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Hematopoietic stem cell transplantation from a haploidentical donor is increasingly

used and has become a standard donor option for patients lacking an appropriately

matched sibling or unrelated donor. Historically, prohibitive immunological barriers

resulting from the high degree of HLA-mismatch included graft-vs.-host disease (GVHD)

and graft failure. These were overcome with increasingly sophisticated strategies to

manipulate the sensitive balance between donor and recipient immune cells. Three

different approaches are currently in clinical use: (a) ex vivo T-cell depletion resulting

in grafts with defined immune cell content (b) extensive immunosuppression with a

T-cell replete graft consisting of G-CSF primed bone marrow and PBSC (GIAC) (c) T-cell

replete grafts with post-transplant cyclophosphamide (PTCy). Intriguing studies have

recently elucidated the immunologic mechanisms by which PTCy prevents GVHD. Each

approach uniquely affects post-transplant immune reconstitution which is critical for the

control of post-transplant infections and relapse. NK-cells play a key role in haplo-HCT

since they do not mediate GVHD but can successfully mediate a graft-vs.-leukemia

effect. This effect is in part regulated by KIR receptors that inhibit NK cell cytotoxic

function when binding to the appropriate HLA-class I ligands. In the context of

an HLA-class I mismatch in haplo-HCT, lack of inhibition can contribute to NK-cell

alloreactivity leading to enhanced anti-leukemic effect. Emerging work reveals immune

evasion phenomena such as copy-neutral loss of heterozygosity of the incompatible HLA

alleles as one of the major mechanisms of relapse. Relapse and infectious complications

remain the leading causes impacting overall survival and are central to scientific advances

seeking to improve haplo-HCT. Given that haploidentical donors can typically be readily

approached to collect additional stem- or immune cells for the recipient, haplo-HCT

represents a unique platform for cell- and immune-based therapies aimed at further

reducing relapse and infections. The rapid advancements in our understanding of the

immunobiology of haplo-HCT are therefore poised to lead to iterative innovations resulting

in further improvement of outcomes with this compelling transplant modality.
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INTRODUCTION

Allogeneic hematopoietic cell transplantation (HCT) remains
a curative approach for many patients with malignant and
non-malignant hematologic indications (1). However, timely
availability of a suitable HLA-matched sibling donor (MSD)
or adequately HLA-matched unrelated donor (MUD) remains
a significant challenge in providing access to HCT. The
likelihood of finding an optimal donor varies significantly
among racial and ethnic groups with the chances of finding an
appropriate donor ranging from 75% for whites of European
descent to 16% for blacks of South or Central American
descent (2). Although most candidates for HCT will have a
donor or cord blood unit considered suitable (HLA-matched
or minimally mismatched), even single allele mismatches
negatively impact patient outcomes after HCT (3). Additionally,
proceeding with an unrelated donor is a time- and cost-
consuming process that can result in delay or suboptimal timing
of HCT.

In contrast, haploidentical donors are available for >95%

of patients in need of HCT (4). Biological children, parents,
siblings, and frequently more distant family members who
share one haplotype potentially qualify as donors (Figure 1).
They can be readily identified and are typically available

FIGURE 1 | HLA-matching in Haplo-HCT. (A) Distribution of HLA alleles on chromosome 6. All HLA alleles exist on the short arm of the chromosome, specifically

6p21.3. The classical HLA classification system is used clinically for matching donors and recipients in the transplant setting. HLA class I alleles -A, -B, and -C are

expressed on all nucleated cells and display antigen to CD8+ T-cells, while HLA Class II alleles -DR, -DQ, -DP are expressed on antigen-presenting cells and initiate a

response by CD4+ T-cells. Not shown are the non-classical HLA Class I alleles -E, -F, -G, -H, -J that are also present on the same chromosome arm. (B) A

representative inheritance pattern of HLA alleles is demonstrated. For a patient with HLA allele distribution b and d as shown in the middle, each sibling has a 25%

chance of being a full match based on inheritance of the same maternal (b) and paternal (d) alleles as the patient. Each sibling has a 50% chance of being a

haploidentical match by virtue of having inherited one identical allele (b) from the parents. The likelihood of having inherited neither of the parental alleles that were

inherited by the patient is 25% (complete HLA-mismatch).

and motivated to donate bone marrow (BM) or peripheral
blood stem cells (PBSC) to their family member in a
timely fashion. This is particularly beneficial when unexpected
events delay or expedite the need for HCT. Moreover,
haploidentical donors can readily be tested in situations where
there is concern for an underlying familiar predisposition
syndrome and are typically available for a repeat stem
cell collection, donor lymphocyte infusion or other cell
therapeutic approaches which may be indicated if post-
transplant complications such as graft failure, relapse, or
infectious complications arise. Finally, if the selected family
member had a poor stem cell mobilization for a PBSC graft
or the optimal graft composition was not achieved then a
different family member can be approached to serve as a
haploidentical donor.

Historically, haploidentical HCT (haplo-HCT) was associated
with high rates of graft vs. host disease (GVHD) and graft
failure (5–7). With the introduction of efficient T-cell depletion
(TCD) of the graft (8), haplo-HCT became feasible from a
GVHD perspective. However, TCD led to an imbalance between
host and donor T cells resulting in high rates of graft failure.
This imbalance was overcome with the use of T-cell depleted
“megadose” stem cell grafts (9, 10). Since then, nuanced ex
vivo approaches to optimize the immunological composition
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of haploidentical grafts have been developed as outlined in
this review.

Amajormilestone in promoting the wide-spread use and cost-
efficient accessibility of haplo-HCT, including in resource-poor
countries, was reached with the use of high-dose post-transplant
cyclophosphamide (PTCy) to achieve in vivo attenuation of T cell
alloreactivity (11). A different strategy using Granulocyte-colony
stimulating factor (G-CSF) mobilized bone marrow grafts with
extensive immunosuppression has been similarly feasible (12).
In addition, a special emphasis is being placed on using natural
killer (NK) cells to harness both innate and adaptive immunity
in haplo-HCT. NK cells are uniquely regulated by activating and
inhibitory receptors and can mediate a critical graft-vs.-leukemia
(GVL) effect, also referred to as NK-cell alloreactivity, without
mediating GVHD (13–15).

These approaches have contributed to a surge in the use
of haplo-HCT in recent years (16). Furthermore, dramatic
advances in the field of adoptive immune cell transfer have been
applied to the haplo-HCT platform whereby donors could be
readily approached for additional cell collections to enhance
immunity against infections and relapse (17, 18). As haplo-
HCT evolves to refine and establish its role in the field of
transplantation, it is critical to examine the immunobiological
properties unique to haplo-HCT and the effect of ex vivo or
in vivo graft manipulation on the immunological content and
trajectory of immune reconstitution.

CHALLENGES OF THE HLA-BARRIER IN
HAPLO-HCT

Early trials of T-cell-replete haplo-HCT were associated with
poor outcomes due to a high incidence of GVHD and graft
rejection, resulting in ∼10% long-term survival (5–7, 19, 20).
In the setting of grafting across a haploidentical HLA barrier,
∼2% of donor T cells mediate alloreactive reactions resulting in
GVHDwhile residual host T cells mount host-vs.-graft responses
leading to graft rejection (21–23). The ability to overcome the
problem of GVHD despite the large HLA-disparity in haplo-
HCT was first demonstrated by Reisner and colleagues with
the successful transplantation of children with severe combined
immunodeficiency (SCID) using T-cell depleted haploidentical
grafts which differed at three major HLA loci (8). However,
when this approach was extended to other indications in which
a patient’s underlying immune system is generally functional, the
minimal T-cell content in the graft resulted in unopposed host-
vs.-graft rejections and a high rate of graft failure. The latter
was mediated by recipient anti-donor T lymphocyte precursors
that survived the conditioning regimen (22, 24, 25), as well as
anti-donor HLA antibodies (26) (Figure 2).

A second breakthrough that paved the way toward the broad
application of haplo-HCT was the use of “megadose” grafts,
targeting the infusion of a stem cell product containing on
the order of ≥10 × 106/kg CD34+ hematopoietic stem cells

FIGURE 2 | Immunological balance determines outcomes after haplo-HCT. The graft contains CD34+ and CD34− hematopoietic cells. CD34+ progenitor and stem

cells are required for engraftment and reconstitution of the bone marrow after transplantation into the host. T cells in the graft facilitate neutrophil engraftment, immune

reconstitution, post-transplant infectious immunity and exert GVL effect (Right). However, without an ex vivo (T cell depletion or CD34 positive selection) or in vivo

(ATG or Campath) T cell depletion strategy, they mediate prohibitively severe GVHD (Right). In contrast, extensive T cell depletion from the graft results in an

immunologic imbalance between residual host and donor T cells favoring graft rejection (Left). Extensive T cell depletion of the graft also results in slow immune

constitution, infections and poor GVL control. To achieve an optimal immunologic balance, novel graft manipulation approaches selectively deplete T cells involved in

GVHD (CD45RA+ T cell and αβ- T cell depletion strategies), while maintaining beneficial immune cells such as NK cells and γδT cells in the graft.
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while retaining the threshold dose of ≤4 × 104/kg T cells
established in the SCID patients (9, 10, 27, 28). The underlying
immunologic effect of megadose grafting was attributed to
tolerance induction of host anti-donor cytotoxic T cell precursors
by donor CD34+ stem cells or by CD34+ derived regulatory
immune cells endowed with a “veto”-effect in a TNFα mediated
mechanism (29, 30). Intensified myeloablative conditioning
(MAC) with 8Gy total body irradiation (TBI), thiotepa, rabbit
anti-thymocyte globulin (ATG) and fludarabine (replacing
cyclophosphamide after 1995) (31) to eliminate host T cells,
followed by G-CSF mobilized megadose T-cell depleted PBSC
grafts (initially using soybean agglutination and erythrocyte
resetting and later immunomagnetic selection of CD34+ HSCs)
without any additional post-transplant immunosuppression was
refined over the years (28, 32). This approach ultimately
demonstrated primary engraftment in 95% of patients with acute
leukemia (n= 104), with 6 of 7 patients who initially experienced
graft failure engrafting successfully after second transplantation.
Although acute and chronic GVHD were largely prevented, a
significant non-relapse mortality (NRM) of 36.5% was observed
largely owing to post-transplant infections (27 of the 38 patients
died of infectious complications) and substantial relapse risk.
The 2-year event-free survival (EFS) probability among patients
receiving transplantation in any complete remission (CR) was
47%, while the EFS for those transplanted in relapse was 4% (27).

Despite the tremendous advances toward clinical feasibility
of haplo-HCT, these early studies embodied the challenge
of achieving a sensitive immunologic balance during
transplantation across haploidentical HLA-barriers. This
challenge is reflective of the need for extensive T-cell depletion
and immunosuppression to control GVHD on the one hand,
and facilitation of engraftment, immune reconstitution,
protection from infections, and prevention of relapse on the
other (Figure 2). This conundrum has fueled the iterative
improvement of modulating immunity in the context of
haplo-HCT as outlined below.

CURRENT HAPLO-HCT PLATFORMS

In vivo Haplo-HCT Strategies With
Unmanipulated Stem Cell Grafts
Post-transplantation Cyclophosphamide (PTCy)
Post-transplantation high-dose cyclophosphamide (PTCy), when
administered in a specific time-frame after graft infusion,
efficiently attenuates alloreactive T cells from both donor
and host and prevents GVHD and graft rejection. This
immunological effect of PTCy was first observed in the
1960s in animal models of allogeneic skin grafts whereby
cyclophosphamide administration within a window of up
to 4 days after grafting delayed rejection (33). Subsequent
preclinical studies defined the role of PTCy in the setting
of allogeneic HCT and showed the benefits of its use with
respect to engraftment and GVHD (34–36). Importantly the
concurrent immunosuppression of T cells with cyclosporine
or steroids interfered with PTCy-tolerogenic effects (37, 38),

indicating that high proliferative rates are critical for the PTCy
immunomodulatory mechanism (39).

Initial mechanistic studies based on murine skin allografting
models attributed the PTCy-effect to the selective depletion of
alloreactive T cells. Based on these hypotheses, the presumed
depletion was dependent on the heightened cytotoxic sensitivity
of newly primed and highly proliferative alloreactive T cells
(particularly CD4+ T cells) at the peak of anti-host and anti-
donor T cell expansion, aided by a favorable balance between
effector T cells and regulator T cells (Tregs) as well as an
additional intrathymic clonal deletion of alloreactive T cell
precursors (40–44). Suppressive immune cells were only felt
to have an adjunct role in maintaining tolerance (45, 46).
However, recent work by Kanakry and colleagues formally tested
the putative immunologic mechanisms (selective destruction of
alloreactive T cells, intrathymic clonal deletion of alloreactive
T cells and induction of suppressor T cells) in dedicated
murine PTCy haplo-HCT models (47). These studies suggest
that PTCy reduces CD4+ T cell proliferation but does not
eliminate alloreactive T cells and instead functionally impairs
the T-cell response to alloantigens and induces the rapid and
preferential recovery and expansion of regulatory T cells (Treg).
Treg resistance to PTCy is based on their differential expression
of aldehyde dehydrogenase (ALDH) (48). Evidence for the
importance of the role of Tregs after PTCy is exemplified by
the development of severe and fatal GVHD in the context
of Foxp3+ Treg depletion, as well as additional data showing
that Tregs are required for PTCy-mediated protection against
GVHD (49). Studies in thymectomized mice also suggested the
dispensability of the thymus in this process (47). Advances in
this active field of preclinical and clinical study are poised to
further elucidate and facilitate adaption of the PTCy platform
for different clinical scenarios. Increasing experience with this
platform and the potential for PTCy-mediated bi-directional
tolerance induction also lends itself to further exploration of
this approach in the setting of combined solid organ and bone
marrow transplantation (44).

The first clinical study of unmanipulated haplo-HCT with
PTCy was conducted in the setting of non-myeloablative (NMA)
conditioning with administration of PTCy at 50 mg/kg on day
+3 and an added immunosuppressive regimen of mycophenolate
mofetil (MMF) and tacrolimus starting on day +4 in 13 patients
(50) (Figures 3A, 4C). Subsequent prospective clinical trials,
administering PTCy either on day +3 or on days +3 and
+4, demonstrated rates of graft failure and GVHD comparable
to those reported with reduced intensity conditioning (RIC)
HLA-matched sibling and MUD HCTs with a trend toward
a lower risk of extensive chronic GVHD among recipients
of two doses of PTCy (50). These studies paved the way for
the increased investigation and clinical use of haplo-HCT with
PTCy (Figure 3B).

GIAC Approach (G-CSF-Mobilization, Intensified

Post-transplant Immunosuppression, ATG and

Combination of PBSC and BM Allografts)
The GIAC approach using T-cell replete haploidentical grafts was
pioneered at Peking University (12, 51). This approach uses ATG
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FIGURE 3 | Frequently used haplo-HCT regimens. (A) Non-myeloablative (NMA) conditioning with administration of post-transplant cyclophosphamide (PTCy) as part

of the Hopkins protocol for haplo-related donor HCT uses cyclophosphamide 50mg/kg/day on days +3 and +4 and additional GVHD prophylaxis with oral MMF and

tacrolimus (Tacro) starting on day +5. (B) Myeloablative conditioning (MAC) protocol with administration of post-transplant cyclophosphamide 50 mg/kg/day given on

days +3 and +4 and additional GVHD prophylaxis with oral MMF and tacrolimus starting on day +5. (C) GIAC haplo-HCT protocol using a combination of G-CSF

primed bone marrow (BM) and peripheral blood stem cells (PBSC) administered after a conditioning regimen including ATG on days −5 to −2. GVHD prophylaxis

includes short-course Methotrexate in addition to MMF and cyclosporine (CSA).

as part of the conditioning regimen, which affects recipient T
cells and facilitates engraftment. Owing to its long half-life, it also
exerts effects on donor T cells and therefore impacts GVHD and
post-transplant immunity. The graft consists of a combination of
G-CSF-primed bone marrow and PBSC, thereby combining the
advantages of both elements. PBSC grafts contain 2–3-fold higher
CD34+ cells and a log-fold higher T cell dose than are typically
contained in a steady-state bone marrow graft (52), and this has
been shown to accelerate engraftment and decrease the relapse
rate (Figures 3C, 4B).

The higher T cell dose in PBSC grafts adversely affects chronic
GVHD but not acute GVHD rates in unrelated donor HCT
(53). Multiple mechanisms may contribute to why acute GVHD
rates are not drastically higher despite the high T cell dose.
These include preferential dendritic cell mobilization and T
cell polarization (54, 55), attenuating effects on costimulatory
molecules such as CD86 on APCs and CD28 on CD4+ T
cells (56, 57), as well as IL-10 mediated T-cell suppression
by monocytes (58). Several studies underscored the benefit of

utilizing G-CSFmobilized bonemarrow, leading to less acute and
chronic GVHD while maintaining engraftment rates comparable
to PBSC (59) and have attributed these effects to differences
in cytokine milieu, T-cell polarization and T-cell hypo-
responsiveness (60–62).

In the initial study of 171 patients using GIAC, most of
whom had ALL, AML, or CML, all patients engrafted with
sustained full donor chimerism. The rates of leukemia-free
survival and incidences of grade II-IV acute GVHD and extensive
chronic GVHD were comparable to MUD HCT (12, 53). A
prospective multicenter study of AML patients has demonstrated
that transplant outcomes with the GIAC strategy have also
been comparable to MSD HCT (63). Although a modified
approach using G-CSF primed haploidentical bone marrow and
extensive GVHD prophylaxis has also been applied in Europe
(64), the GIAC strategy has been used most extensively in China
and therefore patients transplanted with this strategy represent
a large cohort of haploidentical transplants HCT treated
to date (65).
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FIGURE 4 | Comparison of the three major haplo-HCT platforms. (A) Four different ex vivo T-cell depletion protocols are shown, with the resulting cell composition in

the graft. CD34-positive selection preferentially isolates the hematopoietic stem and progenitor fraction required for engraftment with minimal immune cell content (top

panel). Depletion of CD3+ T-cells results in a graft composed predominantly of CD34+ and NK cells (2nd panel). Depletion of αβ-T cells depletes T cells involved in

mediating GVHD but retains beneficial immune cells such as NK cells and γδ- T cells in the graft. CD45RA-Depletion removes naïve T cells including cells responsible

for alloreactivity and GVHD, while retaining memory T cells including cells vital for immunity against infections (3rd panel). Additional immunosuppression (IS) and/or

infusion of T-cell subsets may be employed post-transplant to optimize engraftment (3rd panel). (B) Representation of the GIAC protocol indicating a G-CSF primed

bone marrow (BM) and peripheral blood stem cell (PBSC) graft, with ATG targeting T-cells derived from both the donor and recipient. GVHD prophylaxis with

methotrexate, a calcineurin inhibitor (CNI), and MMF targets residual T cells (3rd panel). (C) Post-transplant cyclophosphamide (PTCy) functionally impairs actively

proliferating recipient and graft derived T cells while favoring Treg recovery (color of cells corresponds to Figure 2; Tregs are depicted in bright yellow).

Haploidentical Hct With ex vivo T Cell
Depletion or Anergy Induction Strategies
CD34+ Cell Selection
The establishment of procedures for the ex vivo removal of
T cells from the graft in the late 1970s by Reisner, O’Reilly
and colleagues, represented a tremendous breakthrough toward
the feasibility of utilizing haploidentical donors. In the initial
approach, T cells were eliminated from the bone marrow by
first rosetting with sheep red blood cells followed by differential
soybean agglutination of residual T lymphocytes in the non-
rosetting population. This yielded an un-agglutinated fraction
containing a high proportion of colony-forming cells without
any detectable T cell alloreactivity, and abrogated lethal GVHD
in murine models (66, 67). This strategy was applied in the first
clinically successful haploidentical HCT of an infant with AML,
leading to sustained hematopoietic engraftment without GVHD
until relapse occurred 11 weeks after HCT (68). Three infants
with SCID were also treated with this approach of whom 2 had
sustained engraftment and none developed GVHD (8).

CD34+ selection, now in wide-spread use in TCD transplants,
was first introduced in the 1990s. This process utilizes a
CD34+ directed antibody coupled to immunomagnetic beads
to positively select CD34+ cells and isolate them over a

magnetic column. This effectively eliminates all other immune
cells, including T-, B-, NK-cells, dendritic cells and monocytes
from the graft (69, 70). This process was further refined with
the use of micromagnetic beads, which had the advantages
of high purity selection via attachment to single cells and
safe infusion into patients (71). Aversa and colleagues of the
Perugia group pioneered a novel haploidentical HCT platform
incorporating an intensified conditioning regimen to eliminate
host T cells and administering megadose T cell depleted grafts
without additional post-grafting immunosuppression (28, 72).
Handgretinger et al. tested this approach with G-CSF mobilized
megadose PBSC grafts in 39 children lacking suitable donors
and observed low rates of GVHD, but significant relapse
and treatment-related mortality (TRM) (73). Investigators from
Perugia further evaluated this system in adults with high-
risk leukemia using megadose haplo-HCT, demonstrating 91%
primary engraftment and low rates of GVHD without post-
transplant GVHD prophylaxis (27) (Figure 4A, top panel).

CD3+ Cell Depletion
To improve post-transplant immune reconstitution, control
of infections and prevention of relapse, further iterations of
immunomagnetic graft engineering were developed (74). This
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included the elimination of CD3+ T cells and CD19+ B cells
using a negative immunomagnetic selection method to deplete
these subsets from the graft. Stem cells, NK cells, myeloid
precursors, monocytes, and other progenitor cells important for
engraftment are preserved (75). This strategy maintains innate
immunity in the graft while removing CD3+ T cells capable of
inducing GVHD. Depletion of CD19+ B cells was introduced
to reduce the risk of post-transplant lymphoproliferative disease
(PTLD) (73) and GVHD (76). While the depletion of donor
B-cells reduces the risk of PTLD, it does not address PTLD
arising from residual host B cells. Instead, this can be addressed
with the inclusion of rituximab or Campath (but not the T cell
directed agents ATG or OKT3) into the conditioning regimen
(77, 78). Several centers established CD3+/CD19+ depletion
as a feasible approach for patients lacking a suitable donor,
with excellent primary engraftment and reduced rates of GVHD
correlating with the remaining CD3+ cell/kg content of the graft.
However, the low OS rate of 31% remains primarily attributable
to infections and relapse, suggesting that further improvement of
TCD haplo-HCT is needed (79, 80) (Figure 4A, second panel).

αβT-Cell/B-Cell Depletion
With emerging recognition of γδT cells (81), a yet more
sophisticated approach was developed for GVHD prevention.
In contrast to αβ-T-cell receptor (TCR) expressing T cells, γδ-
TCR expressing T-cells are not implicated in mediating GVHD
(82) but do exhibit important functions characteristic of innate
immune recognition and anti-tumor effects (83, 84). These
cells represent 1–20% of all CD3+ circulating T lymphocytes
in human peripheral blood and the majority of resident T
cells in skin and mucosa. Their TCR heterodimer consists of
a γ and δ chain encoded by a limited repertoire of V, D,
and J gene segments. The two major Vδ1 and Vδ2 subsets
are distinguished based on their TCRδ composition. Whereas,
Vδ1+ cells are typically associated with a Vγ1/2/3/5/8 chain, the
majority of Vδ2+ T cells express an invariant TCR harboring
Vγ9. The Vγ9δ2 TCR is expressed by the majority of peripheral
γδ T cells, whereas γδ T cells including other Vδ elements
are predominantly enriched at epithelial surfaces and the skin
(81, 84). Analogous to NK cell biology, γδT cells are fine-tuned by
activating and inhibitory receptors and recognize conserved non-
peptide antigens that signal potential danger or cellular stress.
The activating receptor NKG2D is broadly expressed in γδT cells
and functions synergistically with the γδ-TCR as a costimulatory
receptor (85, 86).

γδT cells have heterogenous functions, ranging from
protection against intra- and extracellular pathogens or
malignant cells to modulation of the immune response and tissue
homeostasis. They contribute to pathogen clearance through
the production of granulysin, defensins, and cytotoxic effector
molecules such as perforin and granzymes (84). γδT cells secrete
proinflammatory cytokines involved in protective immunity
against viruses, intracellular pathogens (TNF-α and IFN-γ),
extracellular bacteria, fungi (IL-17), and extracellular parasites
(IL4, IL5, IL13), and have been shown to exhibit lytic activities
against leukemia, lymphoma and carcinoma cells (87–89).
Indeed, increased γδT-cell numbers after allogeneic HCT were

associated with a lower incidence of infections and improved
disease-free survival (DFS) in several studies (90–92).

In a pediatric trial using αβ-T cell/B-cell depleted haplo-HCT,
γδ-T cells were the predominant T-cell population in the initial
weeks after transplantation, specifically expanded in response to
CMV reactivation, and displayed cytotoxicity and degranulation
when challenged with primary leukemia blasts in vitro (93).
These effects were increased after exposure to zoledronic acid,
suggesting that the anti-leukemic capacity of γδ-T cells could
further be enhanced (94). Outcomes with the αβ-T cell/B-cell
depleted haplo-HCT approach in which no additional GVHD
prophylaxis was employed appear promising both in children
with malignant (95) and non-malignant conditions (96), and
when compared with MUD and MMUDHCTs in a retrospective
analysis of children transplanted for acute leukemias (97).
However, the high incidence of viral infections reported by some
groups highlights the potential to further improve ex vivo T-cell
depletion strategies (98) (Figure 4A, third panel).

CD45RA-Depletion
As our understanding of T cell differentiation status and
phenotype has become increasingly sophisticated, so have
approaches to tailor graft composition further (99, 100). αβ-T
cells exist as distinct subsets that can be differentiated by cell
surface phenotype: naïve (TN), stem cell memory (TSCM), effector
(TE), effector memory (TEM), and central memory (TCM).
The CD45RA+CD62L+ TN subset is antigen inexperienced,
has a more diverse TCR repertoire than memory T cells
and clonally expands following T cell priming to execute
short-lived effector functions. They ultimately differentiate into
memory subsets, which is associated with downregulation of
CD45RA and upregulation of CD45RO. Studies in mouse models
demonstrated that TN mediated severe GVHD, whereas TCM

induced milder GVHD and TEM were devoid of GVH activity
(101–105). Importantly memory T cells transferred infectious
immunity and GVL activity in these models (106).

Based on the premise that elimination of TN from the graft
could significantly reduce GVHD while maintaining pathogen-
and tumor-specific immunity, Bleakley and colleagues developed
a novel graft-engineering strategy using immunomagnetic beads
coupled to a monoclonal Ab targeting CD45RA. The latter
antigen is expressed on all TN, but absent on Treg, TCM and
most TM (107). This strategy was initially studied in patients
with high risk hematologic malignancies undergoing MSD HCT,
utilizing a 2-step selection procedure with a CD34+ selection of
stem cells (a minor subset of which expresses CD45RA) followed
by depletion of CD45RA+ cells from the CD34− fraction. This
study demonstrated engraftment in all patients (n= 35), prompt
immune recovery without excessive rates of infection or relapse
and low chronic GVHD, but interestingly no reduction in acute
GVHD although the latter was readily steroid-responsive (108).

Clinical results with CD45RA-depletion in the context
of haplo-HCT are so far limited. A study of 17 pediatric
patients with high risk hematologic malignancies using a RIC
conditioning with total lymphoid irradiation (TLI) but without
TBI or serotherapy, administered a CD34+ selected PBSC
product on day 0, followed by a CD45RA-depleted PBSC product

Frontiers in Immunology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 191

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Baumeister et al. Key Aspects of the Immunobiology of Haploidentical HCT

which had been collected the following day, and ultimately
a donor NK cell product administered on day +6 with the
use of Sirolimus or MMF post-transplant. Rapid neutrophil
engraftment and memory T-cell reconstitution was observed,
without any infectious deaths and with 76.5% of patients
alive at a median of 225 days after HCT. Grade III-IV acute
GVHD and chronic GVHD were seen in 3 and 6 of 17
patients, respectively (109). In a second small study, 5 children
with combined immunodeficiency and chronic viral infections
received a combination of a CD34+ selected product and the
CD45RA-depleted fraction of the CD34-negative product with
post-HCT prophylaxis consisting of Cyclosporine and MMF.
One patient died with graft failure. In the 4 engrafted patients,
viral infections cleared within 2 months after HCT and an early
T cell response against viral pathogens was documented in 2
patients (110). Further studies will be needed to further define the
role of this approach in haplo-HCT (Figure 4A, bottom panel).

Ex vivo Induction of T Cell Anergy With CTLA-4Ig
An early strategy to minimize T-cell alloreactivity by interfering
with the priming of alloreactive T cells in haplo-HCT was
explored in a pediatric trial. This involved collection of patients’
peripheral blood mononuclear cells (PBMC) prior to the start
of myeloablation and a 36-h in vitro incubation of the recipient
cells with non-mobilized donor bone marrow in a mixed
lymphocyte reaction (MLR) setting in the presence of CTLA-
4Ig, a fusion protein which inhibits priming of alloreactive T
cells by inhibiting costimulatory signaling between the B7 protein
family (CD80/CD86) on APCs and CD28 on T cells (111). This
reduced the frequency of T cells recognizing alloantigens of the
recipient while preserving responsiveness to alloantigens of other
persons. In this trial of 11 evaluable patients most of which had
persistent disease at the time of HCT, 5 were alive and in CR
at 4.5–29 months after transplant with 3 patients developing
steroid-responsive acute GVHD of the gut only. There were no
deaths attributable to GVHD (112). However, this approach has
not been explored further.

Photodynamic Purging of Adoptive T Cell Therapy

Following TCD Haplo-Hct
A different approach to augment the TCD graft with an adoptive
T cell therapy product devoid of alloreactive T cells is a process
termed photoallodepletion. Prior to G-CSF mobilization of the
PBSC graft, donors undergo non-mobilized leukapheresis to
obtain T cells. Donor T cells are then incubated with recipient
PBMC in an MLR in the presence of TH9402, a photosensitizer
similar to rhodamine. T cell activation in the MLR, which
occurs selectively in the alloreactive T cells but spares Tregs and
pathogen-specific T cells, is associated with P-glycoprotein pump
inhibition leading to mitochondrial accumulation of TH9402 in
alloreactive T cells (113, 114). Subsequent activation of TH9402
with visible light leads is then selectively toxic to and eliminates
alloreactive T cells via an oxidative damage mechanism (115).
Early results from a clinical trial in which patients received the
photodynamically allodepleted T-cell product subsequent to a
CD34+ selected graft appear promising (116).

ROLE OF INNATE IMMUNITY IN
HAPLO-HCT

NK-cells are an important component of the innate immune
system providing protection against infectious pathogens and
cancer. Recent studies have elucidated that human NK cell
diversity is much broader than the traditional distinction via
CD56bright and CD56dim subsets reflective of differentiation stage
and cytotoxic potential. The ability of NK cells to differentiate
into long-lived cells with memory capacity (117) and the
discovery of non-NK innate lymphoid cells has highlighted the
complexity and potential roles of innate immune cells after
HCT (118, 119). NK cells have potent anti-leukemia effector
capacity, respond to viral infections via release of toxic granules,
and facilitate engraftment without mediating GVHD. This is
particularly important in the setting of heavily T cell-depleted
grafts or T-cell directed post-transplant immunosuppression and
has inspired a rich field of investigation to augment NK cell
immunity in the context of HCT to develop leukemia-directed
NK-cell based cellular therapies.

NK-cell activity is governed by the balance of a system of
activating and inhibitory NK cell receptors (120). Activating
signals are provided by receptors such as NKG2D, CD94/NKG2C
and Natural Cytotoxicity Receptor (NCRs) including NKp30,
44, and 46 and by activating killer-cell Ig-like receptors
(KIR). NKG2D recognizes MHC-class I related stress-ligands
that can be upregulated by tissues in response to infection,
inflammation, DNA-damage, and malignant transformation
(121), while CD94/NKG2C binds to the non-classical HLA-
E molecules and senses overall HLA-Class I expression on
cells (Figure 5A). NK cells utilize a unique process to balance
tolerance to self under steady state conditions with the ability to
mediate an immune response to pathogens or malignant cells.
This is referred to as NK-cell education or licensing (122), is
in large part regulated by inhibitory KIR receptors and impacts
NK-cell alloreactivity in the setting of haplo-HCT and allogeneic
NK-cell therapies (123).

KIRs are either activating or inhibitory based on their
structure. The KIR nomenclature incorporates the number
of extracellular Ig-like domains (two in KIR2D vs. three in
KIR3D) and whether the KIR contains a long or short tail
(KIR2DL vs. KIR2DS). KIRs are further numbered in order
of their discovery within their structural group (KIR2DL1 vs.
KIR2DL2). KIRs with long tails are generally inhibitory (with
exception of KIR2DL4) and KIRs with short tails function
as activating receptors according to presence or absence of
immunoreceptor tyrosine-based inhibitory motifs (ITIMs) (124).
There is tremendous variability within the KIR repertoire owing
to a high degree of polymorphism among individual KIR genes as
well as their organization and recombination within haplotypes
(Figures 5B,C) (125). An individual’s genetic KIR repertoire is
determined by the inherited composition of centromeric and
telomeric A and B haplotypes (Figure 5B). Group A haplotypes
contain fewer genes and predominantly those encoding for
inhibitory KIRs. Additionally, the activating KIR2DS4 gene exist
as an inactive deletion variant, termed KIR1D in the majority
of Caucasians, leaving the framework gene KIR2DL4 as the
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FIGURE 5 | NK-cell receptor repertoire. (A) NK-cell activity is mediated by a balance of activating and inhibitory signaling. Key activating receptors and their

corresponding ligands are listed in the green table, while inhibitory receptors are displayed in the red table. (B) KIR genes are highly polymorphic and organized in

centromeric and telomeric motifs with structural variation that creates multiple gene content haplotypes. Group A haplotype motifs are characterized by fewer genes

and predominantly those encoding for inhibitory KIRs. In contrast, Group B haplotype motifs are enriched for activating KIRs. (C) Centromeric and telomeric motifs are

paired together to generate either a KIR A haplotype (composed of centromeric and telomeric A motifs) or a KIR B haplotype (containing at least one centromeric or

telomeric B motif). Representative KIR haplotypes by recombination are shown here. Prominent linkage disequilibrium has been noted within the centromeric and

telomeric motifs but not between them, suggesting that pairing occurs by recombination between the centromeric and telomeric regions.

sole receptor on this haplotype with any activating function
(126, 127). In contrast, Group B haplotypes are enriched for
activating KIRs. Two groups of KIR haplotype can be assigned
based on the combination of the centromeric and telomeric
motifs. Presence of a centromeric or telomeric B-haplotype
constitutes a KIR B haplotype whereas the combination of
a centromeric and a telomeric A-haplotype results in a KIR
A haplotype (Figure 5C). Although more than 50 different
haplotypes have been described, there are 11 common haplotypes
derived by reciprocal recombination, which collectively account
for 94% of Caucasian haplotypes examined by Jiang et al.
(128). Distribution of a KIR gene in the centromeric or
telomeric region of chromosome 19q13.4 is further thought
to impact KIR-mediated regulation of NK-cell activity (129).
Additionally, KIR-cell surface expression at the protein level may
vary substantially from the inherited KIR gene profile. This is
attributable to the fact that KIRs are stochastically expressed
on NK cells and each NK cell may therefore display a different

cell-surface profile of inhibitory or activating KIRs (130). For
the most accurate prediction of NK-cell alloreactivity between
haploidentical donor and recipient, KIR-genotyping alone is
insufficient and determination of the KIR phenotype (by flow
cytometry) should also be pursued.

The majority of inhibitory KIRs recognize classical (HLA- A,
B, and C) or non-classical HLA-class I molecules (HLA-G) as
their cognate ligands (Figure 5A) (131). KIR genes are located on
chromosome 19 whereas HLA-genes are located on chromosome
6. KIR and HLA genes therefore segregate independently, and
an individual may or may not express the cognate HLA-ligand
for any given KIR. This forms the basis for the concept of
“education” or “licensing” of NK-cells, which allows NK-cells
to maintain self-tolerance under physiologic conditions, while
retaining the ability to mount an immune response (132). When
NK cells encounter the matching HLA-class I ligand for their
inhibitory KIR (based on the requisite germline inheritance of the
appropriate HLA and KIR genes and their expression patterns on
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individual NK cells), they are considered “educated” or “licensed”
and refrain from an attack on healthy tissues under steady state.
However, when NK cells are accustomed to this inhibitory signal
and subsequently encounter a cell that does not express the
appropriate KIR-ligand (“missing ligand”), this situation renders
them functional to mount an effector response, if the target also
expresses stress-ligands that trigger activating NK-cell receptors
(133). A missing ligand may be encountered on malignant
cells due to HLA-class I downregulation, or HLA-mismatched
allogeneic transplantation such as haplo-HCT, when the recipient
does not express the corresponding HLA-ligand (Figure 6). NK-
cells are considered “unlicensed” when they do not encounter
the matching HLA-class I ligand for their given inhibitory KIR.
Due to the lack of exposure to their corresponding ligand,
unlicensed NK-cells are “un-educated” and hyporesponsive at
steady state rather than being triggered by self-tissues lacking
the ligand (134). Unlicensed NK cells require a higher threshold
for activation. However, in the absence of KIR inhibition, they
can mediate higher levels of effector function when they receive
strong stimulatory signals under inflammatory conditions (such

as CMV infection or in the posttransplant setting) or when
triggered for antibody-dependent cellular cytotoxicity (ADCC)
(135, 136). Given that NK cells may surface-express variable
combinations and densities of inhibitory KIRs, NK-cell education
occurs on a continuum along which individual NK cells display
graded levels of responsiveness based on their KIR profile and
engagement of cognate HLA-class I ligands (122, 137, 138).

Since the model of NK-cell alloreactivity in the context of
mismatched HCT was first proposed, a number of studies have
evaluated its clinical impact (139). For the interpretation of HCT
studies evaluating the role of NK-cell alloreactivity it is critical
to consider the definition of the KIR-mismatch model employed
in each study (131, 140) (Figure 6). The “KIR ligand-ligand
mismatch model” is based on the hypothesis that the presence
of the corresponding HLA-ligand prevents NK-cell alloreactivity,
whereas a missing ligand in the HCT recipient triggers NK cell
alloreactivity. However, while this model accounts for HLA-class
I mismatches, it does not consider KIR-genotype or phenotype.
In contrast, the “KIR receptor-ligand mismatch model” accounts
for the fact that a missing ligand is irrelevant if NK cells do

FIGURE 6 | NK cell alloreactivity in haplo-HCT is demonstrated via the different models of receptor-ligand mismatch. (A) The donor-derived NK cell is licensed when

its KIR2DL1 receptor had been engaged by expression of its cognate C2 ligand in the donor environment. Upon infusion of the licensed NK cell into the recipient, a

leukemia cell expressing the C2 ligand will not activate the NK cell due to a receptor-ligand match. (B) A receptor-ligand mismatch occurs when the donor-derived NK

cell is licensed, but the recipient does not express the C2 ligand (missing ligand). Provided that it is further driven by stimulation through activating receptors, this

results in activation of the licensed donor NK cell upon infusion into the recipient, leading to a graft-vs.-leukemia effect. (C) If the donor does not express the

appropriate class I ligand for its KIR receptor (HLA and KIR segregate independently), the donor NK cell is unlicensed. In this case, donor NK cells are accustomed to

a missing ligand. They may be activated when encountering strong activating signals (like activating cytokines) or be further inhibited when encountering the inhibitory

ligand in the recipient. (D) Licensing of the NK cell for the C1 ligand occurs in the donor. Upon transplant into the host, the missing C1 ligand coupled with binding of

the activating ligand with the activating receptor on the NK cell results in alloreactivity. Binding of the activating KIR receptor KIR2DS1 to the C2 ligand on the target

leukemia cell enhances NK cell alloreactivity.
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not express the corresponding KIR for a mismatched HLA-class
I ligand. Therefore, this model incorporates the HLA-ligand
repertoire in the recipient as well as the donor KIR genotype
and ideally phenotype. Other groups have employed the “KIR-
haplotype model” which takes into consideration the presence
or absence of a B-KIR haplotype in the donor, as a measure of
enrichment for activating vs. inhibitory KIRs. Use of this model
demonstrated a reduced risk of leukemia relapse when patients
were transplanted from donors with centromeric B-haplotypes
(141–143). Similarly, more recent approaches have focused on
the predicted overall degree of inhibitory and activating KIR-KIR
ligand interactions between the recipient and potential donors
with a highly variable KIR repertoire. This allows for selection
of an optimal donor, even when the transplant recipient’s HLA-
class I repertoire is such that all KIR ligands are expressed and a
missing-ligand scenario is unachievable.

Ruggeri et al. first established that a NK-cell alloreactivity
of the donor toward recipient (based on KIR receptor-ligand
mismatch in the GVL direction and presence of alloreactive
clones against recipient targets) lowered the AML relapse risk
in the context of ex vivo depleted haplo-HCT (72). These
results were subsequently consolidated in a larger cohort of 112
AML patients, where transplantation from a NK-cell alloreactive
donor was associated with a significantly lower relapse rate (3%
compared to 47%) when transplanted in complete remission and
better EFS when transplanted in relapse (34% compared to 6%)
or CR (67% compared to 18%) (144). Subsequent studies of
sibling donor, unrelated donor (URD), and umbilical cord blood
(UCB) donor sources have yielded variable results (14). Some
studies showed no benefit or even inferior survival resulting from
a mismatch in the KIR/KIR-ligand system. This may be partly
related to the variable definition of KIR-mismatch models and
transplant regimens used. In contrast, a large analysis in AML
patients undergoing 9/10 or 10/10 URD employed an algorithm
to predict the strength of inhibition between the ubiquitous
KIR3DL1 and its ligand HLA-B and found that combinations
with absent of weak inhibition were associated with significantly
lower rates of relapse and overall mortality (145). The extent of T-
cell depletion may also play an important role, since the presence
of T cells in the graft affects NK cell reconstitution leading to
lower KIR-receptor expression (146). Lastly, given that a KIR
ligand-ligand mismatch implies an absence of a KIR ligand in the
host that is present in the donor, it equates with the presence of a
major HLA-class I mismatch. It is therefore not unexpected that
such mismatch leads to significant T-cell alloreactivity and poor
survival unless T-cell reactivity is minimized with methods such
as TCD.

A retrospective analysis of 161 patients receiving TCD
haploidentical allografts confirmed a beneficial role of NK cell
alloreactivity. In the presence of KIR-receptor-ligandmismatches
in the GVL direction, expression of activating KIR2DS1 or
KIR3DS1 was associated with a significant reduction in NRM,
largely owing to 50% reduction in infection rates (147). While
much of the benefits of NK cell alloreactivity are reported for
myeloid indications, a pediatric study of 85 patients undergoing
TCD haplo-HCT showed that patients transplanted for ALL from
aKIR B-haplotype donor had a significantly better EFS than those

with KIR haplotype A donors. Additionally, a higher KIR B-
content score (based on the number of centromeric and telomeric
KIR B motifs) was associated with a significant reduction in
relapse risk (148). Although limited by use of a KIR ligand-
ligand model, a study of haplo-HCT with PTCy for various
hematologic malignancies found that KIR-ligand mismatch was
associated with a lower incidence of relapse and better PFS for
patients transplanted in relapse but had no significant impact on
those transplanted in CR (149). A growing ability to navigate
the complexities of the KIR-system, such as recognition of
varied strengths of inhibition among subtypes of inhibitory
KIRs and its ligands resulting in discrete hierarchies of anti-
leukemic cytotoxicity will aid in further revealing how donor
selection based on KIR-compatibility may improve outcomes
(145). While the beneficial effects of NK-cell alloreactivity are
mostly documented in the context of ex vivo T cell-depleted
haplo-HCT, the growing adaptation of T-cell replete haplo-HCT
affords the opportunity to carefully study the role of NK-cell
alloreactivity in these platforms.

IMMUNE RECONSTITUTION AFTER
HAPLO-HCT

Transplant outcomes are directly related to the achievement of
an acceptable restoration of the immune system. Several cell
subsets play a key role in the protection toward infections and
disease recurrence. In general, innate immunity recovers early
after transplant and represents the first line of defense against
pathogens. Specifically, monocytes followed by neutrophils and
NK cells arise in the first month after transplant. Adaptive
immunity mediated by T and B cell lymphocytes recovers later
and is crucial for both immune tolerance maintenance and
long-term protection against infections and disease relapse. T
cell reconstitution can occur through two different mechanisms:
thymus-independent T cell peripheral expansion of infused
donormemory T cells and thymus-dependent de novo generation
of donor T cells from donor hematopoietic progenitors (150).

While the kinetics of immune reconstitution and its
correlation withHCT outcomes are well-established in the setting
of matched donor transplant, more studies are needed in the
setting of haplo-HCT. Different donor sources do not represent
the only cause of possible differences in immune reconstitution
kinetics. Specific haplo-HCT platforms and GVHD prophylaxis
approaches are also crucial factors to consider (151). As detailed
above, two major haplo-platforms are currently used: T- cell
replete haplo-HCT that use an in vivo T-cell depletion with
ATG or PTCY, and TCD haplo-HCT in which the graft is ex
vivo manipulated with a CD34-positive selection or a T-cell
negative selection. Here, we review the immune reconstitution
of different blood cell subsets after different types of haplo-
HCT (Figure 7).

Monocytes
Monocytes are the first immune subset to recover after HCT.
Rapid and robust monocyte CD14+ cell reconstitution has been
correlated with the improvement of transplant outcomes in
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FIGURE 7 | Immune reconstitution with different haploidentical transplant platforms. Only subsets which have been characterized by published primary data for each

platform are included in this figure (e.g., data on dendritic cell reconstitution has only been described for the GIAC approach). Cells are depicted at the approximate

time-point of reaching the lower range of normal. T-cell depleted (TCD) haploidentical transplant is associated with early recovery of neutrophils, monocytes, immature

NK cells and rapid NK cell maturation which takes 6–8 weeks (top panel). Additionally, αβ-T cell/CD19 depletion is associated with early detection of γδT cells and

mature NK cells that are infused with the graft infusion (2nd panel from the top). B cell recovery is delayed with CD19 depletion relative to CD34+ selection. T-cell

replete (TCR) haploidentical transplant performed with post-transplant cyclophosphamide (PTCy) and GIAC protocols is associated with early reconstitution of

immature NK cells (3rd panel from the top). It is also associated with earlier reconstitution of CD8+ T-cells than TCD protocols. The GIAC protocol is associated with

delayed dendritic cell recovery (bottom panel). This figure was created using BioRender.com.

the setting of MSD (152) and UCB-HCT (153). Recently, a
study by Turcotte and colleagues showed that higher absolute
monocyte count (AMC) and higher classic monocyte subsets
(CD14bright CD16−) at day +28 were associated with a reduced
risk of relapse and TRM, better 2-yr OS, and improved 2-
yr PFS in a cohort of patients transplanted for different
hematological malignancies using both RIC or MAC regimens
and different stem cell sources (154). AMC was influenced
by the graft origin, with a higher AMC found in UCB but
no differences between BM and PBSC. However, no haplo-
HCTs were included in this study. In a separate cohort of
144 patients treated with MAC conditioning for hematological
malignancies, receiving a T-cell replete graft consisting of G-CSF-
mobilized BM and PBSC from HLA-haploidentical or MSDs,
the monocytes recovered rapidly, and the AMC was above the
normal range starting from the first month to the first year
after transplant. Both patient groups received GVHDprophylaxis
with Methotrexate, Tacrolimus, MMF, and Cyclosporine with
the addition of ATG in the haploidentical group (GIAC
protocol). Monocyte reconstitution was comparable between
recipients after HLA-matched and haplo-HCT on days +30, 90,
and 180 after transplantation. None of the patient transplant
characteristics impacted monocyte recovery in the multivariable
analysis (155). Finally, in a pediatric cohort of 40 patients
receiving TCD haplo-HCT using CD34 positive selection or
CD3/CD19 cell depletion, monocyte expansion was rapid,
reaching normal values for age within 30 days of transplant.
Moreover, no differences in monocyte recovery were seen

between different graft purification and conditioning intensity
regimens (156).

Neutrophils
Depending on the study, neutrophil engraftment is defined by
the presence of more than 500 or 1,000 neutrophils/µL of blood
and represents a crucial step in the early phase after transplant.
Prolonged neutropenia is associated with severe infection and
increased TRM (157). In the setting of a T-cell replete transplant,
neutrophil recovery occurs quickly. With GIAC protocols, the
median neutrophil engraftment was achieved at 14 days (range
9–25) (158, 159), whereas with the RIC PTCY platform using BM
grafts and Tacrolimus and MMF GVHD-based prophylaxis, the
median time to neutrophil recovery was 15 days (range 11–42)
(11). For both protocols, patients received recombinant human
granulocyte colony-stimulating factor (rhG-CSF) from day+6 or
+4 to engraftment, respectively.

In the context of TCD HCT using the Perugia protocol
with CD34+ selected megadose grafts, the median time to
neutrophil recovery was 11 days (range 9–30) without G-
CSF support (27). Studies using CD3/CD19 cell depletion in
adult patients also showed rapid neutrophil recovery, with a
median time of 12 days (range 9–50) without the addition
of G-CSF (79, 80). Similar results were seen in a cohort
of pediatric patients with acute leukemia undergoing MAC
transplant. Specifically, patients in the αβ-T cell-depleted haplo-
HCT had a faster neutrophil recovery compared to MUD,
mismatch unrelated donors (mMUD), and those treated with

Frontiers in Immunology | www.frontiersin.org 12 February 2020 | Volume 11 | Article 191

https://biorender.com/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Baumeister et al. Key Aspects of the Immunobiology of Haploidentical HCT

Methotrexate and Calcineurin-inhibitors, with median time to
neutrophil engraftment of 13 (range 6–23), 19 (range 9–46),
and 20 days (range 10–120), respectively (97). All three groups
received ATG during the conditioning for prevention of graft
failure and GVHD, and none of the patients received G-CSF
to accelerate neutrophil recovery. Taken together, these data
show that haplo-HCT provides a comparable or even expedited
neutrophil recovery compared to standard matched donor-HCT.

Dendritic Cells
Dendritic cells (DCs) represent a rare population in the
peripheral blood, accounting for 0.15–0.7% of mononuclear cells
(160). In the context of T-cell replete haplo-HCT using the
GIAC protocol, Wang and colleagues measured the frequencies
of DCs and their subsets among white blood cells (WBCs)
after haplo-HCT, including CD123+ plasmacytoid DCs (pDCs)
and CD11c+ myeloid DCs (mDCs). Recipients had strikingly
decreased proportions of DCs (0.49% vs. 0.27%, P = 0.025),
mDCs (0.27% vs. 0.14%, P < 0.001), and pDCs (0.04% vs. 0.02%,
P = 0.008) in the WBC compartment at ∼180 days post-haplo-
HCT compared to healthy subjects. Since, it was reported that
primary human DCs were the most potent expander of the γδ

T cell subset Vδ2+ (161), the authors also investigated whether
the recovery levels of Vδ2+ T cells were associated with the DC
content following transplantation. Bivariate correlation analysis
showed that the proportion of mDCs, but not DCs and pDCs,
in WBCs was significantly correlated with the recovery of Vδ2+

T cells after haplo-HCT. Specifically, slow recovery of mDCs was
associated with a slow recovery of Vδ2+ T cells in this haplo-HCT
setting (162).

Chang and colleagues also described a slower DCs recovery
at +15 and 30 days after HCT compared to those in the HLA-
matched recipients in another study (158). In their protocol,
ATG was administrated only in the haplo-group. Indeed, it was
described that ATG not only induced a tolerogenic phenotype in
human DCs (163), but was also able to mediate a complement-
mediated lysis of DCs (164). In summary, these findings may
explain the delay in DC recovery in the setting of the haplo-HCT
using the GIAC protocol. The kinetics of DC reconstitution in
other haplo-HCT settings, remain to be fully characterized.

Natural Killer (NK) Cells
Due to the need to perform an extensive T cell depletion in
haplo-HCT, anti-tumor efficacy is largely dependent on the
graft-vs.-leukemia effect exerted by NK cells that eradicate
residual leukemic blasts surviving the preparative regimen (72,
165–167). In the haplo-HCT setting performed through the
infusion of positively selected CD34+ cells, the first emergence of
fully functioning, KIR alloreactive NK cells from hematopoietic
progenitors may require at least 6–8 weeks, and therefore the
benefit offered by their anti-leukemia effect is delayed (168–171).
In the setting of αβ-T-cell/CD19 depletion, generation of NK cells
from donor HSC takes ∼8 weeks but circulating NK cells can
be detected earlier after transplant due to infusion with the graft
(172). Moreover, CMV reactivation in this setting was associated
with an expansion of memory-like NK cells (NKG2C+, CD57+,
KIR+) as early as 3 months after HCT (173). Surprisingly, in a

pediatric comparison between TCD haplo-HCT performed with
CD34 positive selection or CD3/19 negative selection, NK-cell
recovery was faster in patients receiving PBSC from CD34+

positive selection in the first 4 months after transplant (156).
In the T-cell replete haplo-HCT setting using PTCY, Russo

and colleagues described that donor alloreactive NK cells
infused with the graft were killed by cyclophosphamide (174).
This translated into a delay of NK recovery and maturation
resulting from a profound reduction after cyclophosphamide
administration following a robust proliferation of donor-NK cells
in the early phase after graft infusion. The absence of aldehyde
dehydrogenase (ALDH)-positive NK cells suggested that they
were susceptible to cyclophosphamide cytotoxicity, and this was
then confirmed using an in vitro assay of mafosfamide-induced
cell death (174). On the other hand, Russo et al. reported an
IL-15 peak in patient sera at day +15 after transplant that was
associated with a progressive increase of NK cells expressing
an immature phenotype (CD62L+, NKG2A+, KIR−) between
day +15 and day +30 (174). The normal distribution of NK
phenotypes was achieved only between 9 and 12 months after
transplant, with a decrease of CD56bright, NKG2A, and CD62L
expression and an increase of maturation markers (CD16, CD57,
and KIR). KIR expression returned to normal levels around day
+60, but NKG2A expression decreased only after 6 months.
Interestingly, in this cohort of patients, there was no difference
in PFS between patients with or without a predicted KIR
alloreactivity, suggesting that the protective anti-tumor activity
of NK cells is dampened after T-cell replete haplo-HCT using the
PTCY platform (174).

Another group described the transient and predominant
expansion of an unconventional subset of NK cells characterized
by a specific phenotype: NKp46neg/low, CD56dim, CD16neg,
CD94/NKG2Ahigh starting from the second week after transplant
and maintained until the 7th week (175). This unconventional
population retained its proliferative capacity and the ability to
differentiate into the CD56bright subsets (NKp46+, CD56bright,
CD16− cells) in response to IL-15 and IL-18. Despite the
unconventional NK cells expressing a high level of activating
receptors (NKG2D and NKp30), Granzyme-B and Perforin, they
displayed a defective in vitro cytotoxicity highlighting again the
need to improve NK reconstitution after PTCy haplo-HCT (175).
Similar results were reported in the GIAC protocol in which early
and higher expression of CD94/NKG2A was inversely correlated
with KIR expression, and was associated with worse survival
(176). The same group showed that NK cells from patients who
developed GVHD had a lower expression of NKG2A, lower
proliferative capacity and an increased rate of apoptosis, but
retained their cytotoxicity after in vitro co-culture with the K562
cell line (177).

Finally, in contrast to TCD haplo-HCT, KIR-mismatch
analysis between donor-recipient pairs when using only HLA and
KIR genotyping without consideration of the KIR phenotype, was
unable to predict post-transplantation outcomes in multivariate
analyses in the setting of haplo-HCT using the GIAC protocol
(178). However, it has been reported that KIR-driven NK
cell alloreactivity is better predicted if donor KIR genotype
is considered in conjunction with KIR cell surface expression
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(130). Moreover, in haplo-HCT using the GIAC protocol, the
higher number of T-cells infused in the graft contributed to
the high incidence of acute GVHD (178). This resulted in
a need for increased immune suppression, thereby affecting
NK alloreactivity.

T Cells
Achievement of an acceptable T cell reconstitution after
HCT represents a crucial goal and correlates with better
transplant outcomes. Impairment of T cell reconstitution is more
pronounced after T cell depletion (152). In the context of T-cell
replete haplo-HCT using the GIAC protocol, CD3+ T cell counts
were 125, 883, 1,163, and 1,308 cells/µL at 30, 90, 180, and 360
days after HCT, respectively (158). A lower median CD3+ T cell
count was reported after NMA haplo-HCT using a BM graft with
PTCy, Tacrolimus and MMF based GVHD prophylaxis, with 206
cells/µL at day 40 and 219 cells/µL at day 100 (179). On the other
hand, CD3+ T-cell recovery was more rapid with 338 cells/uL at
day +30 after MAC haplo-HCT using PBSC grafts with PTCy,
MMF, and sirolimus GVHD-based prophylaxis (180).

In the setting of T-cell replete haplo-HCT with both GIAC
and PTCy-based protocols, CD8+ T cells recovered earlier than
CD4+ T cells (158, 181–183). Faster CD8+ T cell recovery at
day +90 correlated with higher CD3+ cells in the graft but
was not associated with a higher incidence of GVHD (184).
The same studies highlighted that the recovery of CD4+ T cells
was impaired for the whole first year after transplant, but failed
to demonstrate a correlation between delay in CD4+ T cell
reconstitution and NRM as was shown in the HLA-matched
donor setting (185). Notably, in the GIAC experience the delay of
CD4+ T-cell reconstitution was compensated by the proportional
increase of the CD8+ T cell- and monocyte fractions, and the
NRM was relatively low (19.5% in the haplo group vs. 17.4%
for the matched-sibling donor cohort). This was likely due to
patient care improvements, especially the management of CMV
reactivation (158).

A retrospective EBMT registry study including both adult and
pediatric patients undergoing haplo-HCT found an association
between higher CD3+, CD4+, and CD8+ T-cell counts and
better OS with less NRM (186). However, in the multivariable
analysis only higher CD3+ and CD8+ T-cell counts correlated
with lower NRM. No association was found between any of
the T-cell, B-cell, or NK-cell subset counts with relapse-related
mortality. In this study, the majority of patients were treated
with TCD haplo-HCT using both CD34+ selection and CD3/19
depletion (186). In the context of αβ T-cell depleted haplo-HCT,
CD3+, and CD3+/CD8+ T-cell recovery was slower compared
to MUD or MMUD-HCT until 6 months after transplant (97).
Recovery of CD4+ T cells was delayed only in the first 3 months
and became even better at 1 year after haplo-HCT compared
to MUD and MMUD. In this pediatric experience, haplo-HCT
patients did not receive any additional pharmacological GVHD
prophylaxis, whereas MUD and MUD HCT were performed
using standard calcineurin-based GVHD prophylaxis and short-
term methotrexate (97).

T memory stem cells (TSCM) represent a subset of early-
differentiated human memory T cells with stem cell-like

properties. TSCM and naïve T cells (TN) both express naïve
markers such as CD45RA, CCR7, and CD62L, but in distinction
to TN and similar to other memory subsets, TSCM are
characterized by CD95 expression. In the context of haplo-HCT
using PTCy, two different groups elegantly showed that donor-
derived TSCM reconstitute early after transplant, representing
the majority of both CD4 and CD8T cells at day +8. At the
polyclonal, antigen-specific, and clonal level, TSCM lymphocytes
were preferentially derived from differentiation of TN infused
within the graft, whereas most memory infused lymphocytes are
purged by PTCy (182, 187).

Regulatory T (Treg) Cells
Treg cells play a key role in the modulation of immune
tolerance after HCT. Higher Treg content in the graft has been
associated with better OS and lower aGVHD (188), whereas a
reduced frequency of Tregs contributed to cGVHD incidence
after matched-donor transplant (189). In the matched donor
setting, Kanakry and colleagues showed that Treg, especially
memory CD45RA-Treg, were preserved and recovered rapidly
while conventional T (Tcon) naïve cells were reduced when
PTCy was used as the sole method of GVHD prophylaxis
(48). This was ascribed to the high levels of aldehyde
dehydrogenase (ALDH), as the major in vivo mechanism
of Cyclophosphamide resistance in the Treg population. In
addition, murine studies demonstrated the importance of Tregs
for GVHD reduction in the context of the PTCy-based GVHD
prophylaxis (49).

In the T-cell replete haplo-HCT setting using PTCy, naïve
Tregs increased after cyclophosphamide administration. This
was attributed to the lower Ki67 levels compared to the
memory subsets at day +3. In addition, Tregs exhibited a lower
proliferation profile compared to Tcons, suggesting a lower
susceptibility to PTCy in the haploidentical setting (182). This
effect seems to be enhanced when PTCy is combined with
sirolimus instead of a calcineurin inhibitor (180). Cieri et al.
showed an expansion of CD25+CD127−FoxP3+ Tregs early
after transplant, relative to the donor leukapheresis content
and to the quantity in healthy subjects. Interestingly, patients
who did not experience acute GVHD had a higher percentage
of circulating Tregs at day +15 compared to patients who
developed acute GVHD (180). Notably, the ability of Sirolimus
to boost Treg reconstitution has also been reported outside of
the PTCy platform. Indeed, Peccatori and colleagues reported an
expansion of Treg after haplo-HCT using a combination of ATG,
sirolimus and MMF as GVHD prophylaxis (190). Moreover, in
the Baltimore experience with a cohort of patients undergoing
MAC haplo-HCT using PTCy, MMF, and tacrolimus-based
GVHD prophylaxis, Tregs achieved normal donor levels at
all time-points examined (day +30, +90, +180, and +365)
(181). Finally, in haplo-HCT using the GIAC protocol, patients
with a higher day +30 percentage of naive Treg, defined as
CD4+CD25+CD45RA+, had a significantly lower incidence of
grades II–IV acute GVHD (191). This highlights the importance
of reaching a satisfactory Treg reconstitution for the achievement
of immune tolerance after haplo-HCT.
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γδ T Cells
γδ T cells combine conventional adaptive immunity features
with innate-like MHC-independent tumor recognition (192).
In healthy donors the majority of circulating γδ T cells
expresses the Vδ2 chain, whereas the minority expresses the
Vδ1 chain. The former subgroup is able to recognize non-
peptide phosphoantigens and to perform direct killing of tumor
cells (193). The Vδ1 γδ T-cell subgroup on the other hand
is associated with control of CMV infection and also retains
antitumor activity (194). Both subgroups play a key role in the
setting of haplo-HCT because they do not induce GVHD but
can exert immunological surveillance. In patients undergoing
αβ-TCD haplo-HCT, γδ-T cells were the predominant T-cell
subset for the first 2–3 weeks after transplant (91.5% of CD3+

lymphocytes), while αβ T cells became the most prevalent
population at 1 month (93). Moreover, patients had a higher
proportion of γδ-T cells, especially the Vδ2+ subset for the first
3 months. However, CMV reactivation (but not infection with
other viruses) was associated with an expansion of Vδ1 γδ-T
cells (93). Interestingly, the authors showed that zolendronic acid
was able to potentiate Vδ2+ killing against leukemia blasts after
in vitro culture, indicating that the cytotoxicity was dependent
on phosphoantigen recognition and providing a rationale for
the development of future clinical trials to boost the γδ T
anti-tumor effect (93). The same group tested the in vivo
ability of zolendronic acid (ZOL) to enhance γδ T-cell recovery
and function, by administrating the drug to pediatric patients
undergoing αβ-TCR/CD19 depleted haplo-HCT. An induction
of Vδ2-cell differentiation paralleled by increased cytotoxicity
of both Vδ1 and Vδ2 cells against primary leukemia blasts was
associated with ZOL treatment. Patients given three or more ZOL
infusions had a better probability of survival in comparison to
those given one or two treatments (86% vs. 54%, respectively,
p = 0.008), suggesting that ZOL infusion promotes γδ T-cell
differentiation and cytotoxicity and may influence the outcome
of patients in this transplant setting (94).

B Cells
B cell recovery occurs late after HCT. B cells are almost
undetectable during the first and second months and normal
values are only reached around 12 months after transplant (195).
In the setting of NMA haplo-BMT using PTCy, MMF and
Tacrolimus as GVHD prophylaxis, B cells were undetectable
until day +28. Recovery of B cells started from week 5 with
an immature CD38bright CD10+ Ki-67 negative phenotype,
suggesting that the increase in B-cell number was not due
to the homeostatic proliferation of transferred B cells but
to de novo generation (196). Maturation of B cells was
characterized by different expression of both transitional (T)
markers CD5 and CD21: T0 (CD5−CD21−), T1 (CD5+CD21−),
T2 (CD5+CD21+), and the CD5−CD21+ subset. Starting at
week 9, mature B cells (CD38dim CD10−) began to increase with a
naïve phenotype (IgD+, IgM+). Overall, B cell maturation took 6
months to complete in the setting of a T-cell replete PTCy-based
haplo-HCT (196).

With haplo-HCT using the GIAC protocol, median B cell
counts did not differ from HLA-matched HCT at any of the time

points examined (158). In an analysis comparing CD34 positive
selection and CD3/CD19 cell depletion, B cells reconstituted
more rapidly in the former group (156). Furthermore, recovery
of B cells after αβ T cell-depleted haplo-HCT was delayed for
the first 6 months compared to a cohort of patients transplanted
with aMUDorMMUDusing standard calcineurin-based GVHD
prophylaxis. However, this is at least in part attributable to the
fact that in the αβ T-cell depletion setting, patients received one
dose of Rituximab as part of the conditioning regimen in order to
prevent post-transplant lymphoproliferative disorders (97).

RELAPSE AND IMMUNE EVASION
MECHANISMS AFTER HAPLO-HCT

Recent data has highlighted the critical role of the immune
system in the control of myeloid leukemia after HCT and
elucidated our understanding regarding the immunologic
mechanisms underlying relapse after haplo-HCT. Work by
Vago and colleagues revealed that a substantial proportion of
AML and MDS relapses after haplo-HCT are attributable to
acquired uniparental disomy of chromosome 6p (copy-neutral
loss of heterozygosity eliminating the incompatible HLA alleles
without decreasing the overall level of expression of HLA
class I molecules). This was shown to result in loss of the
mismatched HLA molecules on leukemia cells and immune
escape from leukemia control exerted by haploidentical donor
T cells via the major histocompatibility mismatch (197). The
maintained overall expression of class I molecules in this
study also evaded activation of NK-cell mediated anti-leukemic
responses which could potentially be based on a newly missing
ligand to an inhibitory KIR receptor (197). Clinical suspicion
for an immune evasion phenomenon was first raised when
patients relapsing after haplo-HCT had discrepant findings
in host chimerism monitoring between short-tandem-repeat
amplification but not HLA typing (198). Recognition of this
leukemia escape mechanism has therapeutic importance for
patients who are candidates for subsequent haplo-HCT in whom
a different donor is available who is mismatched for the HLA
haplotype retained in the relapsed leukemic cells and/or is
predicted to mediate NK-cell alloreactivity based on the newly
missing KIR-ligand. The development of routine diagnostic
methods is expected to facilitate this (198). Importantly, ∼30%
of relapses after haplo-HCT are attributable to this mechanism
of the elimination of the incompatible HLA alleles irrespective
of the GVHD prophylaxis or platform used to control T-cell
alloreactivity (190, 199, 200).

To identify other drivers of post-HCT relapse Toffalori et al.
analyzed transcriptional signatures specific for post-transplant
AML relapses (201). This study demonstrated deregulation of the
costimulatory interface between donor T cells and host leukemia
cells, with loss of costimulatory interactions and enforcement of
inhibitory ones (PD-1/PDL-1) as evidenced by both changes in
leukemic cells and donor T cells (Figure 8). Additionally, the
study documented downregulation of surface expression of HLA
class II molecules on leukemia cells due to the downregulation
of the HLA class II regulator CIITA (201). Patients with AML
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FIGURE 8 | Mechanisms of relapse post haploidentical HCT. Late relapse after haploidentical allogeneic transplantation can be driven by a number of immunologic

mechanisms as shown. Under the immune pressure of graft-vs.-leukemia (GVL) via HLA mismatch in a haploidentical environment, loss of heterozygosity for the

mismatched HLA allele is a mechanism of escape from immune surveillance and relapse (1). Another mechanism involves transcriptional silencing of HLA class II

molecule, thereby reducing T-cell mediated GVL. This effect can be partially reversed in the presence of immunomodulatory molecules such as IFN-y or the epigenetic

regulator 5-azacitidine (5-aza) (2). Modification of the tumor microenvironment via suppression of release of mediators that promote GVL is another mechanism used

by relapsing leukemia cells, which may be partially reversed via administration of IL-15 agonists and NK cell infusions that promote the secretion of proinflammatory

cytokines (3). An additional common mechanism of relapse involves the emergence of T-cell exhaustion with associated upregulation of PD-L1 and other inhibitory

receptors. The latter may be reversed through administration of checkpoint inhibitors (4). Blue arrows indicate possible therapeutic strategies to overcome the different

mechanisms of immune evasion. MRD, minimal residual disease; LOH, loss of heterozygosity; Chr, chromosome; DLI, donor lymphocyte infusion. This Figure was

created using BioRender.com.

relapse after HCT were found to have a higher proportion
of BM—infiltrating T cells expressing inhibitory receptors (IR)
compared to patients remaining in CR. The exhausted BM-T
cell phenotype was associated with a restricted TCR repertoire,
impaired effector functions and leukemia-reactive specificities.
Furthermore, early detection of severely exhausted BM-memory
stem T cells predicted relapse (202). Interestingly, IR-positive T
cells infiltrating the BM of AML patients at relapse displayed
a greater ability to recognize matched leukemic blasts after in
vitro expansion compared with their IR-negative counterparts.
This suggest that IR expression marks lymphocytes enriched
for tumor specificity whose activity could be unleashed with
therapeutic check-point blockade, although innovative targeted
strategies will be required to avoid exacerbation of GVHD in the
HCT context (202).

HAPLO-HCT AS A PLATFORM FOR
POST-TRANSPLANT IMMUNE THERAPIES

Numerous scientific advances have contributed to the resurgence
of haplo-HCT as a viable transplant option for patients requiring
HCT and have achieved similar outcomes to those from other
donor sources. The ability to perform haplo-HCT without costly
ex-vivo T-cell depletion approaches, which require extensive cell

manufacturing expertise frequently limited to large transplant
centers, has been a major advance in transplant accessibility
for patients in resource-limited countries that frequently do
not perform unrelated donor transplantation (203). However,
further efforts are required to improve immune reconstitution,
control infectious complications and decrease relapse rates in
patients after haplo-HCT. Fortunately, haplo-HCT provides an
ideal platform characterized by unique immunologic properties
and ready accessibility of the donor for additional cell products.
This offers tremendous opportunities for the development and
implementation of innovative adoptive immune cell therapies
to augment infectious and antitumor immunity and further
improve outcomes (Figure 9).

Suicide Mechanisms for Defined T-Cell
Content in the Graft and Post-transplant
Ex-vivo TCD haplo-HCT affords opportunities not only for
the dose-titration but also the manipulation of the T cell
product prior to infusion into the patient. Rather than in-
or ex-vivo approaches to selectively deplete or attenuate T
cells, a different approach is the infusion of polyclonal T
cells that have been genetically engineered to include an
inducible suicide gene. With this strategy, a defined dose
of T cells can be administered to aid in engraftment and
immune reconstitution, mediate a GVL effect, and provide
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FIGURE 9 | Haplo-HCT offers a platform for post-transplant immune therapies to prevent and treat relapse. In the context of a haploidentical transplant, there are

several options to administer cellular therapies in order to address relapse, infection and GVHD either pre-emptively or therapeutically. In the event of a relapse,

enhancing GVL effect using cellular therapy that either relies on the haploidentical mismatch between donor and recipient or gene-modified donor immune effector

cells T cells are potential options. Donors haploidentical to the recipient may also readily serve as a source of cells for the production of CAR-T or CAR-NK. In the

event of significant viral infection post relapse, administration of antiviral cytotoxic T-cells may promote viral clearance without increasing the risk of GVHD. Finally, Treg

infusions may be utilized to treat GVHD. DLI, Donor lymphocyte infusion; CIML NK cells, Cytokine-induced memory-like NK cells; TCR, T-cell receptor; CAR, Chimeric

antigen receptor; CTLs, Cytotoxic T-lymphocytes.

infectious immunity while being selectively susceptible to an
externally inducible suicide mechanism in the event of significant
GVHD (204).

The first such approach was pioneered by Bonini and
colleagues with the introduction of a herpes simplex virus
thymidine kinase (HSV-TK) suicide gene into T cells using γ-
retroviral transduction in which the transgene also contained
the truncated selection marker 1LNGFR. This allowed for the
isolation and infusion of transduced cells bearing the suicide gene
(205). With this strategy, administration of the drug ganciclovir
activated the suicide mechanism and successfully controlled
GVHD in several patients after infusion (204). Interestingly, the
first wave of circulating TK+ cells after infusion facilitated thymic
renewal and was followed by a second wave of long-term immune
reconstitution with naïve lymphocytes. This was supported by an
increase in TCR excision circles, CD31+ recent thymic emigrants
and expansion of thymic tissue on imaging and was further
associated with an increase in serum IL-7 levels following each
infusion (206).

Since then, other approaches have been developed, such as

transduction of T-cells with the iCasp-9 suicide gene. This gene
can be activated by an otherwise inert drug (207, 208). Novel
approaches have also included the use of a different transduction
marker such as truncated CD19 that allows for the confirmation
of transduction and if desired positive isolation of transduced T
cells prior to infusion. Brenner and colleagues first utilized this
approach in children undergoing haplo-HCT and demonstrated
impressively how iCasp-9 transduced T cells expressing the
truncated CD19 aid in immune reconstitution and contribute to
infectious immunity (207, 208). Activation of the suicide gene

led to resolution of GVHD symptoms within hours (209, 210).
Interestingly, while alloreactivity was rapidly abrogated, suicide-
gene transduced T cells were not permanently eliminated and
able to reconstitute again without causing GVHD. Pediatric
studies are underway to investigate suicide-gene equipped T-cell
infusions after αβ-TCR/CD19 depleted haplo-HCT.

Haploidentical Donor Lymphocyte
Infusions
A common approach to address relapse early after HCT is the
infusion of donor lymphocyte infusions (DLI) to exert a GVL
effect, but this is frequently accompanied by significant rates
of GVHD. Zeidan and colleagues demonstrated the feasibility
of this approach after haplo-HCT with PTCy in a retrospective
analysis of a dose escalation approach at their center (211). Forty
patients received 52 haplo-DLI doses initially at 1× 105 CD3+/kg
and most commonly starting at 1 × 106 CD3+/kg. Ten patients
(25%) developed GVHDwith Grade III-IV acute GVHD in 6 and
chronic GVHD in 3 patients. Twelve patients (30%) achieved a
CR with a median duration of 11.8 months (211).

Sun et al. reported on haplo-DLI following a number of
different chemotherapy regimens (FLAG, Methotrexate and
others) for relapse after haplo-HCT with the GIAC protocol. Of
86 patients, 20 developed Grade III-IV aGVHD and 41 developed
cGHVD. NRM was 10.3%, and 62% of patients achieved a
CR after chemo-DLI of which 50% experienced re-relapse at a
median duration of 92 days (212). A modified GIAC backbone
was also utilized to assess preemptive DLI at a median of 77
days post haplo-HCT in high risk patients to prevent relapse.
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With a sizeable median CD3+ dose of 1.8 × 107/kg, the 100-
day incidences of acute GVHD were 55.3% for Grade II–IV
and 10.2% for Grade III–IV, respectively. Two-year incidence
of chronic GVHD was 52%, among which 18.2% were severe.
With this regimen, 2-year NRM was high at 33.1% with a 2-year
relapse incidence of 32% (213). Approaches to reduce GVHD
while optimizing the GVL effect of preemptive or therapeutic
DLI are likely to evolve over time and include the infusion of
IL-10 anergized DLI (214), CD45-RA depleted DLI (215) and
adoptive transfer of gene modified cells as described in this
section. Although experience in the haplo-HCT setting is limited
to date, azacitidine or decitabine in conjunction with DLI have
shown promising overall response rates on the order of 25–
33% for patients with AML or MDS relapsing after allogeneic
HCT (216, 217).

CAR- T or CAR-NK-Cell Infusion
Chimeric antigen receptor (CAR) T cells targeting CD19 have
revolutionized the treatment of relapsed/refractory B-cell acute
lymphoblastic leukemias and aggressive B-cell lymphomas, with
complete remission rates ranging from 70–90% in ALL (218, 219)
and ∼60% for refractory large B-cell lymphoma (220, 221).
CAR-T cells have been successfully manufactured from donor T
cells in patients with relapse after allogeneic HCT and infused
without mediating GVHD. Autoimmune complications have
not been observed after infusion of CAR-T cells derived from
autologous T cells suggesting that the CAR-signal overrides TCR-
based recognition. The use of third-party CAR-T cells has been
explored with concurrent transcription activator-like effector
nuclease (TALEN)-based gene editing of the endogenous TCR.
These CAR-T cells did mediate GVHD in a limited study of three
patients (222). The use of CAR-NK cells is also being explored
in the relapse setting, and although long-term persistence may
be more limited than that of CAR-T cells, this approach may
be beneficial when there is a higher degree of HLA-mismatch
such as after haplo-HCT (223). While the therapeutic success of
CD19-targeting CAR-T cell therapy to date is limited to B-cell
malignancies and multiple myeloma (224), studies are underway
to investigate the safety, feasibility, and preliminary efficacy of
CAR-T cells directed against AML and MDS (225–227). Given
this rapidly evolving field, the established efficacy potential of
CAR-T cells and ability to utilize donor cells for CAR-T cell
manufacture post-HCT, haploidentical HCT donors represent a
readily available post-transplant cell source for donor-derived
CAR-T cell or CAR-NK cell therapies for relapsed leukemia.

Antiviral Cytotoxic T Lymphocyte (CTL)
Infusion
Infectious complications and particularly end-organ viral disease
after HCT remain a challenge, particularly in haplo-HCT where
ex- or in- vivo T-cell depletion is necessary. For example, the
incidence of BK-virus hemorrhagic cystitis is higher in haplo-
HCT (228). As demonstrated by Leen and Bollard the infusion
of virus-specific CTL lines, generated by stimulating PBMC
from adenovirus and EBV-seropositive donors, can safely be
performed without inducing GVHD and can result in clearance
of adenoviral disease and prevention of EBV-associated PTLD

(229). The successful use of off-the-shelf multi-virus-specific T
cells to treat viral infections after allogeneic HCT with minimal
risk of GVHD has since been confirmed in a larger study and
has the potential to mitigate serious viral disease after haplo-HCT
either with third-party or haploidentical antiviral CTLs (230).

TCR-Edited T Cell Infusions
Whereas, CAR-transduced T cells recognize extracellular
peptides on the surface of target cells in an MHC-independent
manner, TCR-mediated T cell recognition mediates T cell
immunity against MHC-restricted, intracellular targets
and minor histocompatibility antigens. With the advent of
sophisticated strategies to optimize T cell transduction and
prevent mis-coupling of transduced and endogenous TCR
chains, TCR-edited T cells have successfully entered clinical trials
for patients with an HLA-type required for the HLA-restricted
expression of the antigen. Greenberg and colleagues cloned
a high affinity TCR targeting the HLA-A2 restricted tumor
antigen WT-1 from healthy donors and inserted this TCR into
EBV-specific donor CD8+ T cells (to minimize the GVHD risk
and enhance persistence). The WT1-TCR modified donor T
cells were then infused prophylactically into the HLA-A∗0201+
recipients after they had received an allogeneic HCT from the
same donor. This approach resulted in 100% relapse free survival
in the WT-1 TCR-T cell group at 44 months as compared to
a comparative group of similar risk AML patients with a 54%
relapse-free survival after HCT (231). A separate approach
is currently under investigation to target the HLA-A∗0201-
restricted minor histocompatibility antigen HA-1, which is
exclusively expressed on hematopoietic cells (232). When the
immunogenic single-nucleotide polymorphic variant of HA-1
is expressed on hematopoietic cells of the HLA-A2+HCT-
recipient, donor T cells that have been transduced to encode
a high-avidity TCR recognizing HA-1 can effectively eliminate
leukemia and lymphoma cells in vitro (233). Given the facile
availability of donor T cells, haplo-HCT can and should serve
as a beneficial platform to explore new approaches to reduce
relapse after HCT.

NK Cell Product Infusion to Augment Graft
vs. Tumor Effect
As previously described, NK-cells can mediate GVL effects
due to KIR-mediated alloreactivity in the haplo-HCT setting.
In addition to selecting the donor based on predicted NK-
cell alloreactivity, the availability of haploidentical donors for
additional cell product collection affords the unique opportunity
to utilize NK-cell infusions to provide for additional GVL or
GVT effects after HCT prophylactically or in the face of relapse
(234). Generation of adequate numbers of NK cells for post-
transplant therapies can be challenging given the relatively low
NK cell frequency in the blood but can be overcome by in
vitro expansion such as with membrane-bound IL-21 expressing
feeder cells (mbIL21). A Phase 1 study evaluated prophylactic NK
cell infusions after haplo-HCT with PTCy on days −2, +7, and
+28. Of 11 enrolled patients who received all 3 planned NK cell
doses, 54% developed Grade I-II aGVHD, and none developed
Grade III-IV aGVHD, chronic GVHD or dose-limiting toxicities.
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Only 1/11 patient relapsed. All others were alive and in remission
at a median follow-up of 14.7 months (235). Administration of
cytokines can facilitate NK cell expansion, but certain cytokines
such as IL-2 also preferentially expand Tregs based on their
constitutive expression of high-affinity IL-2R (CD25). These
Tregs in turn inhibit NK cell proliferation (236). A study
treating AML patients with haploidentical NK cell infusions
after lymphodepletion with cyclophosphamide and fludarabine
demonstrated that NK cell expansion was most pronounced
and effective when IL-2-diphteria toxin fusion protein was
administered to achieve host Treg depletion (237).

A recent trial administering haploidentical NK cells with
rhIL15 for relapsed AML after lymphodepleting chemotherapy
showed that rhIL-15 achieved better rates of in vivo NK-cell
expansion and remission compared to previous trials utilizing IL-
2, but also observed steroid- and tocilizumab-responsive cytokine
release syndrome and neurologic toxicity which was associated
with high levels of IL-6 (238). Cytokine-induced memory-like
(CIML) NK cells from haploidentical donors were able to induce
complete remissions in relapsed/refractory AML patients outside
of the transplant setting without any toxicities (239). This GVL
effect may be even more durable when NK cells from the same
haploidentical donor are infused after haplo-HCT because no
immunologic rejection of the CIML NK cells from the same
donor is expected. Studies to date have suggested that KIR-
reactivity is less important when NK cells are cytokine-induced
(240). Studies are now underway to evaluate the safety and
efficacy of CIML NK cells for relapse after haplo-HCT.

Cytokine Support to Enhance NK-Cell
Alloreactivity After Hct
An alternative strategy to address relapse after HCT is the
administration of cytokines aimed at enhancing the anti-
leukemic function of the existing post-transplant immune
environment. One such approach employed ALT-803, an IL-
15 superagonist complex designed to extend the in vivo half-
life of IL-15 and mimic the physiologic trans-presentation
of IL-15 (241). In contrast to IL-2 that can promote the
survival, proliferation, and activation of lymphocytes, but that
also stimulates Tregs, IL-15 preferentially expands CD8+ T

cells and NK cells via trans-presentation to the IL-2/15Rβγc-
receptor while avoiding the stimulation of Tregs. In a recent
Phase 1 trial ALT-803 was well-tolerated, particularly when

administered subcutaneously, and induced responses of 19% in
patients relapsed after HCT (241), suggesting that such agents
may also be explored in the haplo-HCT setting. Efforts are
underway to test use of IL-15 or IL-15 superagonist complex
alone or in combination with NK cell- based therapy to target
relapse after haplo-HCT.

CONCLUSION

The initial immunologic barriers to haplo-HCT, namely GVHD
and graft failure, have been overcome with different platforms
that can be utilized to control T cell alloreactivity post-transplant.
Comparable clinical outcomes have now been achieved relative
to alternative donor sources and depending on the specific
scenario, haplo-HCT can offer a lower risk of GVHD and/or
improved control against relapse. The GVL effect in haplo-
HCT is particularly intriguing given the concept of NK-
cell alloreactivity based on the KIR/KIR-ligand system and
ability to select donors accordingly. An emerging body of
literature is elucidating immunologic mechanisms of GVHD
and relapse that are potentially targetable and highlight the
immune pressure exerted by donor immune cells after HCT.
Given ready accessibility of the donor, haplo-HCT offers a
unique platform for post-transplant cell-based immune therapies
aimed at expediting immune reconstitution, improving thymic
function, providing infectious immunity, and treating or
protecting against relapse, while maintaining therapeutic control
of those cell immunotherapies with methods such as suicide
mechanisms. The rapid advancements in our understanding
of the immunobiology of haplo-HCT are therefore poised
to lead to increasingly sophisticated strategies to fine-tune
the transplant process and to further improve outcomes
after haplo-HCT.
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