brain and body. One of themost ubiquitously
known teratogens is ethanol, and the consequences of ethanol
exposure during perinatal development are devastating. These
consequences were first documented in 1968 by Paul Lemoine

FIGURE 1 | Neurodevelopmental consequences of alcohol exposure on the adult hippocampus. This review aims to compare the long-term effects of perinatal,
adolescent, and adult ethanol exposure on adult hippocampal neurogenesis. The developmental impact of ethanol on the basal forebrain cholinergic system and
cholinergic signaling within the adult hippocampus will be further discussed in the context of modulation of neuroinflammatory signaling as well as mediation of
hippocampal neuroprogenitors and neurogenesis Section 1. The first section will discuss how perinatal ethanol exposure produces maturational changes
throughout adolescence and into adulthood, resulting in long-term disruptions in adult hippocampal neurogenesis. Rodent perinatal ethanol exposure models the
teratogenic effects of ethanol in utero in the human, which often results in a diagnosis of fetal alcohol spectrum disorders (FASD). Of note, the human third trimester,
which is the brain growth spurt, corresponds neurodevelopmentally with the first 10 postnatal days (P) in the rat. Therefore, rodent models of human prenatal
development must encompass both the prenatal period as well as early neonatal development, collectively termed perinatal exposure. It is important to note that due to
methodological considerations, the vast majority of rodent models of FASD use either a prenatal or a postnatal design due to confounds in maternal behavior with
ethanol-exposed dams Section 2. The second section will discuss the impact of adolescent ethanol exposure on adult hippocampal neurogenesis. Adolescent
development is defined in rodents and humans by a collective set of behavioral, cognitive, and physiological characteristics which do not have concrete endpoints. As
such, while there is some variation in the cut-off range for this period, traditionally this has been defined from human ages 10–19 years and rodent ages P28-P59,
although some human researchers consider adolescent development to continue until through 24 years Section 3. The third section will discuss the impact of adult
ethanol exposure on adult hippocampal neurogenesis. In humans, young adulthood (years 20–24) corresponds with rodent P60-P89. Adulthood, which is typically
considered at least 25 years of age, corresponds with approximately P90 in the rat. A central theme of this review is that the long-term effects of ethanol exposure
depend on the developmental events occurring during ethanol exposure. Therefore, while the age of ethanol exposure will vary by section, all sections will focus on the
long-term effects of ethanol with endpoints in adulthood.
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(Lemoine, 1968) in France and later in 1973 by Jones and Smith
(Jones and Smith, 1973) in the United States. Since then, clinical and
preclinical studies have identified a range of physical, physiological,
and behavioral alterations induced by ethanol during perinatal
development that are collectively termed FASD; these include
physical alterations (e.g., facial dysmorphology, microcephaly, low
birth weight) as well as cognitive-behavioral deficits (e.g.,
hyperactivity, attentional deficits, psychosocial deficits, impaired
executive function, learning difficulties, and impaired memory,
etc.) (Clarke and Gibbard, 2003). Somewhat surprisingly, despite
the global identification and dissemination of information about
alcohol’s teratogenic effects to physicians, scientists, and the public,
alcohol use and misuse during pregnancy has remained relatively
unchanged through the decades (Bhuvaneswar et al., 2007). In fact,
alcohol is not only the most commonly used drug by females of
reproductive age (24.4% prevalence), but Kanny et al. (2013) found
that approximately 12.5% of women continue to drink at binge levels
(4+ drinks in 2 h) during pregnancy, resulting in high BECs (0.08%
or greater) in relatively short periods of time (Kanny et al., 2013).
Investigations into this continuance of alcohol use by women both
during pregnancy and while breastfeeding despite alcohol’s known
teratogenicity have revealed a complex interplay of factors
influencing this ongoing prevalence in behavior, including but
not limited to societal pressure, internal and external stress,
alcohol dependence, poor understanding of scientific data on
substance use during pregnancy, and even inaccurate advice from
medical practitioners (Latuskie et al., 2019; Hernandez et al., 2021;
Popova et al., 2021). These findings highlight the importance of
greater dissemination scientific data on alcohol’s teratogenicity to lay
populations and medical practitioners. Alcohol use and binge
drinking cause devastating effects to fetal development, resulting
in early miscarriage, stillbirth, or upon survival, physical,
neurocognitive, and behavioral deficits that are progressively
defined along the FASD spectrum, with the most severe deficits
resulting in a diagnosis of fetal alcohol syndrome (FAS) (Henderson
et al., 2007). Despite these regrettable facts, alcohol use during
pregnancy remains the most preventable source of neurological
deficits in the Western world (Abel and Sokol, 1987) with
estimates of up to 4.8% of school-age children in the
United States exhibiting some characteristics of FASD (May
et al., 2014).

This section will focus on findings from rodent models of
FASD. More specifically, this section will focus on the long-term
impact of perinatal ethanol exposure on adult hippocampal
neurogenesis, cholinergic function, neuroimmune signaling,
and the relationship between these alterations and cognitive-
behavioral deficits.

Perinatal Ethanol Disrupts Hippocampal
Neurodevelopment and Adult
Neurogenesis: Insight From Rodent Models
of FASD
The vast majority of newborn neurons are generated in the
mammalian brain during perinatal development (Bayer,
1989). This rapid rate of neurogenesis in humans results
from an astounding rate of cell division, with

approximately 250,000 nerve cells formed every minute and
over 80 billion neurons formed in a newborn human, 70
million in a newborn mouse, and 200 million in a newborn
rat brain (Bandeira et al., 2009; von Bartheld et al., 2016).
Cortical neurons populate their respective regions first,
whereas dentate granule neurons of the hippocampus
develop later, beginning in utero in humans during the
third trimester and in the rodent at birth (Bayer, 1980a;
1980b). Concurrently, the hippocampus also begins to
express nicotinic cholinergic receptors that regulate
hippocampal neurogenesis and regional neurodevelopment
(Naeff et al., 1992; Zhang et al., 1998; Adams et al., 2002).
Thus, the human third trimester and the first 10 days of
rodent postnatal development are equivalent, and
constitute the developmental timeframe known as the
brain’s growth spurt, which is characterized by rapid
hippocampal maturation and the beginnings of
hippocampal cholinergic innervation (Dobbing and Sands,
1979; Matthews et al., 1974; Nadler et al., 1974) (see Figure 2).
In fact, unilateral hippocampal ablation during this early
postnatal developmental window reduces cholinergic
immunoreactivity in the basal forebrain by 40% in
adulthood, highlighting the importance of the reciprocal
feedback between the hippocampus and basal forebrain
during perinatal neurodevelopment (Plaschke et al., 1997).
This reciprocal development between the hippocampus and
basal forebrain-to-hippocampus cholinergic projections is
dependent upon the production and release of nerve
growth factor (NGF), which is selectively produced and
released by cells targeted by these cholinergic projections
(Higgins et al., 1989). NGF binds to tropomyosin receptor
kinase A (TrkA) receptors on cholinergic terminals, providing
critical signaling feedback that regulates gene expression
necessary for cellular differentiation, influencing somal size,
and neurite outgrowth and arborization (as reviewed by
(Niewiadomska et al., 2011)), thereby providing continual
reciprocal maintenance between cholinergic projection
neurons with their target regions during development (Li
et al., 1995).

The correlation of human third trimester to the first 10
postnatal days of rodent neurodevelopment (Dobbing and
Sands, 1979) has engendered technical complications for the
development of FASD rodent models with variations in
patterns of ethanol administration (e.g., acute, repeated),
developmental period of ethanol exposure (e.g., prenatal,
neonatal, or perinatal), and route of ethanol administration
(e.g., vapor, intragastric intubation, intraperitoneal injection)
(for review see (Patten et al., 2014)). In addition, models of
FASD must contend with the complications associated with
untangling neurological and behavioral outcomes driven by
ethanol itself versus alterations in maternal behavior in
ethanol-exposed dams, variation in maternal-pup dynamics
in ethanol-exposed pups in neonatal split litter models, and
other considerations that arise with cross-fostering and
artificial rearing. As such, the vast majority of rodent
models of FASD use either prenatal (human first and
second trimester equivalent) or neonatal (colloquially
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termed “third-trimester” models) with few studies utilizing
models that encompass the entire human three trimesters of
pregnancy due to the aforementioned complications. Thus, for

the purpose of this review, rodent models of FASD will be
referred to generally as perinatal exposure paradigms unless
otherwise stated.

FIGURE 2 | Development of the basal forebrain-hippocampal cholinergic system. (A) The cholinergic system undergoes several waves of rapid neurodevelopment
during early neonatal and early preadolescent developmental windows, with changes to the hippocampus often lagging behind the basal forebrain. (B) 1. Newly
differentiated cholinergic neurons aggregate to form the basal forebrain in early neonatal development, with the most rapid increase in ChAT+IR evidenced around the rat
postnatal day 7 (Li et al., 1995), during the brain’s growth spurt. 2. Somal size of these newborn basal forebrain cholinergic neurons continues to increase until
weaning, with somal size decreasing slightly into adulthood. (C) 3. Somal size is tightly coupled to local increases in NGF binding to TrkA receptors, signaling both cellular
differentiation and survival TrkA receptors peak in themedial septum at approximately 21 days and then remain high throughout adulthood. In contrast, TrkA receptors in
the hippocampus remain low during neonatal development, begin increasing across adolescence, where they do not reach maximal levels until adulthood (Li et al.,
1995). 4. Rising increases in hippocampal TrkA coincide with onset of basal forebrain innervation of the hippocampal formation, which occurs most robustly between
P10-21 and peaks around P17 (Matthews et al., 1974; Nadler et al., 1974). (D) 5. Interestingly, nicotinic alpha-7 receptor (nAChR-α7) expression in the hippocampus
rises rapidly during early neonatal development, after which hippocampal nAChR-α7 declines, stabilizing to adult levels by preadolescence (Ben-Barak and Dudai, 1979;
Court et al., 1997). These reductions in hippocampal nAChR-α7 are thought to parallel developmental periods of synaptic pruning. 6. In contrast, muscarinic receptor
expression in the hippocampus goes through a brief acceleration around P7, and then slowly increases throughout adulthood (Ben-Barak and Dudai, 1979; Court et al.,
1997). (E) 7. Cholinergic activity within the hippocampus becomes more tightly regulated during adolescence where its extracellular enzymatic degradation by
acetylcholinesterase (AChE) peaks during early adolescence, around P30. Thus collectively, the basal forebrain cholinergic system reaches peak maturity during the
neonatal period of the brain’s growth spurt, but the cholinergic innervation and regulation of the hippocampus matures during pre- and early adolescence. This early
critical window of cholinergic system neurodevelopment makes it sensitive to developmental insults, including ethanol.
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TABLE 1 | Impact of developmental ethanol exposure on adult hippocampal neurogenesis.

Perinatal ethanol exposure

Alcohol
exposure

Species Age at
assessment

Sex Hippocampal cell
proliferation

Hippocampal
cell

survival

Neurogenesis Citation

Prenatal Model:
Liquid diet

Rat BrdU on ~P30 then
24 h and 1 week until
euthanasia

Not
specified

↓ BrdU Wheel running
reversed deficit

↓ BrdU in ET
sedentary rats Wheel
running reversed
deficit

N/A Redila et al.
(2006)

Postnatal Model:
P4-9

Rat BrdU P32-42;
euthanasia P42 and 72

Not
specified

− BrdU -- BrdU in ET
sedentary rats ↓ in ET
rats relative to CON
when stimulated by
wheel running

-- BrdU/DCX
colocalization in
standard housing ↓
BrdU/DCX
colocalization in ET
rats relative to CON
when both groups
stimulated by wheel
running

Helfer et al.
(2009)

Three-Trimester
Model: Prenatal and
P1-10

Rat BrdU on P60;
euthanasia 2 h or
4 weeks later

Female -- BrdU -- Ki67 * Wheel
running increased in all
groups, regardless of
ethanol exposure

-- BrdU in ET rats
Wheel running
increased in all
groups, regardless of
ethanol exposure

N/A Boehme et al.
(2011)

Single postnatal
exposure: P7

Mouse BrdU daily P7-14;
euthanasia P54 P14,
P30, P90

Male,
Female

N/A -- BrdU/NeuN in ET
rats

N/A Wozniak et al.
(2004)

Prenatal Model:
voluntary drinking

Mouse BrdU ~P90-102;
euthanasia 24 h or
4 weeks later

Male,
Female

-- BrdU -- Ki67 -- BrdU in ET rats in
standard-housing ↓ in
ET rats in enriched
environment relative to
enriched controls (in
both sexes)

↓ BrdU/NeuN
colocalization in ET
rats relative to CON
when both groups
stimulated by wheel
running

Choi et al.
(2005)

Prenatal Model:
Liquid Diet

Rat 1 month; 13 months Male,
Female

-- Ki67 (1 month) --
Ki67 (13 months)

N/A -- DCX (1 month) in ET
rats -- DCX (13
months, males) in ET
rats ↓ ET females
relative to controls
(13 months)

Gil-Mohapel
et al. (2014)

Postnatal Model:
P4-9

Rat BrdU P41; euthanasia
on P72

Male -- Ki67 ↓ BrdU in ET rats
Wheel running and
complex
environments
increased BrdU in ET
rats

↓ BrdU/NeuN and
BrdU/GFAP
colocalization in ET
rats Wheel running
and complex
environments
increased BrdU/NeuN
and BrdU/GFAP in ET
rats

Hamilton
et al. (2014)

Single postnatal
exposure: P7

Mouse P80 Male,
Female

↑ Ki67 (males) -- Ki67
(females)

N/A ↑ DCX (males) -- DCX
(females)

Coleman
et al. (2012)

Single postnatal
exposure: P7

Mouse P147 ↓ BrdU in ET mice ↓
PCNA in ET mice

↓ DCX in ET mice Ieraci and
Herrera,
(2007)

Adolescent ethanol Exposure

Self-administration Macaque
primate

Adult (~5.5–6.5 years) Male ↓ Ki67 -- CC3, ↑ FJB ↓ PSA-NCAM Taffe et al.
(2010)

Self-administration Rat BrdU P25-27;
euthanasia on P44

Male N/A ↓ BrdU ↓ DCX Briones and
Woods,
(2013)

Vapor administration Rat P72 and P114 Male ↓ Ki67 -- Ki67 ↑ CC3, ↑ FJB ↑ CC3 ↓ DCX ↓ DCX Ehlers et al.
(2013)

(Continued on following page)
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TABLE 1 | (Continued) Impact of developmental ethanol exposure on adult hippocampal neurogenesis.

Perinatal ethanol exposure

Alcohol
exposure

Species Age at
assessment

Sex Hippocampal cell
proliferation

Hippocampal
cell

survival

Neurogenesis Citation

Intermittent
intraperitoneal
administration

Rat P92 Male ↓ Ki67 N/A ↓ DCX Sakharkar
et al. (2016)

Intragastric
administration

Rat P74 Male -- Ki67 ↑ CC3 ↓ DCX Broadwater
et al. (2014)

Intermittent
intragastric
administration

Rat P56, P80 Male P56: ↓ Ki67, ↓
Nestin P80: ↓ Ki67,
↓ Nestin *wheel
running or
indomethacin
prevented

P56: ↑ CC3 P80: ↑
CC3 *wheel running or
indomethacin prevented

P56: ↓ DCX P80: ↓
DCX *wheel running or
indomethacin
prevented

Vetreno et al.
(2018)

Intermittent
intragastric
administration

Rat P56, P220 Male ↓ Ki67 ↑ CC3 ↓ DCX (P56 - P220) Vetreno and
Crews,
(2015)

Intermittent
intragastric
administration

Rat P57 or P95 with
BrdU +2 h

Male P57: -- Ki67, --
BrdU, ↓ Sox2, ↓
Tbr2 P95: ↓ Ki67, ↓
BrdU, -- Sox2, --
Tbr2

P57: ↑ CC3 P95: ↑ CC3 P57: -- DCX P95: ↓
DCX, ↓ BrdU/NeuN

Liu and
Crews,
(2017)

Intermittent
intragastric
administration

Rat P70/P73 Male -- Ki67 ↓ PCNA ↑ CC3/DCX *galantamine
prevented/reversed

↓ DCX *galantamine
prevented/reversed

Macht et al.
(2021)

Intragastric
administration every
8 h for 4 days

Rat BrdU P38, P40, P45,
or P52 with euthanasia
+2 h; BrdU P45 with
euthanasia P73

Male -- BrdU P38, 52 ↑
BrdU P45 ↑
Ki67 P45

N/A ↑ DCX P52 ↑ BrdU
P52 ↑ BrdU/
NeuN P52

McClain et al.
(2014)

Adult ethanol Exposure

Intragastric
administration every
48 h (P70-90)

Rat P116 Male N/A N/A -- DCX Broadwater
et al. (2014)

(Acute) Single
intragastric
administration
(Chronic) Intragastric
administration every
8 h for 4 days

Rat Adult, not specified;
(Acute) BrdU post-
ethanol with
euthanasia 5 or
28 days later; (Chronic)
BrdU daily with
euthanasia
immediately after last
ethanol dose or
28 days later

Male ↓ BrdU (acute/
chronic)
immediately after
ethanol

↓ BrdU (chronic) 28 days
after ethanol

N/A Nixon and
Crews,
(2002)

Liquid diet (2 weeks) Rat >P60; BrdU with
euthanasia after last
ethanol dose

Male,
Female

↓ BrdU (male/
female)

N/A N/A Anderson
et al. (2012)

Self-administration
(3 weeks,
nondependent); Self-
administration plus
vapor (+9 weeks,
dependent)

Rat Adult, not specified;
BrdU 2–4 h after last
ethanol exposure with
euthanasia 28 days
later

Male ↓ Ki67 in non-
dependent and
dependent ET-rats

↓ BrdU in non-dependent
and dependent ET-rats ↑
Fluoro-Jade C in
dependent but not non-
dependent rats

↓ DCX in non-
dependent and
dependent ET-rats

Richardson
et al. (2009)

Intragastric
administration every
8 h for 4 days

Rat Adult, not specified;
BrdU 4 h before last
ethanol dose, and then
3, 7, 14, and 28 days
later with euthanasia;

Male ↓ BrdU immdiately
after last dose; ↑
BrdU on day 7, --
BrdU any other

N/A ↑ DCX day 14 ↑ BrdU/
NeuN day 35

Nixon and
Crews,
(2004)

(Continued on following page)
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The myriad of developmental and pharmacological
variations in rodent FASD models complicates translation
of findings to the human literature, particularly when results
vary by experimental design. For example, the characteristic
facial dysmorphology evidenced in children with FASD
(i.e., microcephaly, smooth philtrum, small eyes, short nose
with a low nasal bridge, and thin upper vermilion) has been
specifically linked to ethanol-induced cell death during early
embryonic exposure (mouse embryonic days 7–9) (Sulik,
1984) are not evident in rodent neonatal exposure studies
that model the human third trimester. These findings
highlight alcohol’s unique pathogenic constellation of
teratogenic effects that are often dependent on the
developmental window of alcohol exposure. However, some
consistencies have emerged in the field that are strengthened
by their reliability across models despite these technical
nuances. For example, reductions in hippocampal volume
and cell number as well as deficits on hippocampal-
dependent cognitive-behavioral tasks are consistent across
various preclinical models of FASD (West et al., 1986; Tran
and Kelly, 2003; Gil-Mohapel et al., 2014) and also
corroborate findings from humans studies on FASD
(Willoughby et al., 2008). This suggests that the
hippocampus and related cognitive behavioral outcomes are
especially sensitive to the teratogenic effects of ethanol.

Assessing Neurogenesis and Limitations From the
Current Preclinical Literature on FASD
Some of the molecular deficits induced by perinatal ethanol
persist long after the cessation of exposure whereas other
deficits only emerge later under system challenges,
suggesting that perinatal ethanol exposure can induce latent
neurological deficits which manifest over time. For example,

while hippocampal cell death and neuronal loss is a common
immediate finding in perinatal ethanol exposure models (for
review see (Gil-Mohapel et al., 2010)), findings regarding the
lasting impact of perinatal ethanol exposure on hippocampal
neurogenesis in adolescence and adulthood have yielded
mixed results. The vast majority of long-term studies on the
effects of perinatal ethanol on adult hippocampal neurogenesis
have been performed using the thymidine analog 5-bromo-2′-
deoxyuridine (BrdU), which is incorporated into dividing cells
during the S-phase of mitosis to permanently label newly
synthesized DNA, allowing assessments of either
proliferation or survival of those cells depending on timing
of euthanasia (for a review of findings, see Table 1). Although a
large percentage of these BrdU+ cells (~90%) become neurons,
a population of these cells also become glia (Nixon and Crews,
2002). As such, BrdU studies in the absence of secondary
neuronal markers, such as neuronal nuclei (NeuN) or
doublecortin (DCX), the microtubule-associated protein
marker of immature neurons, cannot definitively
differentiate between neurogenesis and gliogenesis (Nixon
and Crews, 2002). The lack of secondary confirmation that
changes in BrdU+ cells in adulthood after perinatal ethanol
exposure reflect persistent changes in adult hippocampal
neurogenesis rather than gliogenesis remains a limitation of
the field that needs to be addressed in future studies.

Perinatal Ethanol Exposure Induces Long-Term
Disruptions of Hippocampal Neuroprogenitor Cell
Survival
Human studies of FASD indicate prior alcohol exposure results in
attenuated age-related increases in hippocampal volume across
adolescent development (Willoughby et al., 2008). However, few
preclinical studies have reported that perinatal ethanol exposure

TABLE 1 | (Continued) Impact of developmental ethanol exposure on adult hippocampal neurogenesis.

Perinatal ethanol exposure

Alcohol
exposure

Species Age at
assessment

Sex Hippocampal cell
proliferation

Hippocampal
cell

survival

Neurogenesis Citation

BrdU 7 days post
ethanol with
euthanasia
28–35 days later

timepoint -- Ki67
(day 7)

Self-administration
(28 days) with
14 days abstinence

Mouse ~P105; BrdU 3 days
prior to ethanol

Male ↓ PCNA at 14 days
abstinence
*reversed by
desipramine

-- BrdU ↓ DCX at 14 days
abstinence *reversed
by desipramine

Stevenson
et al. (2009)

Intragastric
administration every
8 h for 4 days

Rats >9 weeks, perfused
8 h after last ethanol
dose

Male,
Female

↓ Ki67 (male,
female)

↑ Fluoro-Jade-B (male,
female)

N/A Maynard et al.
(2018)

Once-weekly
intragastric
administration for
11 weeks

Rats Adult, not specified Female N/A N/A ↑ DCX but ↓ total
granule neurons

West et al.
(2019)

*N/A, not assessed; ↓, decreased; ↑, increased; --, no change.
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itself causes persistent reductions of BrdU+ cell proliferation or
survival (Redila et al., 2006; Ieraci and Herrera, 2007; Hamilton
et al., 2014). For example, rat models of FASD using prenatal
ethanol exposure, a three-trimester liquid diet exposure, or a
third-trimester neonatal binge exposure have reported no
changes in BrdU+ cell proliferation or survival when
examined during either adolescence or adulthood under
standard housing conditions (Choi et al., 2005; Helfer et al.,
2009; Boehme et al., 2011; Gil-Mohapel et al., 2014). Some of
these studies did examine co-localization of BrdU+ cells with
NeuN and/or examined DCX. In contrast, many of the FASD
rodent studies that did not find impaired cell proliferation and/or
survival under normal housing conditions reported impairments
in cell survival specifically within the hippocampal neurogenic
niche when unmasked under positive regulators, including
environmental enrichment and exercise, or negative regulators,
such as aging (Gil-Mohapel et al., 2014). Several of these studies
supporting an unmasking of adult neurogenic deficits after
perinatal ethanol exposure similarly report that this deficit was
specifically related to reduced cell survival of newborn neurons
using co-localization of BrdU with DCX and/or NeuN (Choi
et al., 2005; Helfer et al., 2009; Boehme et al., 2011; Gil-Mohapel
et al., 2014). This suggests that perinatal ethanol exposure
sensitizes the adult neurogenic niche to insults, where deficits
become more robust under conditions that challenge
neurogenesis either acutely or across the lifespan. Moreover,
these studies indicate that unmasking of the reductions in
hippocampal neurogenesis after perinatal ethanol exposure is
associated with impaired progenitor survival rather than
reductions in the proliferating neuroprogenitor pool,
suggesting that perinatal ethanol induces subtle long-term
disruptions to the hippocampal neurogenic milieu to
persistently impact cell death cascades in newborn neurons
(see Table 1).

Future studies will need to elaborate on these findings,
particularly in relation to perinatal ethanol-driven effects on
adult hippocampal neurogenesis versus gliogenesis as well as
potential sensitivity differences in males versus females.
Examination and reporting of both sexes is particularly
critical, as some studies have found differences solely in one
sex but not the other (see Table 1). For example, females seem to
be particularly sensitive to age-related unmasking of neurogenic
deficits after prenatal ethanol liquid diet exposure, as 13-month-
old females but not males exhibited emergent deficits in DCX
immunoreactivity that were not evident in early adolescence (Gil-
Mohapel et al., 2014). In addition, some variation in outcomes
may be due to developmental differences in ethanol’s impact on
other concurrently developing neural systems, such as the
cholinergic system. For example, differences in perinatal
ethanol-induced disruption of hippocampal neurogenesis may
shift across adolescence into adulthood when hippocampal
innervation becomes refined, or become further exasperated
with age as cholinergic systems exhibit age-related
neurodegeneration (Schliebs and Arendt, 2011). As such,
divergence in outcomes could be partially attributable to
differences in prenatal versus postnatal ethanol exposure on
brain development, suggesting that more studies encompassing

the entirety of the spectrum of human development are critical to
reconciling divergent findings due to variations in prenatal versus
postnatal exposure on adult hippocampal neurogenesis. Only one
study to date has examined the molecular consequences of
perinatal ethanol exposure on adult neurogenesis using a
three-trimester model (Boehme et al., 2011) – this study
examined BrdU in adulthood selectively in females and found
that a three-trimester model of FASD did not impact BrdU+
immunoreactivity in adult females (P60), and wheel running
increased BrdU+ immunoreactivity across all ages. As it is unclear
whether this finding is specific for this age, sex, or glial versus
neurogenesis, more studies, and in particular studies that use a
three-trimester model, are necessary to clarify these
discrepancies.

Perinatal Ethanol Exposure Alters
Maturation of Central Cholinergic Systems:
Impact on Adult Neuroinflammatory
Signaling and Hippocampal Neurogenesis
The cholinergic system rapidly develops during the early neonatal
period in rodents (see Figure 2), and is a key regulator of both
hippocampal neuroimmune signaling and neurogenesis (Kaneko
et al., 2006; Field et al., 2012; Terrando et al., 2014), suggesting
that disruptions inmaturation of the cholinergic systemmay have
cascading consequences on adult hippocampal neurogenesis in
models of FASD. Perinatal ethanol exposure disrupts basal
forebrain cholinergic system development, as a single ethanol
exposure on postnatal day (P)7 was reported to decrease basal
forebrain cholinergic neurons in adulthood (P70) by 34–42% in
both male and female rats, relative to age-matched controls
(Smiley et al., 2021).

Perinatal ethanol exposure also induces large-scale induction
of apoptotic cascades within 24 h after acute ethanol, with
variations in regional sensitivity to induction of cell death
cascades corresponding with variations in developmental
timing of various brain regions (Ikonomidou et al., 2000). For
example, peak ethanol-induced induction of the apoptotic
marker cleaved caspase-3 in the basal forebrain is most
prominent on P7, corresponding with development of the
basal forebrain system (Ikonomidou et al., 2000; Olney et al.,
2002; Young et al., 2005; Farber et al., 2010). The persistent loss of
basal forebrain cholinergic neurons after neonatal ethanol
exposure suggests that 1) ethanol-induced decreases in adult
basal forebrain cholinergic neurons may result from caspase-3-
mediated apoptotic cell death during critical neonatal
developmental windows, and 2) reductions in adult
populations of basal forebrain cholinergic neurons after
neonatal ethanol exposure do not recover despite long periods
of abstinence. These findings have been reproduced across a
variety of mammalian species, from mice to primates, suggesting
a high level of congruency in this literature. Moreover, neonatal
ethanol-induced loss of basal forebrain cholinergic neurons is
accompanied by diminished evoked acetylcholine efflux in the
adult hippocampus as assessed using in vivo microdialysis,
indicating that perinatal ethanol exposure persistently disrupts
basal forebrain-hippocampal cholinergic neurocircuitry (Perkins
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et al., 2015). These findings further highlight that discrepancies in
the effects of perinatal ethanol exposure on adult hippocampal
neurogenesis may vary across FASD models – particularly
prenatal versus postnatal exposure models – as prenatal
exposure models miss critical neonatal developmental periods
of cholinergic systems, which could subsequently shift the ability
of acetylcholine to modulate neuroprogenitors and the
hippocampal environmental milieu to regulate adult
hippocampal neurogenesis.

Perinatal Ethanol Disruptions in Development of the
Cholinergic System Subsequently Impair Adult
Cognitive-Behavioral Flexibility and Hippocampal
Neurogenesis
Loss of basal forebrain cholinergic neurons and subsequent
diminution of acetylcholine efflux in the hippocampus have
critical implications for cognitive and behavioral deficits in
FASD and preclinical models of FASD. For example,
deprivation of choline, which is an essential nutrient and
critical component of acetylcholine synthesis, exacerbates
perinatal ethanol-induced deficits in motor development in
early life (Idrus et al., 2017). Conversely, choline
supplementation is one of the most researched preclinical
interventions in models of FASD and is currently under
investigation in clinical trials (Wozniak et al., 2013; Nguyen
et al., 2016, Jacobson et al., 2018a; Jacobson et al., 2018b,
Wozniak et al., 2020). Clinical evaluation of the efficacy of
dietary choline supplementation is supported by a bevy of
preclinical research indicating that dietary choline
supplementation mitigates cognitive deficits in preclinical
models of FASD, particularly on tasks requiring cognitive
flexibility. In third-trimester models of FASD, choline
supplementation mitigates the long-term effects of neonatal
ethanol across both sexes on deficits in discrimination learning
(Thomas et al., 2000), spatial working memory (Thomas et al.,
2010), spatial reversal learning (Thomas et al., 2004), and trace
fear conditioning (Wagner and Hunt, 2006), with findings
suggesting that early rodent postnatal choline supplementation
is critical (Ryan et al., 2008). A caveat to these findings is that
choline is known to exhibit multiple mechanisms of action
beyond increasing acetylcholine synthesis, including operating
as a methyl donor to regulate epigenetic changes and influencing
lipid metabolism due to its role as a precursor for
phosphatidylcholine (Bekdash et al., 2013; da Silva et al., 2015;
Balaraman et al., 2017). Furthermore, phosphatidylcholine is a
primary structural component in both cell and myelin
membranes (Sakurai and Kawamura, 1984), making it a
critical contributing player to neuronal development. However,
choline’s role in acetylcholine synthesis is likely important for its
beneficial effects on brain development as cholinesterase
inhibitors have revealed convergent beneficial effects in models
of FASD. For example, the cholinesterase inhibitor galantamine,
which is FDA-approved for the treatment of Alzheimer’s disease
(Lilienfeld, 2002; Hampel et al., 2018; Haake et al., 2020),
recovered the perinatal ethanol-induced diminution of
acetylcholine efflux in the adolescent hippocampus (Perkins
et al., 2015). Increasing cholinergic output in the adult

hippocampus via choline supplementation or cholinesterase
inhibition may also mitigate perinatal ethanol-induced deficits
in hippocampal neurogenesis, as the cholinesterase inhibitors
galantamine and donepezil both increase cholinergic
neurotransmission and hippocampal neurogenesis in adult rats
(Kotani et al., 2006, Kotani et al., 2008). This suggests that broadly
increasing acetylcholine neurotransmission may produce
downstream beneficial effects on hippocampal neurogenesis
(Kotani et al., 2006, Kotani et al., 2008; Kita et al., 2014;
Madrid et al., 2021), further highlighting 1) the critical role of
acetylcholine in neurogenesis, 2) the likely contribution of
acetylcholine reductions to loss of neurogenesis in these
model, and 3) the therapeutic potential of compounds which
target the cholinergic system in FASD.

Perinatal Ethanol Disrupts Nicotinic and Muscarinic
Receptor Expression in the Adult Hippocampus
One of the mechanisms by which perinatal ethanol-induced
disruption of basal forebrain-hippocampal cholinergic
neurocircuitry may affect adult hippocampal neurogenesis is
through long-term alterations in cholinergic receptor
activation in adulthood. Both muscarinic and nicotinic
receptors directly affect neuroprogenitor pools and indirectly
regulate the hippocampal environmental milieu. Muscarinic
M1 receptors are abundant in the adult hippocampus, where
they colocalize with newborn cells in the dentate gyrus to play a
key role in hippocampal cell proliferation (Levey et al., 1995;
Mohapel et al., 2005). In fact, M1 receptor activation is sufficient
to rescue cell proliferation deficits in a model of basal forebrain
cholinergic denervation (Van Kampen and Eckman, 2010).
However, there are conflicting findings regarding the impact
of perinatal ethanol on adult muscarinic receptor expression,
often reflecting a divergence in adult outcomes due to differing
developmental periods of ethanol exposure across FASD rodent
models. For example, ethanol exposure across prenatal
development reduced adult (i.e., P90) hippocampal muscarinic
receptor density in male and female rats (Black et al., 1995),
whereas ethanol exposure from P4 to P10 using intragastric
intubation which resulted in cyclical, high blood ethanol
concentrations increased hippocampal muscarinic receptor
density and decreased their dissociation constant in adulthood
(P90) across both sexes (Kelly et al., 1989). Interestingly,
muscarinic receptor dynamics are not affected by dosing
regimens that result in consistent BECs. Non-cyclical, stable
level BECs were achieved by spreading 12 feedings of 2.5% (v/
v) ethanol consistently across a 24-h period, suggesting that
muscarinic receptors are impacted not only by developmental
window, but also by circulating BECs. These results highlight that
both developmental timing and dosing regimen of ethanol
exposure can create complex alterations in muscarinic receptor
expression and affinity dynamics (Kelly et al., 1989).

Interestingly, the sole study reporting that ethanol exposure
across gestation decreases adult cell proliferation (Redila et al.,
2006) parallels the finding that ethanol exposure across gestation
similarly decreases hippocampal muscarinic receptor density in
adulthood (Black et al., 1995). Likewise, FASD models that use
the third-trimester neonatal binge paradigm (i.e., P4-P10)
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typically do not report long-term deficits in hippocampal cell
proliferation, with one study reporting increased cell proliferation
in adult males after a single ethanol dose on P7 (Coleman et al.,
2012). These discrepancies highlight that a full three-trimester
model, which more accurately reflects human prenatal
development by encompassing both the prenatal and postnatal
periods, is critical to reconcile the prenatal versus postnatal
literature discrepancies regarding hippocampal muscarinic
receptor dynamics, and therefore is an important future
direction for the field.

In contrast to muscarinic receptors, nicotinic receptors have
received little attention in relation to the lasting effects of
perinatal ethanol exposure, with a single study reporting that
hippocampal α7 nicotinic receptor density in adulthood is
unaffected by perinatal (i.e., P2-P10) ethanol exposure
(Perkins et al., 2015). However, reductions of basal forebrain
cholinergic tone in the hippocampus may have cascading
consequences on nicotinic receptor activation that are
similarly important for adult neurogenesis. In fact, choline is
also a selective agonist at the α7 nicotinic receptor (Alkondon
et al., 1997), and loss of cholinergic activation of the α7 nicotinic
receptor could impair important anti-inflammatory feedback
onto microglia (Li L. et al., 2019), disrupting the inflammatory
balance in the hippocampal environmental milieu. This suggests
that a more thorough assessment of perinatal ethanol’s impact on
nicotinic receptor dynamics and the long-term mediation of
nicotinic signaling the adult neurogenic niche remains an
important future direction for the field.

Perinatal Ethanol Acutely Disrupts the
Proinflammatory-anti-inflammatory Balance in the
Neurogenic Niche With Proinflammatory Gene
Induction Exacerbated in Adulthood Following
Immune Challenges
A growing body of evidence has implicated the innate immune
system not only in pathogen defense, but also in
neurodevelopment (for review see (Macht, 2016)). While
microglia are classically associated with the brain’s immune
response, it is becoming increasingly appreciated that
astrocytes and neurons can also contribute to proinflammatory
signaling cascades. However, the acute effect of ethanol on innate
immune induction in preclinical models of FASDmay depend on
the timing of microglial regional increases in population across
the CNS. For example, while neurons and astrocytes exhibit
common neuroepithelial origins, ontogeny of neurons precedes
that of astrocytes, with the vast majority of astrocytes not
produced until first postnatal month in the rodent (Qian et al.,
2000; Sauvageot and Stiles, 2002). Microglia, in contrast, are
derived from developingmacrophages in the yolk sac during early
embryogenesis (peaking on approximately embryonic day [E]7)
and then migrate to the developing nervous system whereupon
they continue to proliferate, populating developing brain regions
in a caudal-rostral manner (Alliot et al., 1999; Ginhoux et al.,
2010). Interestingly, a single 50-min exposure to ethanol in a
vapor chamber on gestational day 12.5 increased microglia
undergoing the S phase of the cell cycle, which includes
critical periods of DNA synthesis (Salem et al., 2021). Future

studies would need to examine if these changes in the microglial
cell cycle underlie congruent findings from several studies that
ethanol also acutely increases proinflammatory gene induction in
the developing prenatal and neonatal brain, likely reflecting
varying levels of neuroimmune induction within both neurons
and glia, including microglia.

Specifically, prenatal ethanol exposure increased CCL6, IL-21,
IL-10ra, and TNFα expression in the developing brain of male
and female rats, relative to age-matched controls, on E17
(Terasaki and Schwarz, 2016), with female rats exposed to
ethanol also exhibiting increases in CCL2, CCL5, CCL9,
CXCL10, and IL-5 in whole brain homogenates. Postnatal
ethanol exposure on P5 also acutely increases hippocampal
proinflammatory gene expression of IL-1β and CCL4 in male
and female rats (Ruggiero et al., 2018), with multiple exposures to
ethanol (P4-P9) resulting in even more dramatic induction of
proinflammatory signaling cascades, including IL-1β, TNFα,
CD11b, and CCL4 in both sexes (Boschen et al., 2016).
Similarly, a single exposure to ethanol on P4 in mice results in
significant increases in CCL2 and monocyte chemotactic protein-
induced protein (MCPIP) in the brain and in cultured microglial
cell lines over the course of several hours (Zhang et al., 2018).
Increased CCL2 signaling after ethanol is particularly important
as it regulates acute induction of apoptotic cascades after
developmental (P4) ethanol exposure (Zhang et al., 2018),
suggesting that ethanol induction of neuroimmune cascades
early in development may directly contribute to neuronal loss,
including loss of developing cholinergic neurons. Indeed,
persistent increases in CCL2 signaling (Pascual et al., 2017) by
perinatal ethanol may increase sensitivity of adult newborn
hippocampal neurons to cleaved caspase-3-induced apoptosis,
reducing their successful integration into hippocampal
neurocircuitry.

The effects of perinatal ethanol on innate immune activation
are further exacerbated in adulthood. This is in part due to the
fact that perinatal ethanol has cascading repercussions on
immune regulation of the developing cholinergic system to
impact later neuroimmune signaling dynamics in adulthood.
For example, some studies suggest perinatal ethanol sensitizes
later innate immune gene responses in adulthood, in part due to
diminished capacity for cholinergic anti-inflammatory feedback
that leads to an exaggerated proinflammatory neuroimmune
response. Prenatal ethanol exposure (2 g/kg ethanol, twice
daily, E10-E16) dramatically exacerbates the adult response to
modest innate immune challenges (25 μg/kg lipopolysaccharide
[LPS]), evidenced by exaggerated hippocampal gene expression
of IL-1β and IL-6 in male rats but not female rats, relative to
controls (Terasaki and Schwarz, 2016). Similar long-term
alterations in the peripheral immune system in adulthood
(approximately 4 months old rats) have been evidenced after
gestational exposure to ethanol vapor across days 8–19, with adult
males but not adult females exhibiting increased levels of
circulating monocytes (Bake et al., 2021). Conversely, adult
males exhibited decreased basal levels of peripherally
circulating cytokines whereas adult females exhibited elevated
peripheral levels of circulating cytokines. The authors speculate
that low circulating peripheral cytokines in adult males under
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basal conditions could reflect inappropriate immune responsivity
to infection, possibly contributing to higher rates of persistent
systemic infections in males with FASD. These findings that
prenatal ethanol exposure increases sensitivity to neuroimmune
signaling induction in adult males, but not females, may have
critical implications, as human studies report that males are more
likely to receive an early diagnosis of FASD, reflective of increased
phenotypic severity (Thanh et al., 2014; DiPietro and Voegtline,
2017; Osborne et al., 2018).

In addition, persistent increases in CCL2 signaling (Pascual
et al., 2017) by perinatal ethanol may increase sensitivity of adult
newborn hippocampal neurons to cleaved caspase-3-induced
apoptotic cascades, reducing their successful integration into
hippocampal circuitry. These persistent proinflammatory
effects induced by ethanol appear to be mediated by TLR4
signaling cascades, as TLR4-deficient mice do not exhibit long-
term upregulation of several cytokines and chemokines, including
IL-1β and CCL2, in models of perinatal ethanol exposure (Pascual
et al., 2017). Thus, not only does ethanol’s acute induction of
CCL2 and TLR4 signaling pathways during perinatal
development contribute to acute increases in proinflammatory
gene expression, but these effects also persist into adulthood.
Adult exposure to LPS induces a sensitized CCL2 and TLR4
signaling response in the hippocampus in rodent models of
FASD, contributing to increased apoptosis in the adult
neurogenic niche and greater sensitivity to proinflammatory-
induced loss of adult neurogenesis.

Collectively, these findings indicate that perinatal ethanol-
induced acute induction of proinflammatory signaling cascades
may be an early underlying factor in developmental cholinergic

deficits by contributing to their programmed cell death during
rodent neonatal or human third-trimester development. In
adulthood, these developmental deficits in cholinergic function
may unmask greater impairments under conditions of neuronal
stress, potentially through alterations in muscarinic and nicotinic
receptor activation and consequential augmented disruption of
the proinflammatory signaling in the hippocampal
environmental milieu, reflecting a vicious cycle that may drive
both impairments in neurogenesis and greater cognitive deficits
in high-complexity tasks (see Figure 3).

Restoration and Treatment Challenges in
Models of FASD
Children with FASD have several complications due to large-scale
cell death induced by prenatal alcohol exposure coupled with
broad shifts in epigenetic regulation of gene expression.
Epigenetics is the modulation of gene expression in the
absence of alterations to DNA, making it a master director of
brain development by altering gene accessibility to transcriptional
machinery across time (Podobinska et al., 2017). For example, the
most frequently investigated epigenetic modification is changes in
patterns of methylation across the genome. Increases in DNA
methylation on CpG dinucleotides at gene promoter regions
restrict transcriptional machinery’s access to specific genes,
thereby reducing transcription and translation into protein. In
contrast, removal of these methyl groups at CpG-rich promoter
islands increases gene access to transcription machinery,
resulting in increased gene transcription. Changes in
methylation at various gene loci are a critical part of normal

FIGURE 3 | Proposed mechanism underlying the impact of perinatal ethanol on adult hippocampal neurogenesis. Perinatal ethanol acutely increases CCL2
proinflammatory cascades, resulting in increases in IL-1β and HMGB1 gene expression as well as activation of TLR4, RAGE, and IL-1R1 receptor signaling, leading to
increased activation of cleaved caspase-3 (Casp-3) pathways, and resulting in cellular apoptosis. Activation of cell death pathways results in basal forebrain cholinergic
cell death during critical developmental periods. This persistent ethanol-induced loss of basal forebrain cholinergic neurons persists into adulthood and results in
long-lasting neurodevelopmental repercussions. A long-term consequence of these perinatal ethanol effects is a hypofunctioning cholinergic network evidenced by
decreased capacity for stimulated acetylcholine release in the hippocampus in adulthood. Acetylcholine release is stimulated by positive neurogenic regulatory such as
voluntary exercise and environmental enrichment, as well as negative neurogenic regulatory factors such as LPS. Loss of hippocampal cholinergic signaling can unmask
deficits in adult neurogenesis, decreasing either cell proliferation, or, more frequently, increasing cell death through hypersensitivity to proinflammatory gene induction
and activation of Casp-3 apoptotic pathways.
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neurodevelopment and can be further modified by environmental
exposures, including maternal behavior (Weaver et al., 2004) and
alcohol exposure (Kobor and Weinberg, 2011), with increased
sensitivity across different periods over the lifespan. Epigenetics,
including DNA methylation, therefore has the capacity to alter
gene expression with tight temporal regulation during critical
developmental periods. These neurological and epigenetic
changes during critical brain developmental windows shift the
brain’s developmental trajectory in children with FASD, resulting
in a variety of social, emotional, cognitive, and behavioral deficits
that emerge with age (Kodituwakku, 2009). This suggests several
considerations in the context of FASD: 1) ethanol-induced
alterations during perinatal development persistently impact
development by changing gene transcription, 2) some
consequences of perinatal ethanol will emerge over time in
conjunction with developmental changes in epigenetic
regulation of gene expression, and 3) pharmacological
interventions which aim to reverse perinatal ethanol-induced
developmental effects will be most effective if they also reverse
perinatal ethanol-induced epigenetic changes.

The emergence of ethanol’s cascading consequences on
neurodevelopment over time complicates interventions aimed
at reversal of neurological and behavioral deficits in models of
FASD. In fact, the majority of current pharmacological
intervention strategies approved for children with FASD target
other neuropsychiatric comorbidities, such as the use of
stimulants for the highly co-morbid diagnosis of attention
deficit hyperactivity disorder in FASD children, with few
treatment strategies aimed to prevent or reverse FASD
pathophysiology itself (Martinez and Egea, 2007; Wozniak
et al., 2019). These challenges in specifically treating FASD are
highlighted in preclinical findings surrounding the cholinergic
system. For example, using a third-trimester model (P4-P9),
Milbocker and Klintsova (Milbocker and Klintsova, 2021)
reported that ethanol reduced cholinergic neuron populations
(identified by choline acetyltransferase (ChAT)) in the young
adult basal forebrain (P72). This deficit was not recovered with
either voluntary exercise, complex environmental housing, or a
combination of the two (P30-72). Interestingly, choline
supplementation has yielded some success with preclinical
studies, suggesting that prenatal choline supplements given in
conjunction with ethanol exposure across gestation can mitigate
loss of brain weight in models of FASD (Thomas et al., 2009) as
well as prevent adult working memory deficits in theMorris water
maze (Thomas et al., 2010). Choline supplementation also
attenuates deficits in cholinergic muscarinic receptor binding
(Monk et al., 2012) and causes broad changes in brain gene
regulation including cholinergic content as well as receptor
expression and function (Otero et al., 2012). However, while
one mechanism of choline supplementation is through enhanced
acetylcholine synthesis, choline supplementation also reverses
perinatal ethanol’s increases in DNA methylation in the
hippocampus (Otero et al., 2012). The ability of choline
supplementation to reverse alternations in hippocampal DNA
methylation after perinatal ethanol is an exciting finding, but
these interactions are complex as choline supplementation
exhibited opposing effects in the absence of ethanol,

highlighting that the role of choline supplementation in DNA
methylation must be taken in context with expression of
methyltransferase activity and other epigenetic regulators. To
further complicate the mechanism of choline supplementation as
a therapeutic in models of FASD, choline also affects lipid
metabolism and enhances liver oxidation of fatty acids. This
suggests that choline supplementation may affect hippocampal
gene transcription indirectly through broader impacts on the
body in general. These results highlight the multifaceted
mechanisms by which choline supplementation may help
mitigate developmental consequences of ethanol, as choline is
a precursor for the synthesis of acetylcholine, a methyl donor,
influencing epigenetic regulation of gene transcription (Zeisel,
2006), and a regulator of lipid metabolism. Collectively, this
suggests that ethanol and choline supplementation effect gene
transcription broadly, and hippocampal gene transcription
specifically.

The positive preclinical effects of choline supplementation on
FASD behavioral and neurological outcomes have given it a
spotlight in clinical trials, several of which are ongoing
(Wozniak et al., 2020). However, clinical trials have further
highlighted that choline supplementation efficacy relies heavily
on a preventative and/or early intervention strategy and has not
yielded clinical success when implemented later in life (e.g., in
school-age children) (Nguyen et al., 2016), suggesting the
effective therapeutic window for choline supplementation is
narrow. The narrow therapeutic window in FASD remains an
ongoing clinical challenge (Idrus and Thomas, 2011), particularly
for intervention strategies aimed at mitigating deficits in females
with FASD, as they are often diagnosed later in life than males
(DiPietro and Voegtline, 2017; Osborne et al., 2018). Thus, sex
differences in FASD presentation and biological alterations are
important to consider in the search for novel treatments for
FASD in older populations.

Adolescent Ethanol Exposure and the
Developmental Impact in Adulthood
Adolescence is a period of rapid brain maturation with extensive
myelination, synaptic pruning, and neurogenesis, highlighting
that remodeling of molecular circuitry is a critical component of
this developmental period that parallels rapid behavioral and
cognitive growth (Arain et al., 2013). Adolescence is also a period
when alcohol experimentation and use is typically initiated across
both sexes (Petit et al., 2013). As adolescents are less sensitive
than adults to the soporific effects of alcohol, they tend to achieve
higher BECs than adults in a single drinking session. This means
that adolescents are far more likely than adults to consume
alcohol in a binge drinking pattern (Kuntsche and Gmel,
2013), which is defined by the National Institute on Alcohol
Abuse and Alcoholism (NIAAA) as consuming 4+/5+ drinks in a
2-h period for women and men, respectively (Alcohol Policy
Information System, 2020; Drinking Levels Defined, 2021). In
fact, the vast majority of alcohol consumption in adolescents is
characterized by intake during weekend binge drinking sessions
(Chung et al., 2018), where periods of high levels of alcohol intake
are intermittently dispersed with short periods of abstinence. The
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percentage of individuals engaged in binge drinking sessions
escalates across adolescence and into college age, with
approximately 4% of eighth grade, 9% of 10th grade, 14% of
12th grade, and 44% of college students reporting recent binge
drinking episodes (Wechsler et al., 1995; O’Malley et al., 1998;
Johnston et al., 2019). Moreover, adolescent-specific
neuromaturation persists in humans through age 25 (Crews
et al., 2019), well beyond the legal drinking age, suggesting
that these persistent neurodevelopmental disruptions which
are continuing to be elucidated in clinical and preclinical
studies potentially impact a broad spectrum of the legal
drinking population.

The long-term consequences of alcohol drinking in
adolescence have primarily been examined through two
collaborative consortiums: 1) National Consortium on Alcohol
and Neurodevelopment in Adolescence (NCANDA), which
evaluates the progressive disruption of neurodevelopment and
behavioral alterations with alcohol exposure across adolescence
in humans, and 2) the Neurobiology of Adolescent Drinking in
Adulthood (NADIA) consortium, which uses rodent models of
adolescent intermittent binge ethanol exposure to examine
mechanisms underlying ethanol’s long-term molecular and
cognitive-behavioral changes in adulthood (Crews et al., 2019).
As adolescents who binge drink often continue drinking in
adulthood, discerning the discrete effects of adolescent versus
adult alcohol exposure can be complex in human studies. Thus,
the NADIA consortium has modeled patterns of human
adolescent binge drinking in rodents using a paradigm of
adolescent intermittent ethanol (AIE) exposure in rats. In this
model, ethanol exposure occurs specifically across periadolescent
development (P25-P55) via an intermittent dosing regimen that
results in the high BECs (>150 mg/dl) that are achieved in human
adolescents (Lamminpää et al., 1993; Kraus et al., 2005; White
et al., 2006; Donovan, 2009; Patrick et al., 2013; Orio et al., 2018),
followed by a period of abstinence to determine the long-lasting,
persistent effects of adolescent ethanol exposure on the brain and
behavior in adulthood (for a review of the model, see (Crews et al.,
2019)). Findings from the NADIA consortium and other rodent
models of adolescent ethanol exposure have indicated that the
effects of ethanol on the brain and behavior during adolescence
are distinct from perinatal or even adult exposure, instead being
molded from the landscape of adolescent development where
neurocircuitry is being remodeled and refined versus formed. The
result is a plethora of cognitive-behavioral and neurobiological
changes that persist into adulthood despite abstinence (as
reviewed by (Crews et al., 2019)). This section will highlight
some of these persistent effects, particularly in relation to adult
hippocampal neurogenesis, the cholinergic system, and
neuroinflammation.

Vulnerability to Neurogenic Insults During
Adolescence and the Long-Term Impacts
on the Adult Hippocampus
Neurogenesis during adolescent development is on average four-
fold greater than during early adulthood (He and Crews, 2007;
Kozareva et al., 2019), and this developmental finding is

consistent across mammalian species (Snyder, 2019). High
levels of adolescent neurogenesis are thought to reflect a
heightened need for neuroplasticity during this period, which
corresponds with adolescent-related behavioral changes
(Kozareva et al., 2019). Generally, adolescence is characterized
by increased exploration, risk-taking behaviors, inhibition of
juvenile behavioral patterns, and acquisition of new behaviors
essential for transition from parental care to independence as an
adult (Spear L. P., 2000). As neurogenesis is an index of
neuroplasticity and facilitates pattern separation, spatial
learning and memory, and cognitive flexibility, it follows that
heightened neurogenesis during adolescence contributes to
adaptive behavioral development during this period. However,
the increased need for hippocampal neuroplasticity during
normal adolescent neurodevelopment also confers a period of
neurogenic vulnerability with ensuing consequences on behaviors
that rely upon this mechanism of cellular plasticity.

Adolescent Binge Ethanol Exposure Impairs Adult
Hippocampal Neurogenesis by Disrupting Cell
Proliferation and Inducing Cell Death Cascades
Newborn neurons during adolescence are particularly sensitive to
ethanol, showing dose-dependent reductions in hippocampal
neurogenesis after acute ethanol exposure (Crews et al., 2006).
The magnitude of this deficit in hippocampal neurogenesis after
acute adolescent ethanol exposure is somewhat extraordinary, as
identical amounts of ethanol acutely reduce neurogenesis by 80%
in adolescence versus 30% in adulthood when normalized to
respective developmental control levels of neurogenesis (Crews
et al., 2006). More concerning are the long-term consequences of
adolescent binge ethanol exposure. Our laboratory has found that
not only does AIE exposure reduce adult expression of DCX, a
neuroprogenitor cytoskeleton protein, in late adolescence (24 h
post-AIE), but this reduction in DCX expression persists well into
adulthood (P220) in both the dorsal and ventral dentate gyrus
(Nixon and Crews, 2002; Crews et al., 2006). This finding
reproduces across species (mice, rats, and nonhuman
primates) as well as across various routes of administration
(intragastric intubation, intraperitoneal injection, vapor) (see
(Macht et al., 2020a) for review), and is unique to this
developmental window. For example, as previously discussed,
perinatal ethanol exposure only mildly reduces adult
hippocampal neurogenesis, often requiring a challenge to
unmask deficits. Similarly, chronic but not intermittent
ethanol exposure in adulthood reduces neurogenesis in a
transient manner which recovers following periods of
abstinence (Nixon and Crews, 2002; Broadwater et al., 2014).
This is not true following intermittent alcohol exposure across
adolescence, where reductions in hippocampal neurogenesis are
persistent, lasting well into adulthood, perhaps for the duration of
the organism’s life, despite abstinence (Nixon and Crews, 2002;
Crews et al., 2006).

The enduring loss of hippocampal newborn neurons after AIE
most likely involves both subtle disruptions in the
neuroprogenitor cell proliferating pool as well as more robust
findings involving decreased survival of neuroprogenitors as they
differentiate into neurons and integrate into hippocampal
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circuitry (for summary see Table 1). Cell proliferation after AIE
has most frequently been evaluated using staining of the nuclear
protein Ki67, which has high fidelity with BrdU expression
patterns for proliferation (Kee et al., 2002). Ki67 is expressed
during mitosis across mammalian species and exhibits a very
short half-life, making it a conservative but accurate estimate of
actively dividing cells in the subgranular zone of the neurogenic
niche. Some (Nixon and Crews, 2002; Taffe et al., 2010; Vetreno
and Crews, 2015; Liu and Crews, 2017) but not all (Ehlers et al.,
2013; Broadwater et al., 2014; Macht et al., 2021) studies have
found that adolescent binge ethanol exposure decreases Ki67
immunoreactivity in adulthood. Conversely, adolescent binge
ethanol exposure has consistently been found to induce
activation of the apoptotic executioner caspase cleaved
caspase-3 (Ehlers et al., 2013; Broadwater et al., 2014; Vetreno
and Crews, 2015; Liu and Crews, 2017; Macht et al., 2021), and/or
to increase hippocampal necrotic cell death, as marked by Fluoro-
Jade B (Taffe et al., 2010; Ehlers et al., 2013), across species and
across variations in route of administration. Moreover, AIE
increases expression of cleaved caspase-3 specifically within
DCX-labeled neurons, suggesting that activation of cell death
machinery directly contributes to loss of newborn hippocampal
neurons (Macht et al., 2021). Collectively, these findings suggest
that adolescent binge ethanol exposure disrupts the neurogenic
niche in ways that interfere with the successful maturation of
adult newborn neurons, potentially through mechanisms
involving either 1) a failure to assimilate signals driving
successful integration into existing hippocampal circuitry or 2)
hypersensitivity to the stimulation of cell death executioner
pathways.

Adolescent Binge Ethanol Exposure Impairs Adult
Hippocampal Neurogenesis by Disrupting Cell
Proliferation and Inducing Cell Death Cascades
One mechanism that activates cell death pathways in adult
newborn neurons is induction of proinflammatory signaling
cascades, resulting in cleavage of caspase-3 and consequential
catalyzation and cleavage of critical cell proteins, chromatin
condensation, DNA fragmentation, and ultimately cellular
apoptosis (Porter and Jänicke, 1999; Macht et al., 2021).
Chronic induction of proinflammatory signaling cascades
within the hippocampus are a persistent molecular
consequence of adolescent ethanol exposure (Crews et al.,
2016), and AIE-induced upregulation of proinflammatory gene
expression is evident across multiple signaling steps, including
increasing the nuclear histone-binding protein high mobility
group box protein 1 (HMGB1) (Swartzwelder et al., 2019;
Macht et al., 2021), CCL2 (Macht et al., 2021), Toll-like
receptor 4 (TLR4), the canonical neuroimmune gene
transcription factor nuclear factor kappa-light-chain-enhancer
of activated B cells p65 (pNFκB p65) (Li Q. et al., 2019), and
cyclooxygenase-2 (COX-2) (Pascual et al., 2007; Macht et al.,
2021).

HMGB1 is a central player in these molecular cascades within
the hippocampus, with multiple studies demonstrating AIE
increases hippocampal granule cell expression of HMGB1
immunoreactivity in the adult dentate gyrus (Vetreno et al.,

2018; Swartzwelder et al., 2019; Macht et al., 2021). Upon
stimulation, HMGB1 is translocated from the nucleus to the
cytoplasm whereupon it is actively and passively secreted into the
extracellular space. Once in the extracellular space, HMGB1
functions are multifaceted as HMGB1 has the potential to act
as a solo player wherein it binds to and activates a variety of innate
immune receptors, including TLR4 and the receptor for advanced
glycation end products (RAGE) (Miyata et al., 1996; Yanai et al.,
2009), or it can act in concert with other extracellular factors,
forming complexes with other immune molecules including IL-
1β to subsequently potentiate their responses (as reviewed by
(Bianchi, 2009)). Thus, induction of HMGB1→TLR4/
RAGE→pNFκB p65 signaling cascades may be a critical
mediator in AIE-induced cell death of neuroprogenitors, as
expression of hippocampal pNFκB p65 and cleaved caspase-3
are highly correlated (He and Crews, 2007). Furthermore, reversal
of hippocampal proinflammatory cascades through the
cholinesterase inhibitor galantamine prevents and reverses
both AIE induction of HMGB1, COX-2, and CCL2 as well as
reduces AIE induction of cleaved caspase-3 in DCX-labeled
immature neurons in male rats (Macht et al., 2021), further
highlighting that disruption of cholinergic signaling
contributes to AIE induction of neuronal inflammatory
proinflammatory cascades, cell death, and adult hippocampal
neurogenesis.

Hippocampal microgliogenesis and partial microglial
activation are also evident in adulthood after AIE, evidenced
by increases in the number of hippocampal Iba+ cells as well as
shifts in these Iba1+ cells towards a less ramified morphological
state and increases in microglial (Iba-1+immunoreactive)
expression of pNF-κB p65 (McClain et al., 2011; Liu and
Crews, 2017). This phenotypic shift of hippocampal microglia
by adolescent binge ethanol exposure may contribute to the
observed increases in expression of several proinflammatory
cytokines in the adult hippocampus after adolescent binge
ethanol exposure, including IL-1β, TNFα, and IL-6 (Gómez
et al., 2018). Consequences of increased extracellular IL-1β are
magnified by concurrent increases in HMGB1, as IL-1β and
HMGB1 form complexes to increase affinity at TLR4
(Coleman et al., 2018), potentiating proinflammatory signaling.
This suggests that neurons and microglia work in concert to
potentiate proinflammatory responses and activate apoptotic
pathways in newborn hippocampal neurons in adulthood.

Adolescent Binge Ethanol Suppresses
Basal Forebrain Cholinergic Systems to
Induce Adult Neuroinflammatory Signaling
and Impair Hippocampal Neurogenesis
Adolescent binge ethanol exposure causes a loss of basal forebrain
cholinergic neurons immediately following the conclusion of
ethanol treatment (i.e., P55) that persists well into adulthood
(i.e., P220 [165 days post-ethanol]), paralleling AIE-induced
lasting reductions in hippocampal neurogenesis and
proinflammatory induction. The observed 20–30% reduction
in basal forebrain cholinergic neuron number following
adolescent binge ethanol exposure is consistent across both
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mouse and rat studies (Coleman et al., 2011; Vetreno and Crews,
2018; Macht et al., 2020a; Vetreno et al., 2020; Crews et al., 2021)
in both sexes (Vetreno and Crews, 2018). However, unlike in
models of FASD, the reduction in cholinergic neuronal markers
after adolescent binge ethanol exposure is preventable and
reversible with exercise (Vetreno and Crews, 2018) as well as
with repeated treatment with the cholinesterase inhibitor
galantamine (Crews et al., 2021) and the non-steroidal anti-
inflammatory compound indomethacin (Vetreno and Crews,
2018). Restoration of basal forebrain cholinergic neurons after
AIE also restores hippocampal neurogenesis, highlighting the
reciprocal dynamic between these systems (Macht et al., 2021).
These findings suggest not only that the persistent loss of
cholinergic anti-inflammatory feedback after AIE is a central
mechanism in the long-term induction of hippocampal
proinflammatory signaling cascades, but also that
proinflammatory signaling plays a role in AIE-induced
cholinergic pathology more locally within the basal forebrain,
evidenced by AIE increased phosphorylation of NF-κB p65
within cholinergic neurons (Vetreno et al., 2020).

One could assume that loss of expression of ChAT
immunoreactivity after AIE – as with findings in fetal alcohol
models – suggests cell death of this neuronal population.
However, this conclusion from the perinatal literature is fueled
by 1) concurrent induction of caspase activity of these neurons
during critical neurodevelopmental windows during the brain’s
growth spurt, and 2) failure to restore ChAT immunoreactivity
with pharmacological or environmental interventions
(Ikonomidou et al., 2000; Olney et al., 2002; Young et al.,
2005; Farber et al., 2010; Smiley et al., 2021). Findings from
AIE do not parallel the fetal alcohol field in this regard. For
example, there is no loss of total neuronal number in the basal
forebrain after AIE, and expression of cholinergic cells can be
recovered with exercise or pharmacological interventions
(Vetreno and Crews, 2018; Vetreno et al., 2020; Crews et al.,
2021). While neurogenesis could restore cell loss due to cell death,
this process is highly confounded by development, and shortly
after P10 in rodents, is solely restricted to the subventricular zone
and the dentate gyrus of the hippocampus. This suggests that
AIE-induced loss and restoration of cholinergic neurons in the
basal forebrain is not due to either cell death or spontaneous adult
neurogenesis in this region. Rather, the ability to restore ethanol-
induced loss of expression of basal forebrain cholinergic neurons
in adulthood after adolescent but not perinatal ethanol exposure
suggests different mechanisms underlying these long-term
changes in cholinergic cell expression. The groundbreaking
discovery that cholinergic neurons can be recovered after
adolescent but not perinatal ethanol exposure reveals a unique
mechanism of neuroplasticity that is centered on epigenetics
(Vetreno et al., 2020).

Epigenetic Mechanisms Underlying Basal Forebrain
Loss of Cholinergic Neurons in Adulthood
Following AIE
Significant epigenetic remodeling occurs across adolescence in
response to hormonal changes that occur with sexual maturation
as well as with environmental maturational events, reflecting a

critical window of cellular plasticity related to neuronal circuit
maturation during this developmental period (Spear L. P., 2000;
Lister et al., 2013; Mychasiuk and Metz, 2016). These
modifications are sensitive to ethanol-induced increases in
neuroimmune gene expression, and epigenetic modifications
induced by ethanol are evident across a variety of brain
regions including the amygdala, hippocampus, prefrontal
cortex, and basal forebrain (Coleman et al., 2011; Montesinos
et al., 2016). Expression of the cholinergic neuronal phenotype
requires epigenetic modifications that allow continued expression
of several genes necessary for the execution of the synthesis,
release, and reuptake of acetylcholine as well as the maintenance
of cholinergic projections at target regions. Four of these critical
proteins are choline acetyltransferase (ChAT), nerve growth
factor (NGF), the high-affinity NGF receptor tropomyosin
receptor kinase A (TrkA), and the low-affinity NGF receptor
p75NTR, which also can function as a death receptor. Recent
findings indicate that adolescent binge ethanol exposure
suppresses the cholinergic neuronal phenotype via modulation
of epigenetic machinery regulating cholinergic genes in both the
hippocampus and basal forebrain (as reviewed by (Crews et al.,
2019)). In particular, AIE increases histone 3 lysine 9
dimethylation (H3K9me2) by 2.5-fold at the CpG island of the
ChAT gene promoter, restricting ChAT gene access to
transcriptional machinery, thereby silencing ChAT protein
expression as evidenced via immunohistochemistry in the
basal forebrain (Vetreno et al., 2020). Similarly, AIE increases
H3K9me2 occupation 1.7-fold at the CpG island of the TrkA
promoter, suggesting reduced gene transcription of this receptor
which is critical to NGF-mediated signaling of trophic support.
Furthermore, increased H3K9me2 occupation at both of these
cholinergic gene promoter regions is associated with increased
phosphorylation of NFκB p65 and HMGB1 in basal forebrain
cholinergic neurons, suggesting AIE induction of
proinflammatory transcription factors may mediate epigenetic
suppression of the cholinergic phenotype (Vetreno et al., 2020).

Both HMGB1 and phosphorylation of NFκB p65/p50 have
been implicated in pathways that modify epigenetic
machinery, although their roles are complex, depending in
part on co-activation of other factors. Thus, HMGB1 and
NFκB p65/p50 can have distinct functions under normal
physiological versus pathological conditions. For example,
under normal physiological developmental conditions,
nuclear HMGB1 promotes the formation of transcription
complexes by overcoming limitations with tightly bent DNA
(Crothers, 1993). In contrast, NFκB in combination with
HMGB1 can facilitate the formation of repressome
complexes wherein HMGB1 binds to G9a, resulting in
histone deacetylation and increases in H3K9 and H3K27
methylation that close chromatin suppressing gene
transcription (Abhimanyu et al., 2021). This pathway has
been best elucidated in studies on peripheral leukocytes,
where this pathway functions as a suppressor of
proinflammatory response after LPS, reflecting endotoxin
tolerance (Gazzar et al., 2009). However, in the brain,
regulation of NFκB and HMGB1 complexes are beginning
to be elucidated, with evidence mounting that this pathway
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is particularly important to the suppression of the cholinergic
phenotype after AIE (Crews et al., 2021). Of note, prior AIE
studies have solely focused on upregulation of NFκB p65;
future studies should also investigate p50 due to their
somewhat divergent impact on HMGB1-mediated epigenetic
modulation of gene transcription.

Ethanol-induced epigenetic silencing shines light on
potential mechanisms for recovery with interventions that
reverse this epigenetic silencing (Vetreno et al., 2020), and
in fact, both voluntary exercise and galantamine
administration reverse epigenetic silencing of basal
forebrain cholinergic neurons (Vetreno et al., 2020; Crews
et al., 2021). These findings highlight a novel mechanism

underlying the perseverance of effects of adolescent binge
ethanol on the brain (see Figure 4).

Adolescent Binge Ethanol Disrupts Cholinergic
Signaling in the Neurogenic Niche
Despite the loss of basal forebrain cholinergic neuron phenotype,
behaviorally-evoked acetylcholine in the hippocampus during
reversal learning in adulthood is slightly, but non-significantly,
blunted by prior adolescent binge ethanol exposure (Fernandez
and Savage, 2017). This finding needs to be explored further as
effects could be distinct across various conditions which evoke
acetylcholine release (e.g., cognitive task versus stress versus
innate immune challenge; simple task versus complex task),

FIGURE 4 | Proposed mechanism by which AIE increases proinflammatory gene transcription and suppresses cholinergic gene transcription through distinct
epigenetic modifications. AIE increases extracellular HMGB1 and proinflammatory cytokines IL-1β, which activate TLR4 and RAGE receptors, activating intracellular
signaling cascades resulting in the phosphorylation and nuclear translocation of NFĸB p65/50. Within the nucleus, NFĸB is a master regulator of gene transcription with
specific effects depending on the types of complexes formed by NFĸB p65/50. For example, NFĸB p65 increases gene transcription of a variety of proinflammatory
genes, including TLR4, IL-1β, TNFα, CCL2, and COX-2. However, in the presence of HMGB1, NFĸB p50 forms a repressome complex with G9a (Abhimanyu et al.,
2021), driving H3K9 methylation at the ChAT and TrkA promotors, reducing cholinergic gene transcription and suppressing the cholinergic neuronal phenotype (Vetreno
et al., 2020; Crews et al., 2021).
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and it is unknown whether these findings extend to females.
Regardless, hippocampal cholinergic receptors are adversely
impacted by adolescent ethanol exposure (Crews et al., 2016),
indicating that even in the absence of overt AIE-induced changes
in evoked acetylcholine release in the hippocampus, there may be
critical underlying changes in cholinergic signaling dynamics
which may be amplified by alterations in cholinergic receptor
expression.

Adolescent brain maturation shows developmental
reductions in nicotinic cholinergic receptor expression
(Coleman et al., 2011). Interestingly, one study found that
adolescent binge ethanol exposure accelerates the
maturational decline in gene expression for both
muscarinic and nicotinic cholinergic receptor subtypes,
resulting in even greater reductions in both cholinergic
neurons and receptors in adulthood (Coleman et al., 2011).
As activation of nicotinic α7 receptors has been identified as
an interface in cholinergic anti-inflammatory feedback on
microglia (Pavlov et al., 2009; Gnatek et al., 2012; Terrando
et al., 2014; Li L. et al., 2019, 7), AIE-induced loss of
hippocampal nicotinic α7 receptors could adversely impact
microglial ability to regulate innate immune gene expression
within the neurogenic niche in adulthood, disrupting the
hippocampal microenvironment and facilitating activation
of apoptotic cascades. This suggests that AIE-induced loss

of cholinergic anti-inflammatory feedback via decreased
nAChRα7 activation on immunocompetent glia is at the
juncture of both persistent inductions in
neuroinflammatory signaling cascades, induction of
apoptotic executioner caspases, and reductions in survival
of adult newborn neurons.

Reversibility and Treatment Challenges in
Models of Adolescent Ethanol Exposure
AIE persistent induction of neuroimmune genes as well as
reduction in hippocampal neurogenesis corresponds with
impairments in a variety of learning and memory tasks,
including discrimination learning (Pascual et al., 2007) and
reversal learning in males (Crews et al., 2016; Vetreno et al.,
2018; Crews et al., 2019). In fact, not only do these neurogenic
deficits persist into middle age despite abstinence (Vetreno et al.,
2014; Crews et al., 2016), but AIE similarly impairs performance
in cognitive flexibility-related tasks in male and female rats long
into middle age (Macht et al., 2020b) suggesting that neither AIE-
induced deficits in neurogenesis nor AIE-related cognitive
flexibility deficits recover with abstinence alone. However,
several intervention strategies have emerged that can prevent
and/or restore both adult neurogenesis and behavioral flexibility
deficits in adulthood in rats exposed to AIE. For example, pre-

FIGURE 5 | Proposed mechanism underlying the persistent loss of adult hippocampal neurogenesis after AIE. AIE persistently decreases phenotypic expression of
cholinergic neurons in the basal forebrain and decreases nAChRα7 expression in the hippocampus, consistent with reduced forebrain-hippocampal cholinergic
inhibitory feedback of inflammatory responses. This results in increases in microglia number and proinflammatory microglial phenotypes, and increases hippocampal
proinflammatory gene expression in the environmental milieu, including IL-1β, TNFα, and CCL2. Shifts in the hippocampal environmental milieu towards a
proinflammatory state has several negative consequences on adult neurogenesis. Increases in extracellular HMGB1 in combination with IL-1β and CCL2 increase
neuronal proinflammatory signaling through TLR4/RAGE and CCR2 receptors, respectively. Activation of these receptors results in increases in phosphorylation of NFĸB
p65 and translocation to the nucleus where it further potentiates proinflammatory gene expression and induces activation of caspase-3 to initiate cell-death cascades.
Increases of caspase-3 in newborn neurons suggest these neurons undergo apoptosis during maturation, resulting in decreased adult hippocampal neurogenesis.
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treatment with the non-steroidal anti-inflammatory drug
indomethacin blocks AIE induction of hippocampal
inflammatory cascades, restores expression of basal forebrain
cholinergic neurons, restores hippocampal neurogenesis
(as evidenced by increases in DCX+ immunoreactivity), and
restores behavioral deficits (Vetreno and Crews, 2018; Vetreno
et al., 2018). The cholinesterase inhibitor galantamine similarly
blocks and reverses AIE-induced neuroimmune gene induction
as well as blocks and reverses adolescent ethanol-induced loss of
neurogenesis (Macht et al., 2021). These findings suggest that
AIE-induced reductions in the cholinergic system are a central
mechanistic player in both hippocampal neuroinflammatory
increases as well as the loss of adult hippocampal neurogenesis
and persistence of behavioral flexibility deficits (see Figure 5).
Adolescent development therefore presents a unique period of
vulnerability to the detrimental effects of binge ethanol on adult
behavioral and cellular plasticity deficits in the neurogenic niche.

During the adolescent developmental period, changes are
governed by alterations in epigenetic regulation of cholinergic
and neuroimmune genes, driving an environmental imbalance in
the hippocampal environmental milieu which is unfavorable to
the successful adult birth, maturation, and integration of newborn
hippocampal neurons. This suggests that in the absence of
intervention, both adolescent ethanol-induced loss of
neurogenesis (Vetreno and Crews, 2015), basal forebrain
cholinergic neuron expression, and cognitive-behavioral
deficits (Macht et al., 2020b) persist long into adulthood,
suggesting a possible permanence of these neurodevelopmental
alterations. This highlights the necessity for active interventions
following adolescent ethanol exposure to restore both
hippocampal neurogenesis and cognitive function.
Surprisingly, as the loss of basal forebrain cholinergic neurons
is mediated by epigenetic mechanisms, restoration of cholinergic
function after adolescent ethanol has the potential to be restored
by reversing epigenetic suppression of the cholinergic phenotype.
Collectively, these results suggest enhanced sensitivity of
neuroprogenitors to ethanol during adolescence. The
persistence of these effects suggest that this period confers a
unique developmental susceptibility to ethanol with potential
long-lasting consequences on hippocampal neurocircuitry and
behavior. However, the reversibility of these factors through
voluntary exercise gives hope for interventions aimed at
restoring these deficits in adulthood.

Adult Alcohol Use Disorder and
Consequences Revealed by Preclinical
Models
Alcohol use disorder (AUD) is highly prevalent in Western
society, with estimates of up to 29% of adults suffering from
AUD at some point in their lifetime (Grant et al., 2015). This
disorder is characterized by patterns of high levels of alcohol
intake despite adverse social, occupational, economic, and health
consequences. While AUD has historically been more prevalent
in adult males, prevalence of AUD in adult females has been
rapidly rising over the last decades (Roberta et al., 2017). The
issue of AUD has become increasingly prevalent in the face of the

COVID-19 pandemic as studies estimate that ~24% of individuals
reported increases in alcohol intake irrespective of prior diagnosis
of AUD, and 17% of previously abstinent individuals with AUD
relapsed during pandemic lockdowns (Kim et al., 2020). These
increases in adult binge drinking escalate over time, with 1.19-
fold greater odds of individuals binge drinking for every week at
home (Weerakoon et al., 2021). Adult binge alcohol consumption
is concerning as it results in a host of neurological changes and
damage, including increases in neuroinflammatory factors as well
as decreases in hippocampal neurogenesis and some subtle
changes in the central cholinergic system. Therefore,
understanding the long-term neurobiological consequences to
binge drinking in adulthood is critical to intervention strategies,
and of escalating importance in today’s society.

Adult Ethanol Exposure Transiently Impairs
Survival of Hippocampal Neuroprogenitors
and Neurogenesis
Although neurogenesis was originally thought to be isolated to
the neonate, Altman and Das (Altman and Das, 1965)
revolutionized this view with their 1965 seminal findings. It
is now estimated that up to 6% of granular cell neurons are
replaced every month in adulthood in rodents as a result of
hippocampal neurogenesis (Cameron and Mckay, 2001).
Although the prevalence and function of adult neurogenesis
in humans is an ongoing scientific debate centered on technical
discrepancies (for review see (Kempermann et al., 2018)),
rodents have routinely demonstrated quantifiable
neurogenesis in adulthood with emerging work centered
instead on elucidating the functional roles of neurogenesis
in relation to hippocampal circuitry and behavior (van Praag
et al., 2002; Clelland et al., 2009; Garthe and Kempermann,
2013). Collectively, results seem to indicate that these new
neurons play critical roles in hippocampal physiology and
neuronal plasticity, and as with other developmental
periods, adult newborn neurons are sensitive to the effects
of ethanol.

Preclinical studies indicate that adult chronic binge ethanol
exposure decreases hippocampal neuroprogenitor cell
proliferation and neurogenesis (Nixon and Crews, 2002)
even in models of moderate alcohol blood ethanol
concentrations (Anderson et al., 2012), although the
severity of effects increases with prolonged dependence
(Richardson et al., 2009). However, these results become
more complex when comparing these models of adult AUD
to adolescent intermittent exposure paradigms as there are
important distinctions in the models used, particularly in
relation to ethanol dependence and withdrawal symptoms.
For example, 4-day binge and liquid diet paradigms which
model human AUD result in physical dependence to ethanol in
conjunction with pronounced withdrawal symptoms (Morris
et al., 2010). Models of AIE do not result in dependence or
severe withdrawal symptoms. In fact, when ethanol is
administered intermittently across adulthood (P70-90),
there are no reductions in hippocampal neurogenesis,
unlike in adolescent intermittent ethanol models
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(Broadwater et al., 2014). This suggests that intermittent
ethanol exposure in adulthood is not sufficiently severe to
induce long-term neurogenic deficits, and instead models of
AUD, which result in physical dependence and/or severe
withdrawal systems, are necessary for inducing deficits in
adult hippocampal neurogenesis after adult ethanol
exposure (Table 1).

Adult ethanol-induced suppression of hippocampal cell
proliferation is further complicated by withdrawal periods, as
there is some evidence for a brief burst in cell proliferation 1 week
into abstinence (Nixon and Crews, 2004). However, this effect
appears to be insufficient to recover neurogenesis as 2 weeks of
abstinence is insufficient to recover ethanol-induced loss of DCX
immunoreactivity after 1 month of ethanol self-administration
(Stevenson et al., 2009). Moreover, there is some evidence that
loss of neuroprogenitor proliferation after binge ethanol is more
dramatic in females than males (Maynard et al., 2018), and that
this decrease in female progenitors is similarly due to greater
sensitivity to ethanol’s impairment in the availability of trophic
support. Unlike perinatal or adolescent binge alcohol exposure,
adult binge alcohol exposure does not increase cellular apoptosis
in the adult dentate gyrus (Obernier et al., 2002), suggesting a
divergence of mechanisms between developmental and adult
alcohol impairments in hippocampal neurogenesis. However,

adult binge alcohol does induce necrotic cell death in the
hippocampus with females again being particularly sensitive to
this effect, resulting in greater loss in hippocampal cell number
after binge alcohol specifically in females (Maynard et al., 2018).
This suggests that although adult binge ethanol exposure reduces
neurogenesis in males and females, this effect could be
particularly devastating in females due to an inability to
repopulate the granular cell layer over time. In support of this,
some recent findings suggest that recovery of neurogenesis after
recurrent binge adult alcohol exposure by short-term voluntary
wheel running (3 days) is insufficient to recover granular layer
cell loss in females (West et al., 2019). Therefore, alcohol-induced
granular cell layer loss in females may require more prolonged or
intensive therapeutic intervention strategies (for summary, see
Figure 6).

Modest Changes in Cholinergic Innervation
of the Hippocampus After Ethanol Exposure
May Underlie Hypersensitivity to
Inflammatory Challenges in Adulthood
The basal forebrain cholinergic system is profoundly affected by
ethanol during early development, with both perinatal and AIE
exposure reducing basal forebrain cholinergic neuron expression in

FIGURE 6 | Proposed model of chronic adult ethanol impact on hippocampal neuroinflammation and neurogenesis. The adult neurogenic niche is sensitive to
neuroinflammatory insults with females being particularly sensitive to these effects. Heightened sensitivity to inflammatory factors may be mediated by reductions in
nicotinic α7 receptor expression in the adult hippocampus (Robles and Sabriá, 2008), resulting in poor cholinergic regulation of neuroinflammation that is independent
from overarching loss of cholinergic cells. This ethanol-induced disruption in the hippocampal environmental milieu increases necrotic cell death in the granule cell
layer of the hippocampus with females being particularly sensitive to ethanol-induced granule cell loss in adulthood (West et al., 2019). However, the impact of chronic
ethanol in adulthood on the neurogenic niche is complex. Non-dependent or dependent, but short-term binge ethanol models in adulthood result in either no changes in
adult neurogenesis or a transient burst-like increase in neurogenesis that is associated acutely with the withdrawal period (Nixon and Crews, 2004; West et al., 2019). In
contrast, long-term dependence models reveal reductions in hippocampal neurogenesis, which are primarily driven by ethanol-induced reductions in the
neuroprogenitor pool (Richardson et al., 2009; Stevenson et al., 2009).
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addition to decreasing cholinergic regulation of the hippocampus.
However, adult alcohol exposure does not produce as rapid or robust
an effect on the basal forebrain cholinergic system. Just as intermittent
ethanol exposure across adolescence but not adulthood produces
deficits in adult hippocampal neurogenesis (Vetreno et al., 2018),
adolescent but not adult intermittent ethanol exposure reduces basal
forebrain ChAT immunoreactivity (Vetreno et al., 2014). Even more
dramatically, 20 days of repeated adult binge ethanol exposure in
adulthood is still insufficient to reduce basal forebrain cholinergic
neuron numbers (Vetreno et al., 2014). Only studies that have
employed a forced sole-source ethanol drinking paradigm of 12+
weeks have shown ethanol-reduced basal forebrain cholinergic
neuron expression in adults (Arendt et al., 1988b), indicating that
these cells are far less susceptible to ethanol-induced damage in
adulthood. However, chronic adult ethanol consumption does
impact axonal projections, with evidence of decreased cholinergic
innervation of the hippocampus (Cadete-Leite et al., 1995). This
suggests that even in the absence of reductions in cholinergic cell
numbers, chronic adult ethanol exposure can reduce cholinergic
projections resulting in impaired function at target regions,
including the hippocampus. In support of this, in in vivo
microdialysis studies in adults after long-term 3-month ethanol
exposure in drinking water, acetylcholine efflux in the
hippocampus was significantly reduced by 57%, relative to controls
(Casamenti et al., 1993). This effect was reversible with abstinence,
suggesting a greater degree of plasticity in cholinergic systems in
adulthood, and increased recoverability following ethanol exposure.

Chronic ethanol exposure in adulthood can also disrupt
cholinergic receptors, but this finding is complex and largely
depends on subtype. For example, 10 weeks of ethanol
consumption decreases hippocampal nicotinic receptor expression
independently from altering binding affinity (Robles and Sabriá,
2008). In contrast, rodent models using a 28-week liquid diet of
ethanol have not reported alterations in number of muscarinic
receptor subtypes in the hippocampus (Rothberg et al., 1993,
Rothberg et al., 1996). Despite evidence suggesting that there is no
impact of ethanol on binding affinity or number of muscarinic
receptor subtype, models of chronic ethanol exposure in
adulthood do impair acetylcholine-mediated evoked
electrophysiological post-synaptic potential responses in pyramidal
cells of the CA1 region of the hippocampus, suggesting impaired
cholinergic function in this region (Rothberg and Hunter, 1991).
Cholinergic activation of pyramidal cells is thought to be mediated
through muscarinic receptors, as these effects can be blocked by the
muscarinic atropine but not nicotinic agonists (Cole andNicoll, 1984;
Valentino and Dingledine, 2021). This reduced hippocampal cellular
responsivity to acetylcholine is postulated to be due to impaired
intracellular transduction mechanisms following cholinergic
muscarinic receptor activation, suggesting that chronic ethanol
may alter muscarinic receptor function in the absence of
overarching loss of receptor number. As proliferation of
neuroprogenitor pools is dependent on cholinergic activation of
muscarinic receptors and subsequent mobilization of intracellular
signaling cascades (Ma et al., 2000), these findings suggest that
alterations in responsivity to acetylcholine in the hippocampus
could underlie some of the deficits in neuroprogenitor
proliferation evidenced after chronic ethanol exposure in adulthood.

The loss of hippocampal nicotinic receptor expression could
underlie sensitivity to neuroinflammatory induction after chronic
ethanol in adulthood, as microglial nicotinic α7 receptors play critical
negative feedback role for proinflammatory cascades. Thus, loss of
activation at nicotinic α7 receptors is suggestive of a loss of anti-
inflammatory feedback and chronic induction of proinflammatory
signaling cascades in the brain of individuals with AUD. In support of
this concept, an increase in neuroinflammation in post-mortem
human brains with AUD is one of the most prevalent clinical
findings (Coleman and Crews, 2018), and preclinical models
further suggest that neuroinflammation is tightly coupled to
continuation of drinking behaviors in nonhuman primates (Beattie
et al., 2018). Preclinical models have replicated these results: 6 months
of ethanol treatment followed by 2months of withdrawal in male rats
resulted in long-term induction on the activated microglial marker
CD11b and the cytokine IL-15 (Cruz et al., 2017). More recent
evidence suggests that females may be even more sensitive to this
effect as a 4-day binge is sufficient to increase microglial number and
frequency of activated phenotypes, indicated by increases inmicroglia
expressing major histocompatibility complex II (MHC II) in the
hippocampus of female but not male rats (Barton et al., 2017). These
findings support a growing body of clinical and preclinical findings
indicating that females may be more sensitive to ethanol-induced
damage in adulthood (Alfonso-Loeches et al., 2013).

The effect of ethanol on hippocampal neuroinflammation can be
magnified under conditions which challenge the immune system,
such as a LPS or polyI:C innate immune challenge. Ten days of
intragastric administration of ethanol in mice potentiates
proinflammatory responses in brain to a lipopolysaccharide-TLR4
innate immune challenge which included CCL2, COX-2, gp91phox

NADPH oxidase subunit, TNFα, and IL-1β as well as greater
morphological changes in microglia (Qin et al., 2008). Similarly, a
polyI:C-TLR3 challenge after 10 days of ethanol administration also
results in an exaggerated increase in the microglial marker ionized
calcium binding adaptor molecule 1 (Iba1) in the dentate gyrus of the
hippocampus (Qin and Crews, 2012). These neuroinflammatory
inductions after ethanol were also associated with reductions in
the newborn neuronal marker DCX and greater induction of
necrotic and apoptotic cell death in the hippocampus, further
highlighting that induction of neuroinflammation, sensitivity to
activation of cell death cascades, and loss of neurogenesis are
tightly coupled. In fact, in studies of rat hippocampal brain slice
cultures, blocking IL-1β with either an antagonist or neutralizing
antibody blocked adult ethanol inhibition of hippocampal
neurogenesis (Zou and Crews, 2012). Neuroimmune signaling
involves feed-forward processes that increase expression of
proinflammatory agonists and receptors, particularly TLR
receptors. Inhibition of proinflammatory signaling at multiple
components of the amplification process are effective. These
findings highlight that neuroinflammation is a particularly crucial
mediator of neurogenic deficits in adulthood.

Reversibility and Treatment Challenges in
Models of Adult Alcohol Use Disorder
Therapeutics under investigation for AUD often exhibit anti-
inflammatory components. Given the critical role of the
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cholinergic system in regulating anti-inflammatory feedback, it is
unsurprising that many of these restorative interventions center
around the cholinergic systems. Rodent and human studies suggest
successful therapeutic targets at both cholinergic muscarinic M4
receptors (Walker et al., 2020) and nicotinic α7 and α7β3
receptors through varenicline (Witkiewitz et al., 2019), and since
the late 1980s, rat models of AUD have even been treated with
cholinergic-rich brain transplants (Arendt et al., 1988a). While the
majority of therapies for AUD focus on reducing relapse behaviors
and overall ethanol intake, the ability to reverse molecular cascades
involved in cognitive deficits after long-term ethanol use is another
important consideration. The mechanisms underlying the efficacy of
cholinergic-based therapeutics continue to be investigated for use in
alcohol-related disorders, but an emerging theme is their regulation of
ethanol-induced neuroinflammation. Hippocampal
neuroinflammation is a critical long-term consequence of adult
ethanol intake, partially through its mediation of caspase-activated
apoptotic cascades and reductive consequences on hippocampal
neurogenesis (Liu et al., 2021). In fact, targeting cholinergic
systems in adulthood after ethanol use may be effective not
through direct increases in activation of cholinergic circuits, but
rather indirectly through their mediating factors on both
neuroinflammation and neurogenesis. To emphasize this point,
targeting ethanol’s induction of IL-1β is sufficient for restoration of
hippocampal neurogenesis in adulthood in rodents (Zou and Crews,
2012). This suggests that ethanol induction of neuroinflammatory
markers and hypersensitivity of inflammatory systems in adulthood is
a central mediator to the loss of hippocampal neurogenesis.

These mechanisms linking neuroinflammation and neurogenesis
are particularly important when examining sex differences as human
females are more likely than men to experience organ damage
following long-term alcohol use, including greater brain damage
in general and more specifically loss of hippocampal volume (Agartz
et al., 1999; Hommer et al., 2001; Mann et al., 2005; Sharrett-Field
et al., 2013), and are more likely to need active interventions beyond
abstinence than males. For example, preclinical models indicate that
abstinence is insufficient for granule cell layer recovery in females in
the absence of an intervention such as voluntary exercise (Maynard
and Leasure, 2013). Voluntary exercise after adult ethanol exposure
restores the proinflammatory-trophic balance in the hippocampal
environmental milieu – a balance which exhibits greater ethanol-
induced disruptions in females than males (Maynard et al., 2018).
These alarming emerging findings suggest that examining the
mechanisms for reversing ethanol-related brain damage in females
is becoming an increasingly critical area of investigation as females
close the gender gap in AUDs.

CONCLUSIONS: DEVELOPMENT OF
INTERACTING PHYSIOLOGICAL SYSTEMS
MEDIATE THE PERSISTENT
NEUROPATHOLOGY INDUCED BY
ETHANOL ACROSS THE LIFESPAN

The molecular mechanisms of ethanol-related neuronal damage
and related intervention strategies circulate around the cholinergic

system, neuroinflammation, and the mechanistic mediators of
these systems on hippocampal neurogenesis regardless of
developmental window, suggestive of certain central
commonalities within the effects of ethanol on these systems.
However, across the neurodevelopmental landscape, while the
mechanisms may overarchingly be consistent, various systems
display differing sensitivities in the magnitude and reversibility
of ethanol-related disruptions. For example, in models of FASD,
ethanol produces seemingly irreversible deficits in the cholinergic
system, and one of the key factors in treatment for FASD focuses
on preventing rather than reversing this neuronal damage. If
unmitigated, the irrecoverable loss of cholinergic neurons is a
hindrance to the functional recovery of ethanol-related damage,
and later life consequences of this disruption include greater
neuroinflammatory responses and decreases in neurogenesis
when neural systems are challenged. As females tend to be
diagnosed with FASD later than males, this suggests that
intervention strategies may be particularly difficult for this
population as females have a greater likelihood of missing early
intervention therapeutic windows.

In contrast, adolescence is marked by epigenetic-mediated
suppression of basal forebrain cholinergic phenotypes, which is
exciting from a therapeutic standpoint as reversal of epigenetic
machinery in cholinergic neurons similarly restores their
phenotypic expression, which consequently also restores the
hippocampal neuroinflammatory-trophic balance as well as
ethanol-mediated deficits in hippocampal neurogenesis. This
balance between persistence and reversibility after adolescent
ethanol exposure highlights a shift in the mechanisms driving
ethanol-induced loss of hippocampal neurogenesis and
neurocognitive impairments from the cholinergic system as the
centralmediator to neuroimmune dysregulation playing a greater role.

This shift becomes more apparent in adulthood, where
hippocampal neuroimmune induction in both preclinical
models and in human postmortem tissue from individuals
diagnosed with AUD persists long after ethanol exposure and
seem to drive long-term cellular consequences, including
hippocampal damage and deficits in neurogenesis. While
abstinence reverses some of these deficits in males, females
exhibit greater sensitivity to ethanol-related brain damage,
with emerging studies finding that females require more
aggressive intervention strategies than males.

The shifts in vulnerability of cholinergic versus
neuroimmune systems over development suggests that
efficacy of interventions aimed at restoring ethanol-related
damage to hippocampal neurogenesis and cognitive function
must take a developmental approach. However, a limitation of
preclinical models of FASD, adolescent binge drinking, and
AUD is that often alcohol exposure in humans is not isolated to
a single developmental period. In fact, prior exposure to ethanol
either in utero or in adolescence increases drinking behaviors at
later developmental windows (Moore and Riley, 2015; Crews
et al., 2019). Thus, an individual with AUD is more likely to have
engaged in binge drinking during adolescence. Similarly, an
individual who drinks in adolescence is likely to continue
drinking into adulthood, and an individual with FASD is
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significantly more likely to misuse alcohol as adolescents and
develop AUD as an adult (Baer et al., 2003; Alati et al., 2008).
This double- or even triple hit of ethanol-mediated neuronal
disruption over time adds layers of complication to the impact
of ethanol on neural systems in clinical populations, and
remains an important future direction in preclinical research.
For example, the persistent decrease in cholinergic systems after
perinatal ethanol exposure may create a vulnerability for even
more dramatic neuroimmune induction and loss of
neurogenesis following subsequent adolescent binge drinking.
Sex differences in vulnerability to ethanol’s disruption of
developing neural and immune systems may similarly
compound over the lifespan, shifting the severity,
perseverance, and/or reversibility of ethanol’s molecular and
behavioral consequences, suggesting that the focus of
intervention strategies may need to shift over time across
sexes but also even within individuals depending on their age
and history of exposure.
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