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Abstract

Background: Early diagnosis is crucial for effective medical management of cancer patients. Tissue biopsy has been
widely used for cancer diagnosis, but its invasive nature limits its application, especially when repeated biopsies are
needed. Over the past few years, genomic explorations have led to the discovery of various blood-based biomarkers.
Tumor Educated Platelets (TEPs) have, of late, generated considerable interest due to their ability to infer tumor
existence and subtype accurately. So far, a majority of the studies involving TEPs have offered marker-panels consisting
of several hundreds of genes. Profiling large numbers of genes incur a significant cost, impeding its diagnostic
adoption. As such, it is important to construct minimalistic molecular signatures comprising a small number of genes.

Results: To address the aforesaid challenges, we analyzed publicly available TEP expression profiles and identified a
panel of 11 platelet-genes that reliably discriminates between cancer and healthy samples. To validate its efficacy, we
chose non-small cell lung cancer (NSCLC), the most prevalent type of lung malignancy. When applied to
platelet-gene expression data from a published study, our machine learning model could accurately discriminate
between non-metastatic NSCLC cases and healthy samples. We further experimentally validated the panel on an
in-house cohort of metastatic NSCLC patients and healthy controls via real-time quantitative Polymerase Chain
Reaction (RT-qPCR) (AUC = 0.97). Model performance was boosted significantly after artificial data-augmentation
using the EigenSample method (AUC = 0.99). Lastly, we demonstrated the cancer-specificity of the proposed
gene-panel by benchmarking it on platelet transcriptomes from patients with Myocardial Infarction (MI).

Conclusion: We demonstrated an end-to-end bioinformatic plus experimental workflow for identifying a minimal set
of TEP associated marker-genes that are predictive of the existence of cancers. We also discussed a strategy for
boosting the predictive model performance by artificial augmentation of gene expression data.
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Background
Invasive, solid tissue-based confirmatory diagnosis of can-
cer suffers from several shortcomings, including surgical
tissue acquisition, provision for resampling, and the risk of
infection/bleeding [1, 2]. Further, it just offers a one-time
snapshot of the disease life-cycle, obscuring the leads for
potential course-corrections. Liquid biopsy methods have
emerged as promising alternatives, aimed at overcom-
ing these limitations [3–5]. Tumor-derived blood-based
biomarkers often hold valuable information about their
malignant origins. Some of the commonly used cancer
biomarkers isolated from peripheral blood include cell-
free DNA (cf-DNA) [6, 7], circulating endothelial cells
(CEC) [8, 9] and circulating tumor cells (CTC) [10]. These
methods, however, suffer from high type 2 error rates.
Despite many promises, none of these blood-based bio-
sources could so far be effectively used for early cancer
detection. Different cancers have shown varying degrees
of false-positive and false-negative rates when using CTC
and ctDNA based detection [11].
NSCLC, the most prevalent form of lung cancer, is

largely asymptomatic in its early stage. The majority of
its detection takes place at an advanced stage when the
disease has spread widely to distant organs. As such, the
development of affordable early diagnostic tests plays a
major role in improved management of the disease. For
NSCLC, some studies have shown up to 100% false posi-
tives CTC detection rates in patient samples [12]. Jenkins
and colleagues reported false-negative rates upto 50% in
patients with intra-thoracic limited (M1a) disease while
using a ctDNA-based method [13]. A recent study by Best
et al. [4], revealed significant changes in platelet transcrip-
tomes between cancer patients and healthy individuals,
which led to the new concept of Tumor Educated Platelets
(TEPs). The dramatic changes in platelet transcriptome
have, since, been linked to the cross-talk between tumor
cells and platelets [14]. Using ∼1000 variable genes, the
authors reported 96% accuracy in distinguishing local-
ized and metastatic tumors of six major cancer types
from healthy cases [4]. A study by Best and colleagues
[4] showed that TEPs are substantially more accurate
in predicting the existence of cancer with false-negative
and false-positive rates recorded as 4% and 8% respec-
tively. In an independent study focusing on Non-Small
Cell Lung Cancer (NSCLC), the authors designed a clas-
sification model derived from ∼1600 genes and reported
an overall accuracy of 88% for late-stage cancer and 81%
for locally advanced cancer by employing statistical and
machine learning-based techniques [15]. More recently,
Sheng and colleagues leveraged the RNA sequencing
(RNA-seq) dataset published by Best et al. [15] to achieve
88.9% accuracy for NSCLC classification with a mere 48
genes. Their work highlighted the scope of retaining pre-
dictability with a concise gene-panel, thereby inspiring

its potential diagnostic use [16]. While such informative
explorations extend the field, due to lack of validation,
they seldom see materialization.
To address the above issues and to fully exploit the

potential of TEPs for accurate and economical detec-
tion of cancer, we developed a practical computational
cum cross-assay experimental validation workflow which
accounts for small sample sizes. As part of this study, we
used a publicly available RNA-Seq dataset and extracted
11 informative genes that help distinguish between cancer
and healthy samples. The performance of the gene-set was
tested on an independent RNA-Seq data comprising 57
early locally advanced NSCLC patients (non-metastatic)
and 377 healthy individuals [15]. Our gene panel perfectly
distinguished between the two classes (AUC = 1). We also
experimentally validated the effectiveness of these genes
on a geographically distinct cohort of NSCLC patients
(10 NSCLC patients, 7 healthy donors) using RT-qPCR.
In many clinical settings, the turn around time of sample
acquisition is high. This hinders experimental validation
in case of proof of concept studies. To overcome this
limitation, we augmented the training data with artificial
patient and healthy samples, which led to near-perfect
identification of the NSCLC cases (AUC = 0.99).

Results
A set of 11 platelet genes reliably discriminates cancers
and healthy controls
Tumor Educated Platelets opened a new frontier in liquid
biopsy research [4]. Since the introduction, several studies
have been published developingmultivariate classification
models for molecular stratification of cancers and healthy
controls [3, 15, 17]. Most of these studies made use of
several hundreds of genes to attain decent accuracy lev-
els. Profiling large numbers of genes incur a significant
cost, impeding its diagnostic adoption. We asked if the
gene-set can be narrowed down, without compromising
on the disease predictability. We analyzed a published,
multi-cancer RNA-Seq data [4], and came up with a set
of 11 platelet genes (CD79B, CSDE1, IL-32, ITGA2B,
LUC7L, NDUFAB1, RBM6, SKAP2, SS18L2, TRAF3IP3,
and ZNF195) that enables accurate classification of cancer
and healthy samples (refer Methods). We used Gradient
Boosting Machines (GB), Random Forest (RF) and Linear
Discriminant Analysis (LDA), three widely used classi-
fication methods to assess the potential of these genes
in classifying cancer and healthy blood specimens. The
best cross-validation accuracy was obtained using the
GB classifier (AUC = 0.94), which matched the perfor-
mance of the models that used 1000 variables, going by
the recommendations of Best and colleagues ([4], Fig. 1,
Table S1). Notably, the selection of these 11 genes was
not biased to any particular cancer, and, therefore, can be
used across at least four other cancer types other than
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Fig. 1 Panel of 11 genes performs equivalent to panel of 1000 genes. AUC (Area under the curve) plots representing the comparative performance
of 1000 gene and 11 gene panels respectively on platelet transcriptomes from healthy and NSCLC patients. The predictive power of the gene-sets
was evaluated using three widely used classification algorithms namely Gradient Boosting Machines (GB), Random Forest (RF), and Linear
Discriminant Analysis (LDA)

non-small-cell lung cancer (NSCLC). These include col-
orectal cancer (CRC), glioblastoma multiforme (GBM),
breast cancer (BRCA), and pancreatic cancer (PC). In the
case of hepatobiliary cancer (HBC), our accuracy esti-
mates are not reliable due to the lack of samples (n = 5).
It should also be noted that for cancer types other than
NSCLC, the gene panel was not validated on independent
cohorts of patient samples. Therefore the performance
metrics, though promising, may not be considered con-
clusive for cancers types besides NSCLC.

Validation of the gene panel in lung cancer patients
We performed independent experimental validation of
the panel to assert two major reproducibility concerns.
The first concern was cross-geography reproducibility,
and the second was cross-assay reproducibility. The RNA-
Seq data we used for gene selection is representative of
the Dutch population alone [4]. The universality of the
gene panel could be probed only by reproducing its effi-
ciency on a geographically distinct population. On the
same line, it is equally important to check if the fidelity
of the gene-panel remains intact with the change in the
molecular assay. For instance, under many practical set-
tings, RT-qPCR is more economically viable as compared
to RNA-Seq. To this end, we used RT-qPCR to profile the
expression of the selected 11 genes, on a cohort of 10 lung
cancer patients (7 treat naive and 3 first-line chemother-
apy) and 7 healthy controls (Fig. 2a - lower panel,
Figure S1). Gene expression trends, observed in our RT-
qPCR data (Fig. 3), were largely similar to that of the
RNA-Seq study. Among the three classifiers, GB offered

the highest accuracy (AUC = 0.97) (Fig. 4a, Table S2). RF
and LDA offered AUC values of 0.87 and 0.74, respectively
(Fig. 4a). To circumvent the paucity of RT-qPCR profiles,
we employed EigenSample for producing artificial sam-
ples to augment the training data (refer Methods), which
substantially enhanced the classifier performances with a
maximum improvement of 10% (Table S2, Fig. 4b, d).With
sample size augmentation, GB offered a staggering AUC of
0.99, for the RT-qPCR data (Fig. 4b). Best and colleagues
[4] reported an accuracy of 96% for healthy vs NSCLC
samples. On the same RNA-seq samples, the proposed 11
gene panel obtained 97% accuracy (Table S3). Xing and
colleagues [17] studied and validated a single transcript,
ITGA2B (present in our gene-panel), as a TEP marker for
early stage NSCLC and obtained an AUC of 0.92. When
we made classification models with ITGA2B alone, the
highest AUC obtained was 0.78 on the pan-cancer dataset
[4]. However, when we considered only non-metastatic
NSCLC and healthy samples [15], the highest AUC was
0.95.
Our patient cohort primarily consisted of metastatic

NSCLC samples (Table S4), due to the unavailability of
early locally advanced cases. Best et al. [15] investigated
TEPs on a larger cohorts of NSCLC patients and healthy
samples (GSE89843). They reported an 81% accuracy for
early locally advanced tumour classification using ∼1600
genes. We used the locally advanced and healthy samples
from this study to test the applicability of our gene-panel
in detecting the early onset of the disease. In this case,
we hit an accuracy of 100%, indicating potential imple-
mentation of the panel in early cancer diagnosis (Fig. 4c).
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Fig. 2 Schematic representation of workflow and discovery of gene-signature. (a) The upper panel is a schematic representation illustrating the
underlying methodology implemented for the identification of the concise gene-panel utilizing RNA-seq data of Tumor Educated Platelets (TEPs)
(GSE68086). The lower panel represents the experimental design and the downstream statistical analysis employed in the validation of the inferred
signature on a geographically distinct NSCLC patient cohort. (b) A comparison between different feature selection methods shows that a
combination of Coefficient of Variation (CV) and Analysis of Variance (ANOVA) performs the best. (c) Classification accuracy across different cancer
types

Of note, the 11 gene signature is devised for six different
cancer types and validated on NSCLC samples. Survival
analysis was performed independently on each of the 11
genes using the GEPIA (Gene Expression Profiling Inter-
active Analysis) web-server [18]. Based on the NSCLC
cohort of TCGA, three of the 11 genes, namely CD79B,
NDUFAB1, TRAF3IP3 exhibited significantly divergent
survival patterns across the high and low-risk groups
(Figure S2).

Cancer specificity of the gene signature
A significant factor that influences the success of a molec-
ular screening test is its specificity. Changes in the molec-
ular profile of platelets have already been reported in
multiple disease conditions [4, 19, 20]. Cardiovascular dis-
eases are prominent among these [19, 21, 22]. We asked

if our gene panel is specific to cancers. To address this,
we conducted a similar set of analyses on a distinct patho-
logical condition, i.e. Myocardial Infarction (MI), where
drastic shifts in the platelets transcriptome have been
observed [21]. Since ST-segment Elevation Myocardial
Infarction (STEMI) and Stable Coronary Artery Disease
(SCAD) both cause perturbation in the platelet transcrip-
tomes, samples with these conditions were grouped as one
class (patients). The data, now having 2 classes (patient
(n = 38) vs healthy (n = 19)), was then subjected to
Leave-One-Out Cross-Validation (LOOCV) using 3 clas-
sifiers - RF, GB, LDA. Following the suite of NSCLC
validation, RF and GB were run with 50 different seeds
to estimate the stochasticity of the models. As expected,
our 11-gene signature failed to discriminate between the
healthy and the diseased specimens under equivalent



Goswami et al. BMC Genomics          (2020) 21:744 Page 5 of 12

Fig. 3 Results on validation dataset. Bar plots depicting the
expression fold changes of the 11 genes between the healthy (n = 7)
and NSCLC patients (n = 10). Asterisks represent p-value significance.
p-value cutoff was set to 0.05. *, **, *** and **** represent the p-values
of ≤0.05, ≤0.01, ≤0.001 and ≤0.0001 respectively

experimental settings, thereby suggesting the specificity
of the signature towards the tumour datasets (Table S2,
Fig. 4e).

Empanelled genes share their regulatory circuitries
Our results using publicly available data [4] has shown
the efficiency of our gene-panel (Fig. 1). Further, the RT-
qPCR results concurred in terms of expression dynamics
of the selected 11 genes, across cancer and control sam-
ples (Figs. 3, 4a,b,d). We conjectured that these genes
could be co-regulated by a shared set of transcriptional
factors (TFs). To check this, we scanned the putative pro-
moter regions of all the genes for common transcription
factor binding sites. For this, we extracted 1 kb upstream
regions from the transcriptional start sites (TSS) of all
the genes and scanned for transcription factor binding
motifs. We could identify 3 potential transcriptional fac-
tors (IRF1, SP4 and RUNX2) whose motifs were signifi-
cantly enriched among the promoter sequences of the 11
genes (refer Methods). These TFs were all found to be
downregulated in the NSCLC samples (Fig. 5). It should

be noted that each of the three TFs, including their respec-
tive families, are well-reported in lung cancer literature
[23–25]. These analyses, in combination with our RT-
qPCR results, establish a potential regulatory link between
these three transcription factors and the empanelled tran-
scripts.

Discussion
Platelets are long known for their role in linking tissue
damage or malfunction with the inflammatory response
[26, 27]. These megakaryocyte-derived anucleated cells
interact significantly with cell types and release var-
ious factors [28]. Recent evidence hints at platelets’
involvement in cancer growth as well as metastasis
[3, 4, 15, 29–31]. In cancer, platelet transcriptome under-
goes significant changes, thereby providing a remarkable
opportunity to utilize them in devising novel diagnos-
tic strategies [3, 4, 15]. Problems with these approaches
are two folds. First, an optimal prediction of the con-
cerned disease often requires several tens of genes
[4, 15]. Secondly, the validation of a gene signature is con-
tingent on the availability of a large number of tissue sam-
ples [16]. To overcome these limitations, we developed a
pipeline that maximizes disease-healthy classification per-
formance with limited feature genes and small validation
cohort. We successfully augmented the validation cohort
with artificial data points, which further boosted the clas-
sification accuracy significantly. This could be really useful
in a multitude of practical scenarios, where low sample
acquisition rates impede the study progress and clinical
adoption.
The 11 genes spotted by our workflow were validated

on NSCLC cases and healthy controls at a near-perfect
accuracy (Figs. 1, 4c). We found model accuracy to be
consistent across both metastatic (Fig. 4d) as well as non-
metastatic cases (Fig. 4c). A subset of the 11 gene signature
has recently been reported in the context of lung can-
cer, either as an oncogenic driver (e.g. CD79B [32]) or a
prognostic marker (e.g. TRAF3IP3, SKAP2, and SS18L2)
[33–35]. Moreover, mutations in RBM6 were associated
with the loss of heterozygosity in the majority of lung
cancer patients [36]. ITGA2B is a validated marker for
the diagnosis of NSCLC using TEPs [17] with an AUC of
0.92. Differential expression of IL-32 has been reported
in various lung cancer histotypes, including small-cell
lung cancers [37]. There are no reports which establish
a direct association of the remaining four genes (CSDE1,
ZNF195, LUC7L, and NDUFAB1) with NSCLC. Our sur-
vey identified that CSDE1 is a validated target of the
C-MYC transcription factor. C-MYC is a well-studied
oncogene [38]. In the case of small lung-cancer cells,
surprisingly, it harbors antagonistic function and sup-
presses the tumorigenicity [39]. Further, to establish a
functional link between these 11 empanelled genes with
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Fig. 4 Performances of three independent classifiers on early-stage vs. healthy samples, MI samples and on RT-qPCR data. (a) AUC (Area under the
curve) plot representing the performances of three independent classifiers i.e. Gradient Boosting Machines (GB), Random Forest (RF), and Linear
Discriminant Analysis (LDA) in distinguishing tumor and healthy samples using � Ct values of 11 genes from 10 NSCLC patients and 7 healthy
controls. (b) AUC plot depicting the improvement in the classification accuracy by augmenting the data-points with artificial samples, using the
EigenSample technique. (c) Classification performance based on the proposed 11 gene-panel the on TEP profiles of non-metastatic NSCLC patients
and healthy controls from [15]. (d) Classifier performances on experimental data of 10 NSLC and 7 healthy samples. e Receiver Operating
Characteristics (ROC) plot depicting the performances of three independent classifiers in distinguishing healthy and myocardial infarction episode
samples using normalized intensity from platelets microarray dataset [21]
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Fig. 5 Gene panel shares a regulatory circuit. Graphical representation of the enriched transcription factor binding sites in the 1 kilobase upstream
region (TSS=0) of 11 gene signature. p-value (FDR-corrected) represents the statistical power depicting a significant enrichment of the indicated
motifs in the given region over shuffled control sequences. Bar graphs on the right represent normalized read-counts of the identified
transcriptional factors between healthy and tumor samples. Asterisks represent p-value significance. p-value cutoff was set to 0.05. *, **, *** and ****
represent the p-values of ≤0.05, ≤0.01, ≤0.001 and ≤0.0001 respectively

NSCLC, we categorically identified their top 5 interaction
partners at the protein level, using the STRING database
[40]. Interrogation of the prominent interacting partners
revealed their functional importance in lung cancer, indi-
cating an indirect mode-of-association of these proteins
with NSCLC (Table S5). The co-regulatory transcrip-
tion factor analysis identified three core transcription
factors (IRF1, SP4 and RUNX2), which play potential
roles in the regulation of the 11 empanelled genes. IRF1,
SP4 and RUNX2 have been found to play an impor-
tant role in megakaryocyte development and platelet
production [41, 42].

All these collectively indicate that the dysregulation of
some of these key platelet transcription factors might trig-
ger a cascade of gene expression changes in TEPs w.r.t.
the healthy platelets. Since all the key TFs are associated
with platelet development, an expression study focusing
on immature platelets can further our mechanistic under-
standing of the dysregulation of platelet transcriptomes
in cancer. In line with this, the quantitative estimation of
the key morphometric features of developed/developing
platelets could be substantially insightful.
The gene-panel was found to be non-decisive on platelet

transcriptomes collected from patients with Myocardial
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Infarction (MI) (Fig. 4e, Table S2), which asserts its speci-
ficity to cancer. In view of the encouraging results dis-
cussed in this study, we believe the proposed gene panel
will attract further validation and clinical adoption.
In this article, we demonstrated the predictive power of

a small set of platelet genes in determining the existence
of cancer. Similar strategies can be developed for infer-
ring the potential cancer types. In all these cases, the gene
panels need to be validated on larger patient and control
samples’ cohorts. An orthogonal application of such pan-
els could be tracking the treatment responses, as well as
the recurrence of the disease.

Conclusion
Liquid biopsy, a powerful and non-invasive method for
early diagnosis of cancer, is reforming the field of clin-
ical diagnostics. We proposed an 11 platelet-gene panel
(CD79B, CSDE1, IL-32, ITGA2B, LUC7L, NDUFAB1,
RBM6, SKAP2, SS18L2, TRAF3IP3, and ZNF195) that
provides reliable and economically viable platelet-based
classification between cancer and healthy samples. The
gene-panel can accurately diagnose both early and late-
stage NSCLC cases. We performed validation of the gene
panel on two independent cohorts of NSCLC patients, of
which one belonged to the present study. These cohorts
feature a total of 67 NSCLC patients representing both
early and late-stage of cancer. For the published and
in-house datasets, we attained an AUC of 1 and 0.99,
respectively, using the Gradient Boosting Machines (GB)
classification algorithm. These, by far, outwit the pub-
lished classification accuracies, wherein the number of
genes used by the models is significantly higher (approxi-
mately 1000 genes). Notably, we found the genes to share
transcription factor binding motifs, recognized by a small
number of transcription factors (TFs), namely IRF1, SP4,
and RUNX2. We also determined the cancer-specificity of
the gene-panel by benchmarking their performance on a
platelet-based MI dataset.

Methods
Datasets
Best and colleagues performed RNA sequencing of
platelets collected from cancer patients and healthy indi-
viduals (Accession ID: GSE68086) [4]. From this study, we
obtained 273 TEP expression profiles spanning six cancer
types: non-small-cell lung cancer (NSCLC): 59, colorec-
tal cancer (CRC): 44, glioblastoma multiforme (GBM):
40, breast cancer (BRCA): 38, pancreatic cancer (PC): 33,
hepatobiliary cancer (HBC): 5. In addition to the can-
cer samples, platelets from 54 healthy individuals were
also profiled. The dataset originally had 283 samples.
We filtered out samples (n = 10) with unknown labels,
and low expression count. We also used TEP expression
profiles from non-metastatic NSCLC cases and healthy

samples from an independent study (GEO Accession ID:
GSE89843) [15], as a test cohort. Gene expression pro-
files (raw read counts) were normalized using the TMM
normalization method (edgeR package) [43].
In order to examine the gene panel’s ability to classify

early-stage cancer, we selected platelet RNA-seq samples
consisting of 57 early locally advanced NSCLC patients
(non-metastatic) and 377 healthy individuals from an
independent study by [15] (GSE89843).
To assess the specificity of our gene-panel, we re-

analyzed platelet transcriptomes from patients with
Myocardial Infarction (MI) (GEO Accession ID:
GSE109048) [21]. The dataset consisted of microarray
gene expression profiles, obtained from 57 platelet
samples with the following distribution: 19 ST-segment
Elevation Myocardial Infarction (STEMI), 19 patients
with Stable Coronary Artery Disease (SCAD), and 19
healthy donors. SCAD and STEMI are both phenotyp-
ically similar conditions and have been shown to cause
changes in platelet gene expression [16]).

Gene selection
We evaluated several supervised and unsupervised gene
selection strategies, namely Wilcoxon rank-sum test [44],
Logistic regression [45], Coefficient of Variance (CV) [46],
Analysis of Variance (ANOVA) [47], minimum redun-
dancy maximum relevance (MRMR) [48], and DESeq2
[49]. Intending to discover a frugal gene panel, we selected
up to a maximum of 15 genes for each case.We also evalu-
ated the combinations of the supervised and unsupervised
techniques and found out that CV-ANOVA combination
yields the most favorable outcome (Table S6). At first, we
selected 1000 most variable genes based on the Coeffi-
cient of Variance (CV), which is an unsupervised method.
Independently, we selected the top 1000 genes based on
differential expression tests conducted using ANOVA.We
obtained a set of 11 genes upon intersecting the results
from these two approaches. All these techniques were
applied to identify genes, which could distinguish between
the samples from six cancer types and the healthy controls
as reported by Best and colleagues [4]. The CV-ANOVA
intersection based approach offered a total of 11 genes
namely CD79B, CSDE1, IL-32, ITGA2B, LUC7L, NDU-
FAB1, RBM6, SKAP2, SS18L2, TRAF3IP3, and ZNF195.
The workflow is outlined in (Fig. 2a). We validated the
gene panel on each of the cancer subtypes and found
NSCLC and breast cancer to have the highest accuracies
(Table S3). Because of the highest statistical confidence,
we performed all the downstream analyses with NSCLC,
including its experimental validations.

Validation of the gene panel on RNA-Seq data
We used the selected genes to train classification models
using three widely used techniques, namely Gradient
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Boosting Machines (GB) [50], Random Forest (RF) [51],
and Linear Discriminant Analysis (LDA) [52]. To do this,
we utilized the RNA-Seq read count data from a study
by Best and colleagues [4]. As a benchmark, we consid-
ered comparing our predictions with ones obtained using
1000 genes that the authors proposed. We created 100
sets of 90-10 train-test stratified splits of the data for
the area under the curve (AUC) measurements (Fig. 1,
Table S1). We also checked the performance of the 11
genes using only NSCLC (n = 59) and healthy samples
(n = 54) (Figure S3). To gauge the predictive power of
the gene-panel for early cancer diagnosis, we chose non-
metastatic NSCLC samples and healthy samples from
[15]. To benchmark our findings against the reported
values, we performed Leave-One-Out Cross-Validation
(LOOCV) in tune with the methodology followed by Best
et al. [15]. LOOCV for each classifier was performed over
50 times with random seeds to measure the volatility of
the models.

Clinical samples
Blood samples were collected from a total of 10 NSCLC
patients and 7 healthy subjects (control) to train classi-
fiers on data generated from the RT-qPCR experiment
for validation purposes. We obtained ethical clearance
from the Institute Ethics Committee at the All India
Institute of Medical Sciences-New Delhi. All donors pro-
vided informed consent before the collection of periph-
eral blood. 15 ml of peripheral blood was collected in a
BD Vacutainer tube containing anticoagulant EDTA. The
experimental workflow is outlined in Figure S1. Clini-
cal information about cancer patients is summarised in
Table S4.

Platelets isolation fromwhole blood
The platelet-rich plasma (PRP) fraction was prepared by
centrifugation of whole blood for 20 minutes at 120 x g
at room temperature. The supernatant (PRP) was trans-
ferred into a fresh vial, and the red blood cell pellet
was discarded after the first round of centrifugation. The
platelets were enriched from PRP by centrifugation at 360
x g for 20 min at room temperature. The pellet repre-
senting platelets was washed with 1X Phosphate Buffered
Saline (PBS) and centrifuged at 5000 rpm for 5 min. The
PBS was discarded, and platelet pellet was re-suspended
in 1ml TRI reagent® (SIGMA-Aldrich, USA) and stored at
-80◦C.

RNA isolation from platelets
We performed total RNA isolation as per the man-
ufacturer’s recommendations (TRI reagent (SIGMA-
Aldrich, USA)). Samples in the TRI reagent® were thawed
and mixed with 200 μl chloroform. After vigorous
shaking, the samples were incubated for 15 min at

room temperature, followed by centrifugation at 12000
x g for 15 min at 4◦C. The aqueous layer was carefully
transferred into fresh vials, and 500μl of isopropanol was
added for RNA precipitation. After incubation for 10 min
at room temperature, samples were centrifuged at 12000
x g for 10 min at 4◦C. Next, we discarded the supernatant,
and washed the RNA pellet twice with 75% ethanol, fol-
lowed by centrifugation at 7500 x g for 5 min. After
centrifugation, the RNA pellets were dried at room tem-
perature and resuspended in 30μl RNase-free water. RNA
samples were quantitated using Nanodrop and stored at
-80◦C. cDNA synthesis was performed using the stan-
dard protocol as provided by the manufacturer cDNA kit
(cat no. K1622, Thermo Fisher Scientific, USA). Briefly,
the reaction mixture for cDNA synthesis was setup with
4μl 5X buffer, 2μl dNTPs, 1μl Random primer (RP), 1μl
RiboLock (RL) and 1μl SuperScript Reverse Transcriptase
and RNA sample in a total of 20μl volume.

Experimental validation of the gene panel using RT-qPCR
TaqMan gene expression assays (Applied Biosystems, Cal-
ifornia, USA) were used for expression studies of short-
listed gene candidates, namely CD79B, CSDE1, IL-32,
ITGA2B, LUC7L, NDUFAB1, RBM6, SKAP2, SS18L2,
TRAF3IP3, and ZNF195. Two reference genes (ACTB and
GAPDH) were used as internal controls for downstream
normalization steps. The reaction mix was prepared using
10μl Master mix, 1μl of gene expression assay, Nuclease-
free water and cDNA sample per well.

Preprocessing of the RT-qPCR data
For the estimation of the relative gene expression, we used
the comparative-Ct (��Ct) method [53]. By using this
approach, we first normalised our data using reference
genes and then calculated the relative expression differ-
ences for each gene (healthy vs cancer) by fold-change.
Two different reference genes ACTB and GAPDH) were
used for expression normalisation. We modelled our cal-
culations and statistical analysis based on previously pub-
lished examples [53–55].

EigenSample based artificial augmentation of the
validation cohort
The EigenSample technique [56] was employed to aug-
ment the training data as subsampled from the entire set
of RT-qPCR profiles. EigenSample fabricates artificial data
points in a manner that least perturbs the variance of
the original dataset. First of all, it projects the input data
on a small number of principal components. Class labels
are then used to define clusters, whose centres are joined
to the samples of the respective classes by straight lines.
Midpoints of these straight lines are now considered as
new samples. Each new sample xi in the lower dimen-
sion is projected back to pre-images zi in the original
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dimension by solving a quadratic programming problem
that respects the minimum and maximum bounds of the
original training data (Eqs. 1 to 5). Earlier experiments
with EigenSample have shown that the new samples it
generates more realistic and authentic than other meth-
ods. Let P be the projection matrix that transforms a high
dimensional sample z to a low dimensional image x. The
pre-image of a new sample xi is denoted by zi and is
obtained by solving the following optimization problem.

Minimize
zi,qi+,qi−

1
2‖zi‖2 + C

∑k
j=1

(
qi+j + qi−j

)
(1)

s.t.
P · zi − qi+ ≤ xi + ε (2)
P · zi + qi− ≥ xi − ε (3)

lb ≤ zi ≤ ub (4)
qi+, qi− ≥ 0 (5)

where ε is the approximation tolerance, and qi+ and qi−
are error variables. C is a hyper-parameter controlling the
trade-off between the degree of approximation and norm
of the solution vector ‖zi‖. A small value of C (C −→ 0)
will yield a minimum norm solution, while large C (C −→
∞) corresponds to the solution of a system of linear
equations. Deploying machine-learning techniques on
small sample sizes is difficult. Data augmentation is an
important tool to increase the size of the labelled data
and helps us to use the existing data more effectively
[57, 58]. As such, we used EigenSample to demonstrate
that artificial augmentation of training data can improve
the prediction outcomes.

Validation of the gene panel on RT-qPCR data
Due to the small sample size, we resorted to the Leave-
One-Out Cross-Validation (LOOCV) strategy for assess-
ing the performance of various classifiers on RT-qPCR
data. On every pass of LOOCV, we applied EigenSample
for training-data augmentation. For RF and GB classi-
fiers, 50 random seeds were used to control their inherent
stochasticity. The ROC plot was constructed while pool-
ing predictions across these runs.

Exploring the co-regulatory network of the selected genes
To identify the potential transcription factors (TFs), reg-
ulating the empanelled genes, we extracted their putative
promoter regions (1kb upstream of the transcriptional
start site; TSS) using Eukaryotic Promoter Database [59].
Promoter sequences thus obtained were converted into
FASTA format and were subjected to the Analysis ofMotif
Enrichment (AME) tool (a feature of the MEME suite),
to discover common TF binding motifs [60]. For accu-
rate inference of the common transcription factor binding
sites (TFBSs) in the promoter sequences, we have utilized
JASPER motif database [61], a reliable database harboring

non-redundant transcription factor (TF)-binding profiles.
Enrichment analysis of the common regulatory transcrip-
tion factors was performed against randomly shuffled
input sequences (control sequences). Fisher’s exact test
was used to report p-values. Differential expression of the
TFs in the RNA-seq data [15] was calculated using edgeR
[62] (Table S7). Only NSCLC and healthy samples were
selected from the dataset for the analysis.
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