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Abstract

Primary immunodeficiency diseases (PIDs) are rare diseases that are characterized by genetic mutations that
damage immunological function, defense, or both. Some of these rare diseases are caused by aberrations in the
normal development of natural killer cells (NKs) or affect their lytic synapse. The pathogenesis of these types of
diseases as well as the processes underlying target recognition by human NK cells is not well understood. Utilizing
induced pluripotent stem cells (iPSCs) will aid in the study of human disorders, especially in the PIDs with defects in
NK cells for PID disease modeling. This, together with genome editing technology, makes it possible for us to
facilitate the discovery of future therapeutics and/or cell therapy treatments for these patients, because, to date, the
only curative treatment available in the most severe cases is hematopoietic stem cell transplantation (HSCT). Recent
progress in gene editing technology using CRISPR/Cas9 has significantly increased our capability to precisely modify
target sites in the human genome. Among the many tools available for us to study human PIDs, disease- and
patient-specific iPSCs together with gene editing offer unique and exceptional methodologies to gain deeper and
more thorough understanding of these diseases as well as develop possible alternative treatment strategies. In this
review, we will discuss some immunodeficiency disorders affecting NK cell function, such as classical NK deficiencies

(CNKD), functional NK deficiencies (FNKD), and PIDs with involving NK cells as well as strategies to model and
correct these diseases for further study and possible avenues for future therapies.

Keywords: Primary immunodeficiency diseases (PIDs), Induced pluripotent stem cells (iPSCs), Gene editing, CRISPR-
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Background

Primary immunodeficiency disorders (PIDs) are rare
diseases caused by genetic mutations that damage
immunological function, defense, or both. PIDs refer to
over 130 disorders that result from developmental and/or
functional defects in one or more cell types of the immune
system. PIDs are generally classified as disorders of
adaptive immunity (B cell, T cel, or combined
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immunodeficiencies) or innate immunity (NK cells,
phagocyte, and complement disorders). Some of these
diseases affect natural killer (NK) cells [1, 2].

NK cells are lymphocytes of the innate immune system
poised to deliver a response immediately after recogniz-
ing specific signals of “danger,” stress, or foreign origin.
NK cells are initially defined as rapid cell-mediated cyto-
toxicity cells, though they also initiate a slower receptor-
mediated apoptosis, and efficiently produce soluble
mediators, such as cytokines, and provide contact-
dependent co-stimulation. Hence, NK cells contribute to
the regulation of immune responses, in the surveillance
of stress and cancer cells, and in the defense against
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infections [3]. While these functions are not exclusive to
NK cells, the ability to quickly mediate effector functions
without the need of further development and/or matur-
ation is a crucial distinctive feature of mature NK cells
and cytotoxic T lymphocytes (CTLs), both of which are
efficient at mediating cytotoxicity.

NK cell effector functions happen after ligation of
germline-encoded receptors and involve the secretion of
cytolytic molecules. These molecules are contained in
pre-formed lytic granules of resting human NK cells. As
a result, the cytolytic process needs to be well controlled
and may involve additional or enhanced mechanisms for
controlling the secretion of lytic granule contents [4].

Several NK cell deficiencies have been identified as
being present in PIDs, including some characterized by
an impediment in their development (classic NK defi-
ciencies or CNKD) or by an aberrant formation of the
lytic synapse (functional NK deficiencies or FNKD). To
date, only one FNKD has been shown to impair only NK
cell function. Many studies on how the lytic synapse is
formed have been performed with T cells from patients
with PIDs. Though cytotoxic lymphocytes have critical
roles in host defense and immune regulation, NK cell
deficiency can add to the clinical phenotypes [5].

In this review, we will focus on the most relevant PIDs
with established functional defects in NK cells, such as
CNKD [5] with mutations in GATA2 [6-8], MCM4,
RTEL1, GINSI, and IRF8 genes; FNKD, with defects in
the FCGR3A gene and PIDs involving NK cells, like
Wiskott—Aldrich syndrome (WAS) [9-11], Chediak—
Higashi syndrome (CHS) [12, 13], Griscelli syndrome
type II (GS2) [14, 15], familial hemophagocytic lympho-
histiocytosis 2 (FHL2) [16, 17] and 4 (FHL4) [18-20],
APDS and APDS-2 [21], severe combined immunodefi-
ciency due to ADA deficiency (ADA-SCID), X-linked
severe combined immunodeficiency (X-SCID), and X-
linked chronic granulomatous disease (X-GCD) as
described in detail in Fig. 1 and Table 1 [5].

The pathogenesis and processes underlying target rec-
ognition by human NK cells of all the PIDs mentioned
before are still not well understood. For this reason, the
use of induced pluripotent stem cells (iPSCs), as a dis-
ease modeling tool, will help the study of human NK cell
disorders with the final goal of elucidating the disease
mechanisms to find novel gene and cell therapies for the
treatment of those PIDs.

iPSC generation as a disease modeling tool

Prof. Yamanaka in 2006 made the pivotal finding that
somatic cells can be reprogrammed to pluripotent cells
by introducing a set of transcription factors, named in-
duced pluripotent stem cells (iPSCs) [22]. This novel
work used fibroblasts from adult mouse tail tips in order
to create cells that resembled mouse embryonic stem
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cells morphologically and in gene expression. Essentially,
these iPSCs could be proliferated and differentiated
in vitro and in vivo, giving rise to mature cell types from
the embryonic germ layers, endoderm, mesoderm, and
ectoderm as well as to germ cells. One year later, a par-
allel procedure was successfully used to generate iPSCs
from human fibroblasts. This achievement permitted the
use of this technology in the in vitro study of human dis-
eases [23]. The most commonly used cell type to gener-
ate iPSCs is the fibroblast, though other cell types have
also been used to derive iPSCs (keratinocytes, epithelial
cells, blood cells, etc.) [24]. Later, several groups re-
ported the success of generating mature and fully differ-
entiated blood cells, including NK cells [25].

Substantial improvement has also been made in the
development of other strategies to accomplish repro-
gramming. Generation of iPSCs was initially based on
using four retroviral vectors [26]. Recently, non-
integrative methods (episomal vectors and Sendai virus,
among others) have been developed to reprogram in a
safer manner [27, 28]. In 2011, Eguizabal and colleagues
were able to reprogram mature cells, such as dermal
fibroblasts and blood cells, into iPSCs and later differen-
tiate them into any desired cell type [25, 29-31]. To
date, several studies have been reported using this
technology to generate patient-derived iPSCs for disease
modeling and for future applications in cell and gene
therapies [32-35].

One of the first reports of a PID patient-derived iPSC
line was from a patient with an adenosine deaminase
(ADA) deficit, which causes severe combined immuno-
deficiency (ADA-SCID) [36]. While no follow-up studies
using the ADA-SCID iPSCs have been reported to date,
this crucial publication presented a proof of principle
that iPSCs can be generated from patients with PIDs for
investigating and correcting this disease. In 2011,
Pessach and colleagues also published the successful
generation of iPSCs from PID patients caused by specific
mutations [37]. Another example of patient-specific
iPSC generation was performed with cells from Fanconi
anemia patients. Izpisua Belmonte’s group conducted
this study, and interestingly, iPSCs could only be repro-
grammed after correction of their mutation and gave rise
to phenotypically normal myeloid and erythroid progeni-
tors [38]. In addition, two papers from Malech’s labora-
tory show the generation of iPSCs using peripheral
hematopoietic stem cells from five different genotypes of
chronic granulomatous disease (CGD) patients. Both the
patient iPSCs and patient somatic cells before being re-
programed into iPSCs can be corrected. Then, from the
corrected iPSCs by in vitro myeloid differentiation,
normal granulocytes were generated [39, 40]. In 2016,
Laskowski and colleagues generated iPSCs from a
Wiskott—Aldrich syndrome (WAS) patient and the WAS
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Fig. 1 Functional and cell number defects in NK cells caused by different PIDs. Different check points of cytotoxicity may be affected in some
diseases, such as FHL2, FHL4, CHS, and GS2. Other diseases may affect the proper functioning of a signaling pathway (APDS, APDS-2, IMD20) or
the correct assembly of the cytoskeleton (WAS). Diseases with cell number defects in NK cells, such as CNKD1, IMD54, DKCB, IMD55, IMD32A-32B,
X-CGD, and ADA-SCID

Table 1 Overview of the most relevant PIDs, their OMIM number, their affected gene, the locus of the mutations, and the mutations
themselves

Disease OMIM number Mutated gene Locus Mutation
CNKD1 614172 GATA2 3g21.3 c1061C>T
IMD54 609981 MCM4 8q11.21 71-2A-G
DKCB 608833 RTELT 2091333 c3791G>A
IMD55 610608 GINST 20p11.21 c.247CT
IMD32A-328 601565 IRF8 16924.1 T80A
IMD20 615707 FCGR3A 19233 c230T-A
FHL2 267700 PRF1 9q21.3-g22 c1122G>A
FHL4 603552 STX11 6424.2 c.173T>C
GS2 607624 RAB27A 150213 c.582T>G
WAS 301000 WAS Xp11.23-p11.22 C3416>A
CHS 214500 LYST 1942.1-g42.2 €.1902dupA
APDS 615513 PIK3CD 1p36.22 c3061G>A
APDS-2 616005 PIK3R1 5g13.1 c1425+1G>CT
X-SCID 300400 IL2RG Xq13.1 K97X
ADA-SCID 102700 ADA 20913.12 R156H
X-CGD 306400 CYBB Xp21.1-p114 P415H
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locus was targeted in order to produce corrected WAS-
iPSCs. This group proved that the defects showed by
WAS-iPSC-derived lymphoid cells were completely
corrected for potential therapeutic use [41].

Further studies with PID-mutation-corrected iPSCs
are needed to determine whether they are capable of dif-
ferentiating into any target cell type as well as to gain
more thorough knowledge of the mechanisms behind
specific mutations [42]. Altogether, these publications
reveal that disease—patient-specific iPSCs are an excep-
tional tool for improved understanding of human
diseases and to develop novel and disease-specific cell
and gene treatment approaches (Fig. 2).

Gene editing revolution

During the DNA replication process, after experimental
manipulation by using endonucleases or after exposure
to chemotherapy or ionizing radiation, DNA damage
can occur. Luckily, DNA repair mechanisms are able to
repair this damage, thus avoiding DNA mutations that
can develop into disease. This repair process is the basis
of gene editing therapies, which follow two main repair
pathways for double-strand breaks (DSBs) in the DNA:
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non-homologous end joining (NHEJ) and homologous
recombination (HR) [43].

In the 1980s, pioneering scientists Prof. Capecchi,
Smithies, and Evens discovered the HR pathway that
repaired genes in mammalian cells. Later in 2007,
they were awarded the Nobel Prize in Medicine for
their findings in introducing gene modifications in
mice models by using embryonic stem cells and HR-
mediated gene editing. A few years later, Prof. Jasin
enhanced gene targeting in mammalian cells using
HR from yeast endonuclease I-Scel by using meganu-
cleases. Since that time, next-generation gene editing
tools have been used such as zinc-finger nucleases
(ZFNs) and transcription activator-like effector nucle-
ases (TALENs), which all edit DNA in combination
with the Fokl endonuclease [43].

In the late 1980s, a bizarre topology at the 3" end of
the alkaline phosphatase gene was revealed in E. coli.
This was a clustered regularly interspaced short palin-
dromic repeats (CRISPR) array, which is now one of the
most commonly used gene editing technologies. Later,
in 2005, the molecular mechanism was revealed, which
showed that CRISPR arrays are transcribed into RNA to
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Fig. 2 Obtaining hiPS cells from different cell sources in order to use them as a disease model, drug developmental model, or stem cell research.
hiPS cells from a PID patient may be corrected with the goal of developing a cell-based therapy. Adapted from [37]
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cleave and load into CRISPR-associated (Cas) proteins
(Cas9) [43].

For many years, scientists have been looking for a tool
to induce or repair mutations in a targeted manner.
Several techniques have been used in the past, such as
engineered meganucleases, ZFNs, and TALEN:S, all with
limited success, due to the fact that they are labor-
intensive, expensive, or both. CRISPR-based methodolo-
gies together with RNA-guided nuclease activity meant
that, theoretically, DSBs in eukaryotes can be induced,
which was very hard to achieve before. In general, DSBs
are repaired by DNA repair pathways, with NHE] having
the potential to induce indels—mutations caused by ran-
dom insertion or deletion of nucleotides at the DSB site,
whereas the HR repair pathway is more precise [44].

The differences between engineered meganucleases,
ZFNs, TALENs, and CRISPR/Cas9 nucleases are de-
scribed in detail in Fig. 3.

Engineered meganucleases are derived from a huge
family of natural homing endonucleases [45], and some
have been designed with diverse strategies (structure-
based design and yeast surface display) to identify
natural target sites in the genome [46, 47]. Historically,
natural meganucleases have been the gold standard for
specificity, but have not been fully evaluated for transla-
tional development.

Zinc-finger nucleases (ZFNs) are artificial restriction
enzymes in which a DNA-cleavage domain from the
enzyme Fokl is fused to a zinc-finger DNA-binding
domain [48, 49]. The nuclease domain must dimerize to
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cut DNA efficiently. Consequently, a pair of ZFNs
oriented correctly to allow dimerization must be
engineered for each target site. A variety of strategies
can be engineered for novel target sites for zinc-finger
DNA-binding domains (modular assembly, phage dis-
play, bacteria-based two-hybrid and one-hybrid systems,
and combinatorial approaches) [50]. Though ZEN design
strategies are constantly being enhanced, engineering of
these recombinant proteins with high activity and speci-
ficity still remains a challenge. However, the highest-
quality ZFNs generated are a mixture of phage and
modular display that are in an engineered T cell clinical
trial [51].

TAL effector nucleases (TALENS) are artificial proteins
with a similar structure to ZFNs with the fusion of the
enzyme Fokl nuclease domain to an engineered DNA-
binding domain. This DNA-binding domain is engi-
neered by gathering serial TAL repeats [52]. Each repeat
mediates the interaction with a single nucleotide
through a two amino acid repeat variable di-residue
(RVD) that can be described by a simple code [53].
Thus, generating a highly active TALEN is easier than
generating a highly active ZFN. Moreover, TAL repeats
that use engineered RVDs and not natural ones are now
being used to build TALENs and may have increased
specificity over natural RVDs, though this still necessi-
tates further study. A pair of TALENs must be engi-
neered to recognize target sites of interest, as with ZFNs;
thus, TALENs using TAL repeats with RVDs have su-
perior specificity when compared to ZFNs.

Meganuclease
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CRISPR/Cas9 nucleases (CRISPR stands for “clustered
regularly interspaced short palindromic repeats”) origin-
ate from the immune system of bacteria and archea [54].
The specificity of the CRISPR/Cas9 nuclease system is
based on RNA-DNA Watson—Crick base pairing instead
of protein—-DNA interaction. In this system, a single-
guide RNA (sgRNA) is constructed for the 20 nucleo-
tides matching the target region. This target site must be
next to a proto-spacer adjacent motif (PAM) sequence,
which the Cas9 protein uses to recognize target sites
[55]. The Cas9 protein, together with the sgRNA, is cap-
able of unwinding double-stranded DNA, cross-examine
if the single-guide adequately matches the target site,
and generate a double-strand break in order to repair or
introduce mutations. CRISPR/Cas9 nucleases can be
engineered very simply since they are active at the
desired target site.

Gene editing technology is a powerful tool currently
being used in basic research, but the ultimate aim is to
translate these tools to be applied in therapeutic treat-
ments. Being able to use gene editing technology in the
clinic stems from the possibility of treating monogenic
diseases by developing a novel method to correct the
disease-associated mutation [56, 57]. There are several
companies (Cellectis, Sangamo Therapeutics, Editas
Company, CRISPR Therapeutics, Caribou Biosciences,
Precision Biosciences, and Intellia Therapeutics) devel-
oping gene editing-based approaches to treat monogenic
diseases like [-thalassemia, sickle cell anemia, cystic
fibrosis (CF), hemophilia, Duchenne muscular dystrophy
(DMD), alphal-antitrypsin deficiency (A1ATD), Hun-
tington’s disease, lysosomal storage disorders (LSDs),
among others [44]. Unfortunately, no gene editing-based
strategies to treat PIDs have been developed yet, but
surely, they are coming soon.

Certainly, the use of gene editing tools in patient-
specific iPS cells will aid in the development of future
treatments aimed at correcting the point mutations in
PIDs with defects in NK cells.

Current gene and cell therapies for PIDs with
defects in NK cells

The first time HSCT was used as a therapeutic option
for treating PID in a severe combined immunodeficiency
(SCID) patient was in 1965 [58], as shown in Fig. 4.
Since then, HSCT has been the standard care for SCID
patients with great survival rates [60-62]. However, de-
pending on the HLA-match, HSCT could have some
complications. On the one hand, when an HLA-identical
sibling donor is available, the success rates are very high.
On the other hand, a less well-watched HLA allogenic
donor, such as haploidentical family members or unre-
lated donors, could lead to some serious risks. Among
these risks, the more worrisome ones are graft rejection
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and graft versus host disease (GvHD). If either of these
conditions occur, patients require an urgent restoration
of hematopoiesis to prevent complications from pro-
longed pancytopenia [63]. In order to avoid these risks,
during the last 20 years, genetic manipulation of a pa-
tient’'s own autologous immune cells has been studied
and is being translated into clinical trials. Key clinical
trials using g-retroviral vectors for gene correction in ad-
enosine deaminase SCID, Wiskott—Aldrich syndrome,
and X-linked SCID had moderate hematopoietic cell
transduction efficiency. Nevertheless, these trials served
as a proof of concept that gene correction could provide
a curative therapy since treated patients showed im-
provement in immune function. Unfortunately, several
years after treatment, patients developed leukemia as a
consequence of the activation of pro-oncogenes close to
the g-retroviral vector insertion points [64]. As a conse-
quence, this led to the development of lentiviral vectors,
which improved the efficacy and safety of the gene
therapies. For example, Strimvelis (gene therapy for
ADA-SCID) is now open in Europe [65, 66] (Fig. 4).
Currently, there are very few clinical trials that combine
cell and gene therapy that are ongoing for several PIDs
as shown in Table 2 [67, 68, 69], but none utilizes gene
editing strategies.

The triumph of gene therapy in treating PIDs is a
major advancement, though limitations in manufactur-
ing disease-specific vectors remain a challenge [70]. As
this field moves forward, more efficient procedures
offering wider spread applications arise. Gene editing
defines a group of DNA editing approaches that can be
simply designed for point mutations. Recently,
programmable nucleases such as ZFNs, TALENs, and
CRISPR-Cas9 have been developed as effective methods
for editing the genome to correct the affected gene in
PIDs [49, 71-76].

Compared to lentiviral vectors, gene-specific editing
technologies has become a tremendously promising tool,
as it has the potential to physiologically regulate gene
expression and prevent genome-wide vector integration.
Some of the ongoing efforts are focused on developing
sensitive techniques to detect genotoxicity derived from
unintended effects of endonucleases (off-target effects).

In the case of CRISPR-Cas9 approaches for HSC
genome editing in PIDs, the design of the donor
template is challenging and both the nature (single/mul-
tiple mutations or deletions in one or more hotspots
distributed along the gene) and the functional effect of
the mutation (gain of function versus loss of function)
have to be taken into consideration [77].

Short donor templates (such as ssODN or linear or
plasmid dsDNA donors) have been used to correct loss
of function (LOF) mutations of a single or few nucleo-
tides. For example, De Ravin and colleagues [78] could
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Fig. 4 Viral vector technology development and its application to human gene therapy. The line represents the timeline of this technology, from

repair the mutation in the CYBB gene of CD34" HSCs
from patients with the immunodeficiency disorder X-
linked chronic granulomatous disease (X-CGD) using a
chemically modified 100-bp ssODN that resulted in pro-
duction of 15-20% functional mature human myeloid
and lymphoid cells for up to 5 months.

In contrast to small mutations, repair of large deletions
or insertions is not possible with short donor templates
and instead functional complementary DNA (cDNA)
templates are inserted to target genes. Encouraging

preclinical studies have been published using this ap-
proach for the treatment of X-SCID or X-CGD [79-81]
and will be ready to translate to clinical trials soon.
However, one limitation to consider for the application
of gene editing tools in a clinical setting might be the
engraftment efficiency and HSC functionality of genetic-
ally modified cells due to cellular effects of the gene edit-
ing machinery. Indeed, global gene expression changes
have been observed upon delivery of CRISPR-Cas9 ma-
chinery components into the cells. Immune response to

Table 2 Overview of current available clinical trials for different PIDs

Disease Mutated gene/protein Vector/target cell Conditioning Clinical trial reference
CNKD1 GATA2 Allogeneic HSCT Busulfan/fludarabine/cyclophosphamide/TBI NCT01861106
WAS WAS SIN-LV/BM/PBSCs RIC busulfan/fludarabine NCT01515462
NCT01347346
NCT01347242
NCT01410825
SIN-LV/PBSCs None NCT03837483
X-SCID IL2RG SIN-yRV/BM None NCT01410019
NCT01129544
NCT01175239
SIN-LV/PBSCs Busulfan 6 mg/kg NCT01306019
SIN-LV/BM Busulfan 6 mg/kg NCT01512888
ADA-SCID ADA SIN-LV/BM/PBSCs Busulfan 5 mg/kg NCT01380990
SIN-LV/BM/PBSCs Busulfan 4 mg/kg NCT01852071
NCT02022696

SIN-yRV self-inactivating yRV vector, SIN-LV self-inactivating lentiviral vector, BM bone marrow, PBSCs peripheral blood stem cells, MAC myeloablative conditioning,

RIC reduced intensity conditioning, TBI total body irradiation
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viral infection, DNA damage response, apoptosis, and
cell cycle processes have been reported as the most sig-
nificantly enriched gene signatures [82]. The activation
of these biological processes might negatively affect HSC
stemness and hematopoietic lineage expansion and dif-
ferentiation. Further studies are needed in order to bet-
ter understand these mechanisms and therefore design
more efficient CRISPR-Cas9 strategies and improve HSC
engraftment efficiency.

Apart from CRISPR-Cas9, other genome editing tools
have been used to modify genes in different cell types in-
cluding HSCs. ZFN and TALEN techniques have been
used to modify the IL2RG locus, which is responsible for
SCID [83].

Specifically in the case of PID with NK cell defects, a
good example of the evolution of treatment approaches
is seen with WAS. The first clinical trial with gene ther-
apy in WAS patients was performed using gamma-
retroviral vectors. Even if 9 of 10 patients showed partial
or complete resolution of immunodeficiency, auto-
immunity, and other malignancies, 7 of them developed
acute leukemia. This study demonstrated that gene ther-
apy for WAS can be effective, although it was essential
to find an alternative to gamma-retroviruses given the
high risk of leukemia after months or years [84]. More
recently, self-inactivating lentiviral vectors have shown
efficacy for several PIDs, including WAS, and they are
now in phase I/II clinical trials for a number of immune
disorders. To date, more than 20 patients have been
treated using lentiviral vectors and no evidence of
vector-related toxicity has been observed with any re-
ports of leukemia [85]. However, platelet recovery has
been variable in those trials [86]. Although no pre-
clinical studies have been published yet, nuclease-
based gene editing approaches for repairing mutations
in PID with NK cell defects might represent the fu-
ture of gene therapy, already demonstrated by studies
targeting other PIDs, as explained above. Hence,
WAS gene targeting systems have been already tested
in cell lines, providing the first hints for feasibility of
CRISPR-based and heterodimeric ZNF-based gene
therapy strategies [87].

In summary, thanks to a better understanding of
stem cell biology, bone marrow transplantation, vec-
tor design, and genome editing, it is probable that
gene therapy will become the gold standard of care
for certain diseases in the future. In fact, its benefits
have already been demonstrated for WAS, ADA,
SCID, and X-CGD. In addition, a number of preclin-
ical studies using targeted gene editing strategies
show promise [59, 79-81, 88] and a large number of
patients treated so far in clinical trials indicate that
the gene therapy field is fast becoming a therapeutic
standard.
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Conclusions and future perspectives

During recent years, the genome editing field, together
with cell reprogramming field, has shown tremendous
progress. Currently, the first clinical trials with iPSC-
derived NK cells (FT500) and gene-edited somatic cells
have started. Here, we described the advantages of mod-
eling and correcting PIDs with gene editing technologies
while avoiding the use of viral vectors. However, further
refinement of the genome editing tools is necessary if
they are to be used in a clinical setting for PID treat-
ment. Specifically, off-target mutagenesis has to be
examined and the yield of gene-corrected HSCs or other
blood cells (NK cells) needs to be improved so that an
adequate number of cells for autologous transplantation
and engraftment can be achieved. In spite of these is-
sues, the influence of genome editing and stem cell ther-
apies on modern medicine will be revolutionary for the
PID field.
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