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Accurate differential analysis of microarray data strongly depends on effective treatment of intergene correlation. Such dependence
is ordinarily accounted for in terms of its effect on significance cutoffs. In this paper, it is shown that correlation can, in fact, be
exploited to share information across tests and reorder expression differentials for increased statistical power, regardless of the
threshold. Significantly improved differential analysis is the result of two simple measures: (i) adjusting test statistics to exploit
information from identifiable genes (the large subset of genes represented on a microarray that can be classified a priori as
nondifferential with very high confidence], but (ii) doing so in a way that accounts for linear dependencies among identifiable and
nonidentifiable genes. A method is developed that builds upon the widely used two-sample t-statistic approach and uses analysis
in Hilbert space to decompose the nonidentified gene vector into two components that are correlated and uncorrelated with the
identified set. In the application to data derived from a widely studied prostate cancer database, the proposed method outperforms
some of themost highly regarded approaches published to date. Algorithms inMATLAB and in R are available for public download.

1. Preamble

In certain ways, this paper represents a departure from
current trends in scientific publishing. The Worldwide Web
has made available extraordinary resources in the form of
databases for comparative analysis of methods in bioin-
formatics and numerous other disciplines. The benefits of
using common sets of real data to compare and contrast
new algorithms are obvious. In some fields of investigation,
especially, perhaps, research in early states of knowledge (e.g.,
genomics), there is an equally obvious drawback in using real
data—that the “correct answers are not known,” making it
difficult to ultimately interpret differences in performance as
anything but differences.

Lest the reader be preparing for an argument promoting
classic simulation studies, we hasten to state at the outset
that this argument is not forthcoming. Before the age of the
internet, simulation studies using reasonably justified data
models (Gaussian errors, etc.) were a time-honored standard
in all areas of math, science, and engineering. The ready

availability of rich data resources makes it irrational to
advocate to a return to “pure simulation” using models that
are untested against these existing data sets. The authors of
this paper in no way promote a return to such methods and
appeal to the reader to recognize that “models detached from
reality” are not used in any way in this paper.

This research centers on some rather straightforward
adjustments to classic hypothesis-testing procedures for
use in differential analysis of microarray expression data.
The salient result is a “reranking” of the order in which
gene expression data are considered for “truly differential”
status. In an effort to objectively compare these modified
methods with the performance of established algorithms, it
was decided to create a database of microarray expression
simulations in which the data retained as much second-
order statistical character as possible relative to a widely used
prostate cancer database. The up- and downregulations of
gene expressions were indeed synthetically modulated onto
a carefully constructed baseline. The consequence is a set of
comparative performance results that are objectively based
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on data that were “guided by nature” but which were, quite
openly stated, synthesized with this natural guidance. Rather
than dismissing these results as “simulations,” the reader
is urged to consider whether there is merit in moving the
uncertainty to the data generation side (if that uncertainty
can be intelligently controlled), if it permits objective results
on the data analysis side. The current modus operandi is to
accept uncertainty in the performance results with the benefit
of authenticity in the data generation. The authors hope that
this question might engender some debate and research.

Using the testing approach employing “nature-guided
simulation,” the results for the reranking method presented
here are remarkably good relative to two established meth-
ods developed by respected authorities. Many people have
reviewed these results, including some very eminent statis-
ticians and bioinformaticians. Reactions have ranged from
encouragement and amazement to deep skepticism. The
comment “too good to be true” has been used at least twice,
including, once, in a constructive criticism, by a distinguished
editor of this journal. We understand this response: unfor-
tunately (or fortunately, depending on one’s perspective),
no one has been able to find a flaw in the methods. We
suggest two possibilities. (1) Some aspect of the simulation
procedure is creating a bias toward the developed detection
method. (2) Authors with a somewhat different perspective
(two signal processing engineers and a cancer researcher,
with over a century of combined research experience, but
without extensive work in bioinformatics) were able to see
some relatively simple algorithmic adjustments that eluded
researchers focusing on deeper issues.

Rather than viewing the results of this paper as a claim
of superiority of the new method over respected algorithms,
the authors appeal to the reader to accept the report in the
spirit it is offered: interesting, potentially useful, results that
raise many questions, and possibilities for further research.
The “intelligent stimulation” approach in itselfmay offer some
grounds for innovation in the field. Attempts to verify that
the present results are, indeed, “too good to be true” may
reveal technical information benefiting differential expres-
sion detection methods. This is the classical way in which
research moves forward. We are grateful to the ISRN Journal
of Bioinformatics for the opportunity to bring these ideas to
the attention of the research community.

2. Introduction

TheDNAmicroarray was initially touted as a tool that would
revolutionize the understanding of complex diseases and
usher in an era of personalized medicine. This optimism is
on display in Lander’s 1999 Nature Genetics article entitled
“Array of hope” [1]. It is not unusual, however, for near-term
impacts of emerging technologies to be overestimated when
first deployed, then to have the expectationsmoderated as the
technologies reveal new complexities in the problems they are
designed to solve. Over the past decade, early optimism about
the microarray has given way to a pragmatic understanding
of challenges and the need for further research and develop-
ment.This normal course of events led to Frantz’s 2005 article
in National Review of Drug Discovery entitled “An array of

problems” [2]. The study of microarray data has shown the
need for exceeding care in the design and regularization of
experiments and in the data collection and preprocessing,
but the biggest hindrance to progress has been the lack of
definitive methods for interpretation of microarray results.

One of the main challenges to proper analysis is the pres-
ence of significant correlation among gene expressions man-
ifest in the microarray results [3, 4]. One measurable indi-
cation of the uncertainty caused by correlated differential-
expression tests is the resultant increase in the variance of
the false discovery rate (FDR) [3]. Linear statistical depen-
dence among gene-expression correlations, therefore, can be
quantifiably linked to higher-risk detection algorithms for
the discovery of active genes. Among many causes, intergene
correlation is attributable to coexpression of genes [5] and
to unmodeled factors that introduce systematic effects across
genes [6, 7]. As a result, for most real data, the assumption of
independence or weak dependence among gene expressions
is unfounded, andmethods treating correlation are necessary
[8, 9]. In fact, a few investigators have even questioned
the adequacy of accounting for correlation alone and have
examined the implications of nonlinear dependence on the
discovery of genes [10–12].

Correctly detecting differentially expressed genes—or
the related task of estimating the FDR—in the presence of
substantial intergene correlation is a challenging problem
that has received much recent attention since reported in
papers by Owen, Efron, and others (e.g., [3, 4, 9, 13]). For
example, Storey et al. [14] present an approach to the notion
of sharing information across 𝑡 scores, which they describe as
“borrowing strength across the tests” for a potential increase
in statistical power. Tibshirani and Wasserman [15] discuss a
quantity called the “correlation-shared” 𝑡-statistic and derive
theoretical bounds on its performance. Hu et al. [16] examine
the covariance structure of the expression data and discover
benefits of linking coexpression and differential expression
in a distance measure—reflecting the more recent interest in
characterizing broader statistical patterns inmicroarray data.

Recent research that is jointly concerned with differential
expression and coexpression has also yielded results and
methods that could ultimately benefit the gene discovery
problem. Because the differential coexpression research is
often concerned with differing phenotypes, rather than with
different treatment conditions, two given research efforts
involving differential coexpression might seek answers to
different sets of genetic questions through expression data.
Like the “treatment conditions researchers,” however, the
“phenotype” researchers have encountered their own forms
of confounding dependencies, notably the relative gene loca-
tions, the expression time sequencing, and phase informa-
tion (e.g., [17–19]). Papers have been published addressing
these issues, including the exposition of new statistical
approaches—for example, “CorScor” [20], the “ECF-statistic”
[21], gene-set coexpression analysis [22], fuzzy expression
level assignments [23], expression-profilemining with decor-
relation [24], and detection of microarray outliers [25]—as
well as new clustering methods—for example, a web-based
expression analyzer [26], high-order preclustering methods
[27], and the “BioSym”distancemeasure [28]. A recent review
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of clustering methods in genomics appears in the paper
by Dalton et al. [29]. A more general examination of the
performance of classifiers of microarray expressions appears
in the paper by Ancona et al. [30].

This paper is focused exclusively on the differential
expression problem. Research in this area has largely focused
on understanding harmful correlation effects on the choice of
the threshold demarcating the statistical boundary between
differential and nondifferential expression. In fact, however,
the nominally confounding correlation can be used to advan-
tage in increasing statistical power ofmicroarray studies.This
paper presents a differential analysis method that exploits
identifiability and uses a gene expression reranking criterion
that accounts for intergene correlation. The framework is
readily generalizable for use in studies with multiple or
continuous covariates, as well as to other multiple compar-
ison applications. An example method presented here builds
upon the widely used two-sample 𝑡-statistic approach with
a decomposition of the expression vectors into subspaces of
correlated and uncorrelated components.

3. Problem Formulation

Suppose that expression data for 𝐺 genes are measured
on 𝑀 microarrays, resulting in a gene expression matrix,
say X ∈ R𝐺×𝑀, with (𝑔, 𝑚) element 𝑥𝑔𝑚. Each of the
𝑀 microarray experiments takes place under one of two
conditions (indexed by 𝑘 = 1 or 2) such as control and
treatment. These two subsets of the data are called treatment
groups in the paper.

Based on the gene expression matrix, X, we seek to
identify a “small” number, 𝐺

∗
≪ 𝐺, of genes that are

significantly differentially expressed between the two groups.
One widely used strategy (e.g., [31, 32]) is to hypothesize
that each gene is not differentially expressed. We refer to
this as the null hypothesis, denoted H

0
. For convenience,

we use the shorthand notation 𝑔 ∈ H
0
to indicate that

the null hypothesis is known to be true for gene 𝑔, and,
conversely, 𝑔 ∉ H

0
indicates that gene 𝑔 does not satisfy

H
0
. Gene 𝑔 is tested against H

0
using a two-sample t-

statistic, say, 𝑡
𝑔
. The magnitudes of the statistics 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝐺
,

establish a gene ranking and the 𝐺
∗
genes with the largest 𝑡-

scores are reported as statistically significant discoveries. The
investigator can either supply a value for 𝐺

∗
or rely on an

estimation of the number of false discoveries (type I errors,
false positives), say F, or, equivalently, the FDR, defined as
F

def
= F/𝐺∗, to find a maximal 𝐺∗ with the allowableF orF

(e.g., [3, 5, 9, 13, 33–36]).
As discussed in [4, 11], for an “overpowered” X matrix,

there may be significantly fewer tail-area null counts than
expected, whereas for an “underpowered” X, the situation
can worsen with an excessive number of tail-area null counts.
It is important to note that techniques for estimating the
FDR change the numbers of genes in reported lists, not
the gene rankings. The present research was motivated by
the hypothesis that, for an “underpowered” X, it would be
possible to exploit correlation across 𝑡 scores to establish a
gene rankingwithmore statistical power than the raw 𝑡-based

ranking.Themethod that resulted from an exploration of this
question indeed seems to improve the statistical power of all
Xmatrices.

The new method uses a vector of 𝑡-statistics,

t = [𝑡1 𝑡
2

⋅ ⋅ ⋅ 𝑡
𝐺]
𝑇
, (1)

and an estimate of the covariance matrix of the vector t,
to output a substantially revised version of t, denoted 𝜏,
the entries of which provide an improved gene ranking. For
expediency, we will refer to the procedure that produces 𝜏
from t as correlation adjusted reranking, or simply reranking.
The essence of reranking is embodied in some fundamental
data conditioning procedures to effect the two outcomes
mentioned in the introduction—exploiting identifiability,
and nullifying the effects of intergene correlation between
identified and non-identified genes.

In the following sections, we develop the theoretical basis
for the reranking process. The performance of reranking is
then compared with that of state-of-the-art methods on data
derived from real expression experiments. Results of some
judiciously developed simulation studies are also reported
for their value in understanding certain aspects of the
performance.

4. Methods

4.1. Per Gene Summary Statistic . Let us first supply the details
surrounding the vector of 𝑡 statistics introduced above. t will
be viewed as a random vector with mean vector 𝜇 ∈ R𝐺 and
covariancematrixΣ ∈ R𝐺×𝐺. Henceforth, we write t ∼ (𝜇,Σ).
This is a theoretical model only, as 𝜇 and Σ are generally
unknown. No further distribution information is required.

Let 𝑥
𝑔
denote the average differential expression level for

gene 𝑔, 𝑥𝑔 = 𝑀
−1

∑
𝑀

𝑚=1
𝑥𝑔𝑚. Further, let 𝑥𝑔 | 𝑘 be the average

expression level for gene 𝑔 in treatment condition 𝑘. Then,
the (unpaired) 𝑡-statistic for gene 𝑔 is computed as

𝑡
𝑔

=
𝑥
𝑔 | 2

− 𝑥
𝑔 | 1

𝑠
𝑔

, (2)

where 𝑠
𝑔
is the pooled within-group sample standard devia-

tion of gene 𝑔. If 𝑔 ∈ H
0
, then we expect 𝑡

𝑔
∼ (0, ][] − 2]

−1
),

where ] is the number of degrees of freedom, obtained from
either the unpaired 𝑡-test theory or the permutation null
calculations [4]. Otherwise, we expect 𝑡𝑔 ∼ (𝜇𝑔, 𝜎

2

𝑔
) with 𝜇𝑔

and 𝜎2
𝑔
denoting the 𝑔th element of 𝜇 and the 𝑔th diagonal

element of Σ, respectively. For 𝑔 ∉ H
0, 𝜇𝑔 and 𝜎2

𝑔
depend on

the amount of up- or downregulation of the gene expression,
the number of samples in each treatment group, and the
number of degrees of freedom, ].

4.2. Invoking Identifiability: The Zero Assumption. The direct
use of 𝑡-scores for ranking neglects some important informa-
tion that is inherent in the microarray matrix X. Fundamen-
tally, the use of raw 𝑡-scores does not exploit identifiability, the
strongly justified assumption that certain genes almost surely
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satisfy H
0
. Formal backing for the creation of an identifiable

set is found in Efron’s zero assumption (ZA) [5], which states
that a fraction, say𝑝

0
, of the genes—thosewith the smallest 𝑡

𝑔

statistics—satisfiesH
0
.The ZA plays a central role in the liter-

ature on estimating the proportion of null genes, as in [13, 37].
The ZA is equally crucial for the two-group model approach
developed in the Bayesian microarray literature, as in [38–
40]. Furthermore, the assertion that the method developed
by Storey [35] improves upon the well-known Benjamini-
Hochberg FDR procedure [33] (in terms of statistical power)
crucially relies on an adaptive version of the ZA.

The use of the ZA is justified in the reranking procedure
as long as the parameter 𝑝0 is sufficiently small. For example,
we set 𝑝

0
≈ 0.5 in experiments below based on the almost

certain knowledge that ∼50% of the genes in a cell would
not be differentially expressed in the formation of prostate
cancer [5]. Accordingly, in the initial step of the reranking
process, we invoke the ZA to partition the 𝐺 genes into an
identified set of 𝐺

0
elements assumed to satisfy H

0
and a

candidate set of𝐺
1

def
= (𝐺−𝐺0) genes, so-named because they

remain “candidates” to become “discovered” genes (i.e., to be
among the 𝐺∗ ≤ 𝐺1 < 𝐺 genes declared to be differentially
expressed). For convenience and without any significant loss
of generality (especially for large𝐺), we will assume that if the
fraction, 𝑝0, rather than the cardinality, 𝐺0, is used to specify
the size of the identified set, then 𝑝

0
is selected so that 𝑝

0
𝐺 is

an integer. That integer is therefore 𝐺
0
, and 𝑝

0
= 𝐺
0
/𝐺.

A simple corollary to the ZA is that the 𝑡
𝑔
value for each

𝑔 ∈ H
0
represents a “noise” value in the 𝑡-score for that gene.

This is because the expected value of this statistic isE{𝑡
𝑔
} = 0

whenever 𝑔 ∈ H0. Accordingly, we can view the 𝑡𝑔 value for
𝑔 ∈ H

0
as a random variation around the nominal value of

zero differential expression.The reranking procedure exploits
this information to adjust the values of the candidate gene
statistics.This “adjustment” is a consequence of decorrelating
candidate expression values from those in the identified set.
That these two subsets would be correlated may, at first,
seem counterintuitive because the “interesting” differentially
expressed genesmust, by definition, come from the candidate
set. Would it not be the case, therefore, that the significant
intergene correlation would occur among candidate expres-
sion values that similarly respond to the change in treatment
condition?Whereas two coexpressed genes would likely have
correlated expression differentials, it is not this dependence
that potentially causes false discoveries. To the extent that
the correlation between genes 𝑔, 𝑔

 ∉ H0 is a reflection of
response to treatment conditions, the correlation is expected
and informative. Correlation between truly expressed and
unexpressed genes (possibly identified) reflects normal vari-
ations in expression unrelated to treatment condition. Cor-
recting for such correlation (whether the effect is to increase
or decrease the expression level) is important to the proper
assessment of candidate 𝑡-scores. Moreover, the existence of
the identified set, with its “noise only” interpretation of 𝑡-
scores, makes possible this correction; ultimately resulting is
reranked expression statistics.

To proceed, we must add some formality to the descrip-
tions of the identified and candidate sets. Without loss of

generality, we may assume that the complete set of genes is
indexed so that

𝑡1
 ≤

𝑡2
 ≤ ⋅ ⋅ ⋅ ≤


𝑡
𝐺0


≤


𝑡
𝐺0+1


≤ ⋅ ⋅ ⋅ ≤

𝑡𝐺
 , (3)

in which 𝐺
0 is the number of genes declared null under the

ZA. Then, genes with indices 1, 2, . . . , 𝐺0 are assumed null
and therefore comprise the identified set as defined above. Let
us partition the set of 𝑡𝑔 statistics into those corresponding to
genes declared null under the ZA, {𝑡1, 𝑡2, . . . , 𝑡𝐺0} and those

for the remaining 𝐺
1

def
= (𝐺 − 𝐺

0
) genes that continue

to compete for the nonnull designation (the candidate set),
{𝑡
𝐺0+1

, 𝑡
𝐺0+2

, . . . , 𝑡
𝐺
}. For convenience, express the vector t in

terms of these two partitions:

t = [ 𝑡
1

𝑡
2

⋅ ⋅ ⋅ 𝑡
𝐺0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(t0)𝑇
𝑡
𝐺0+1

𝑡
𝐺0+2

⋅ ⋅ ⋅ 𝑡
𝐺 ]
𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(t1)𝑇
= [

t0
t1] . (4)

The random vector t has the following moments:

t = [
t0
t1] ∼ (𝜇 = [

𝜇
0

𝜇
1] ,Σ = [

Σ
00
Σ
01

Σ
10
Σ
11] ) , (5)

in which 𝜇𝑖 def
= E{t𝑖} and Σ𝑖𝑗 def

= E{(t𝑖 − 𝜇𝑖)(t𝑗 −

𝜇
𝑗)
𝑇
}, for 𝑖, 𝑗 = 0, 1. Recall that the goal of the reranking

process is to find a vector 𝜏 the elements of which represent
a reordering of the elements of t, such that gene ranking
represented by 𝜏 has better statistical power for detecting
nonnull genes than that based on t itself. In the light of the
newly defined notation in (5), we can more specifically say
that 𝜏 represents a reevaluation and reordering of the 𝐺

1

elements in t1. The remaining elements of the revised vector,
comprising the vector partition, say “̃t0,” are effectively set to
zero since these genes are assumed to represent null genes.
Recall that the 𝑡-scores in the t0 vector (before processing)
are assumed to represent noise variations around the nominal
zero differential value for a null gene.

4.3. Theoretical Estimator of 𝜏. Conditioned upon the ran-
dom vector t, we seek a revised vector, t̃1(t) ≡ 𝜏, in which the
expression statistics for the candidate gene set (originally t1)
are uncorrelatedwith those of the identified set (originally t0).
There aremany ways to derive the desired result, each with its
own interpretation, but all, of course, ultimately equivalent.
Whatever the approach is, it is expedient to remove the mean
from the vector t1 and work with the centered vector t1

𝑐

def
=

t1 − 𝜇1. The centered counterpart to the reranking vector, 𝜏,
will be denoted t̃1

𝑐

def
= 𝜏 − 𝜇1. The constant vector 𝜇1 will be

returned to the result at the end. Recall that the mean of the
vector t0 is 𝜇0 = 0

𝐺0×1
, so that “centering” is unnecessary for

t0 (throughout the paper, the notation 0
𝐼×𝐽

denotes the zero
matrix (vector) in the Cartesian space R𝐼×𝐽.)

To derive the desired expression for t̃1, we adopt a simple
approach based on well-known ideas from the theory of
linear operators (e.g., [41–44]). Let us view the space of
random vectors in (we are assuming 𝐺

1
≥ 𝐺
0
, or 𝑝

0
≤ 0.5.
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If the converse is true, simply reverse the roles of the R𝐺1

and R𝐺0 spaces in this development.) R𝐺1 as a Hilbert space,
H, with inner product ⟨k,w⟩

def
= E{k𝑇w} for all k,w ∈ R𝐺1 .

The inner product induces a norm on H given by ‖k‖
2

def
=

√⟨k, k⟩ = √E{k𝑇k}, and, in turn, a metric

𝑑 (k,w)
def
= ‖v − w‖2 = √⟨k − w, k − w⟩

= √E {(k − w)
𝑇

(k − w)}.

(6)

Now letS be a closed subset ofR𝐺1 . Given some k ∈ R𝐺1 , we
wish to find closest element ofS, say k̂, to k, in the sense that

k̂ = argmin
w∈S

𝑑 (k,w) , (7)

in which 𝑑 is the metric in (6).TheHilbert projection theorem
states the solution k̂ exists and is unique. Moreover, k̂ has
the property that the vector difference between k and k̂ is
orthogonal to all vectors in the subspace S; that is, (k − k̂) ∈

S⊥, in which S⊥ is the orthogonal complement to subspace
S inR𝐺1 . In particular, random vector (k− k̂) is orthogonal to
k ∈ S⊥ which means that ⟨(k − k̂), k⟩ = 0 by definition.Thus,
E{(k− k̂)

𝑇k} = 0, implying that (k− k̂) and k are stochastically
orthogonal (uncorrelated if 𝜇k = 0

𝐺1×1
).

The Hilbert-space formulation provides the structure in
which to achieve the desired decomposition of the random
vector t1

𝑐
into components that are correlated, and uncorre-

lated, with t0. Vector t1
𝑐
resides in the space R𝐺1 . We seek a

vector in a𝐺0-dimensional subspace ofR𝐺1 (because𝐺0 is the
dimension of t0) that is close to t1

𝑐
(this will be the component

of t1
𝑐
that is correlated with t0). The problem at hand is only

subtly different from one described in the generalities above.
Thedifference is thatwe are not given a subspace “S” inwhich
to find an optimal vector; rather we are given only a vector
t0 which may reside in an uncountable number of subspaces
of dimension 𝐺

0
. The goal will be to perform a linear

operation on the given vector to “make it close” to t1
𝑐
. In the

process, we will inherently construct the subspace in which
the optimal result resides. The subspace and resulting vector
will be of dimension 𝐺0 because they are merely different
representations of t0 and its implicit initial subspace R𝐺0 .

Given t0, let us conceptualize a 𝐺0-dimensional subspace
of R𝐺1 , S, consisting of all the (random) vectors {k : k =

Ft0, F : R𝐺0 → R𝐺1}. F represents some (yet unknown)
linear operator of dimensions 𝐺1 × 𝐺0 and of rank 𝐺0.
According to the Hilbert projection theorem, for a fixed t0,
there is a unique vector t̂1

𝑐
= F̂t0 ∈ S, hence a unique linear

operator, F̂, such that

𝑑 (t1
𝑐
, F̂t0) = argmin

F∈R𝐺1×𝐺0
rank(F)=𝐺0

𝑑 (t1
𝑐
, Ft0) = argmin

F∈R𝐺1×𝐺0
rank(F)=𝐺0


t1
𝑐

− Ft0

= argmin
F∈R𝐺1×𝐺0
rank(F)=𝐺0

√⟨t1
𝑐

− Ft0, t1
𝑐

− Ft0⟩

= argmin
F∈R𝐺1×𝐺0
rank(F)=𝐺0

√E {(t1
𝑐

− Ft0)𝑇 (t1
𝑐

− Ft0)}.

(8)

Since the metric is nonnegative, we may equivalently seek F̂
that minimizes

𝑑
2

(t1
𝑐
, Ft0) = E {(t1

𝑐
− Ft0)

𝑇

(t1
𝑐

− Ft0)} = E {(t1
𝑐
)
𝑇

t1
𝑐
}

− 2E {(t1
𝑐
)
𝑇

Ft0} + E {(t0)
𝑇

F𝑇Ft0} .

(9)

Now, interpreting the expectation to be a mean-square
average, we compute the gradient of 𝑑2(t1

𝑐
, Ft0) with respect

to F (e.g., see [45]),

∇F𝑑
2

(t1
𝑐
, Ft0) = −2E {t1

𝑐
(t0)
𝑇

} + 2FE {t0(t0)
𝑇

} , (10)

and set the result to 0
𝐺1×𝐺0

, the solution to which is F̂:

−E {t1
𝑐
(t0)
𝑇

} + F̂E {t0(t0)
𝑇

} ≡ 0
𝐺1×𝐺0

. (11)

Recognizing that (recall (5)) E{t1
𝑐
(t0)𝑇} = Σ10 and

E{t0(t0)𝑇} = Σ00, the solution becomes

F̂ = Σ
10

(Σ
00

)
−1

. (12)

Now the random vector t̂1
𝑐

def
= F̂t0 is as strongly linearly

related to (correlated with) t1
𝑐
as is possible in the 𝐺

0
-

dimensional subspace of R𝐺1 that is spanned by the 𝐺0
columns of operator F̂. The correlation matrix relating t̂1

𝑐
and

t1
𝑐
is, say,

Σ
1̂1

= E {t̂1
𝑐
(t1
𝑐
)
𝑇

} = E {F̂t0(t1
𝑐
)
𝑇

}

= F̂Σ01 = Σ
10

(Σ
00

)
−1

Σ
01

.

(13)

Although Σ1̂1 is of dimension 𝐺
1

× 𝐺
1
, it is clearly singular

(rank 𝐺
0) reflecting the inability of t̂1

𝑐
to be linearly related

to any component of t1
𝑐
in the subspace S⊥. In fact t̂1

𝑐
is the

component of t
1
that embodies the potentially destructive

correlation of the identified genes with the candidate genes.
The decorrelated version of t1

𝑐
that we seek is therefore

t̃1
𝑐

(t) = t1
𝑐

− t̂1
𝑐

= t1
𝑐

− F̂t0 = t1
𝑐

− Σ
10

(Σ
00

)
−1

t0. (14)

Note that t̃1
𝑐
is precisely the difference vector t1

𝑐
− F̂t0 that

is guaranteed by the Hilbert space theory to reside in S⊥

and therefore to be orthogonal, hence uncorrelated, with
t0. Finally, reinserting the mean value, 𝜇1, of the candidate
vector, we have

𝜏 = t1 − Σ10(Σ00)
−1

t0. (15)

4.4. Sample Estimator of t̃1. Estimates of the elements ofΣ are
required. For this purpose, wemake several observations that
are easily verified through simulation. Note that (15) does not
require the covariance between 𝑡

𝑔
and 𝑡
𝑔
 when 𝑔, 𝑔 ∉ H

0
.
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Let 𝛾(𝑢, v) and 𝜌(𝑢, v) denote the scalar covariance and
correlation, respectively, between real, scalar random vari-
ables, 𝑢 and v:

𝛾 (𝑢, v) def
= E {[𝑢 − E (𝑢)] [v − E (v)]}

𝜌 (𝑢, v) def
= E {𝑢v} = 𝛾 (𝑢, v) + E (𝑢)E (v) .

(16)

In these terms, we make the following observations.

Observation 1. If 𝑔, 𝑔 ∈ H
0
, then [3, 4]

𝛾 (𝑡
𝑔
, 𝑡
𝑔
) ≈

]

] − 2
𝜌 (𝑥
𝑔
, 𝑥
𝑔
) . (17)

Observation 2. If 𝑔 ∈ H
0
and 𝑔 ∉ H

0
(or conversely), then

𝛾 (𝑡𝑔, 𝑡𝑔)

≈
]

] − 2

×
𝑀
2𝜌 (𝑥𝑔 | 1, 𝑥𝑔|1) + 𝑀1𝜌 (𝑥𝑔 | 2, 𝑥𝑔 | 2)

𝑀1 + 𝑀2

(18)

Equation (18) accommodates the possibility that the correla-
tion between a null and a nonnull gene may change between
treatment groups. If this does not occur, then (18) reduces to
(17).

Observation 3. Furthermore, if 𝑀
1

≈ 𝑀
2
(true for most

microarray studies), then (18) simplifies to

𝛾 (𝑡
𝑔
, 𝑡
𝑔
) ≈

]

] − 2

𝜌 (𝑥
𝑔 | 1

, 𝑥
𝑔

|1

) + 𝜌 (𝑥
𝑔 | 2

, 𝑥
𝑔

| 2

)

2
. (19)

Equations (17) and (19) suggest that we may use the sample
covariance to estimate 𝛾(𝑡

𝑔
, 𝑡
𝑔
):

𝛾 (𝑡
𝑔
, 𝑡
𝑔
) ∝

∑
𝑚

�̆�
𝑔𝑚

�̆�
𝑔

𝑚

√(∑
𝑚

�̆�2
𝑔𝑚

) (∑
𝑚

�̆�2
𝑔

𝑚

)

, (20)

where �̆�
𝑔𝑚

denotes the expression level of the 𝑔th gene
measured on the𝑚thmicroarray after subtracting the average
response within the treatment group to which 𝑥𝑔𝑚 belongs
(𝑘 = 1 or 2).The scale factor ]/(]− 2) cancels when the terms
(Σ
00

)
−1 and Σ01 are multiplied in (15), so that estimating ] is

not required.
In the light of (20), (15) takes the practical form

t̃1 = t1 − R̂10(R̂00)
−1

t0 def= t1 − R̂10 P̂t0, (21)

where R̂00 and R̂10 are the partitions (similarly to (5)) of
R̂, the sample correlation matrix of the gene expression
matrix X̆ (after removing the treatment effects). For notation
compactness, we have defined P̂ def

= (R̂00)−1. In principle, the
set of elements in the vector t̃1 of (15) embodies the gene-
expression reranking in light of the compensatory measures
taken to incorporate identifiability and to remove the effects
of correlation. In practice, we rely on the estimate of t̃1 in (21).

5. Implementation

5.1. Gene Reranking Algorithm. A stepwise procedure for the
gene reranking is given in Algorithm 1.The process begins by
reindexing the genes based on their two-sample 𝑡-statistics
(Equation (3)). Then, based on the ZA, the first 𝐺0 genes are
declared to satisfy H0. In the experiments reported below,
𝑝0, the fraction of genes declared to be identifiable is set
to ≈ 0.5 by default (the precise value is 𝑝

0
= 6312/12625

for the database used which has 𝐺 = 12625 total genes.
See the second paragraph of Section 4.2 for an explanation).
Although the choice 0.5 is somewhat arbitrary, this fraction
is clearly justifiable and it has worked well empirically in the
data sets tested.

In order to nullify any genuine treatment differences, X
is converted to X̆ by subtracting each gene’s average response
within each treatment group.The sample correlationmatrix R̂
of X̆ is subsequently computed.The critical step is to compute
t̃1 (Equation (21)). The elements of t̃1 determine the gene
ranking: gene 𝑔 is ranked more highly than gene 𝑔 if |̃𝑡1

𝑔
| >

|̃𝑡 1
𝑔
 | in which �̃�1

𝑔
is the 𝑔th element of t̃1. The first 𝐺

∗
genes in

the reranked list are reported as differentially expressed.

5.2. Numerical Stability and Computational Complexity. Or-
dinarily, 𝑀 ≪ 𝐺, so that the sample correlation matrix is
severely rank deficient. A small quantity (typically 10−10) is
added to the diagonal entries of R̂ to make it invertible. After
this augmentation, the algorithm above exhibits excellent
numerical stability.

If implemented in a näive way, the matrix inversion to
compute P̂ = (R̂00)−1 in (21) would be a prohibitive operation
in most computing environments, since microarray data sets
may have several tens of thousand genes. Determining the
rightmost product in (21), P̂t0, by solving the system of
simultaneous linear equations R̂00s0 = t0 for the vector
s0 = Pt0 is much faster than explicitly computing the matrix
inverse P̂ and forming the product. In particular, we can
employ the Cholesky decomposition to exploit the fact that
the matrix R̂00 is symmetric and positive definite (e.g., [46,
Theorem 4.2.5]). MATLAB implementation uses the built-in
function linsolvewith appropriate settings, which, in turn,
uses the highly optimized routines of LAPACK (http://www
.netlib.org/lapack/).

The prostate cancer data [47] used in the experiments of
Section 6 includes 𝐺 = 12625 genes and 𝑀 = 102 samples.
For these data, the algorithm above implemented usingMAT-
LAB version R2006b on a computer with a 2.2GHz dual-
coreAMDOpteron processor and 8GBofRAMrequired∼40
seconds to report the final gene list. Similar implementation
with explicit matrix inversions requires ∼10 minutes. These
times clearly indicate the relative benefit of avoiding the
explicit matrix inversion, but the faster reporting time of
∼40 sec should certainly not be interpreted as a lower bound
for a problem of this scale. Indeed, workstations with 32GB
or more of RAM and with faster processors with eight or
more processing cores are commercially available at modest
costs. Of course, MATLAB is designed for modularity and

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
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Input: X = labeled 𝐺 × 𝑀 gene expression matrix
𝐺
∗

= Desired size of differential gene list
Steps:

(1) Calculate two-sample (unpaired) 𝑡-statistics as in equation (2).
(2) Re-index genes such that 𝑡1

 ≤
𝑡2

 ≤ ⋅ ⋅ ⋅ ≤ |𝑡
𝐺
|.

(3) Create t vector with elements (𝑡
𝑔
scores) in order of ascending magnitude.

(4) Set 𝑝
0
(default value ≈ 0.5). Set first 𝐺

0
= 𝐺𝑝
0
elements of t to zero (t0 partition)†.

(5) Convert X to X̆ by subtracting each gene’s average response within each treatment group.
(6) Compute R̂ = sample correlation matrix of X̆ (Section 4.4).
(7) Find t̃1 as in (21). (See discussion of product P̂t0 in Section 5.2)
(8) Create a list of re-ranked genes in the descending order of the values |�̃�1

𝑔
|, in which �̃�1

𝑔
is the 𝑔th

element of t̃1.‡
(9) Report 𝐺

∗
genes with the largest re-ordered |�̃�1

𝑔
| scores as statistical discoveries.

Output: List of 𝐺
∗
(experimentally-determined) most differentially-expressed genes following

the decorrelation processing.
†For convenience, it is assumed that 𝑝

0
is chosen so that 𝑝

0
𝐺 is an integer.

‡The original vector, t, of raw 𝑡-scores (Step (2)) is ordered by ascending values of 𝑡
𝑔
. This ordering

simplifies the definitions of certain quantities in the formal developments. Note: however, that the
output list (Steps (8) and (9)) is created according to descending |�̃�1

𝑔
| values. This is a more natural

ordering for the end result as we are interested in only the 𝐺
∗
largest values.

Algorithm 1: Steps in the gene re-ranking procedure.

ease of use, not computational efficiency. Dedicated, lower-
level coding of the reranking steps, implemented on a faster
machine with more parallelism could reduce the reranking
time significantly.

6. Experimental Results

6.1. Technical Comparisons. The reranking method devel-
oped above is compared with two leading techniques,
SAM (Significance Analysis of Microarrays [31]) and EDGE
(Extraction and Analysis of Differential Gene Expression
[14, 48]). SAM adds a small exchangeability factor 𝑠

0
to the

pooled sample standard deviation when computing the two-
sample 𝑡-statistic:

𝑡


𝑔
=

𝑥𝑔 | 2 − 𝑥𝑔 | 1

𝑠
𝑔

+ 𝑠
0

, (22)

whereas EDGE is based on a general framework for sharing
information across tests. EDGE is reported to show sub-
stantial improvement in statistical power over five promi-
nent techniques including SAM [14], the 𝑡/𝐹-test [49, 50],
the shrunken 𝑡/𝐹-test [51], the empirical Bayes local FDR
[40], and the a posteriori probability approach [52]. It is
noteworthy that the reranking procedure developed here
shows a significant performance improvement over EDGE in
the experiments conducted. To determine the performance
quality of various techniques, we focus primarily on the
numbers of false positives, F, and the corresponding FDR
values, F, in the reported gene lists. Broadly speaking, the
smaller the FDR, the better the technique.

6.2. Results

6.2.1. Prostate Cancer Data. The primary experiments
reported in this paper are based on the prostate cancer data
from the work of Singh et al. [47]. This database includes
expression data for 𝐺 = 12625 genes on 𝑀 = 102

oligonucleotide microarrays, comparing 𝑀
1

= 50

healthy males with 𝑀
2

= 52 prostate cancer patients.
The purpose of the Singh study is to identify genes that
might anticipate the clinical behavior of prostate cancer.
The .CEL files for the prostate study are publicly available
at http://www-genome.wi.mit.edu/MPR/prostate. The
general purpose of the present experiments is to compare
performance of the reranking algorithm with the published
state-of-the-art methods EDGE and SAM. The software
RMAExpress [53] was used to obtain high-quality gene
expressions from the posted data files. RMAExpress
applied its in-built background adjustment; however, the
quantile normalization was not used. To increase normality
and stabilize across-group variances [54], each gene was
represented in the final expression matrix X by the log of its
expression level.

Comparative algorithm performance and insight into the
inner workings of the reranking method required expression
matrices for which truly differentially expressed genes were
known a priori. Of course, in the nascent field of genomics,
such knowledge is not available, and it is the very purpose
of techniques like those discussed in this paper to seek
such information. We approached this circular problem by
using the prostate database to create test expression data
with intergene correlation in X resembling that in the real
microarray data. This was accomplished by first row stan-
dardizing the expression matrix from the prostate database.

http://www-genome.wi.mit.edu/MPR/prostate
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In particular, the true prostate matrix X was transformed to
X̆ by subtracting each gene’s average response within each
treatment group and by normalizing within group sample
mean squares. That is, for the individual treatment groups
(for 𝑘 = 1, then for 𝑘 = 2) and for each 𝑔:

𝑀
−1

𝑘

𝑀

∑
𝑚=1

Group 𝑘

�̆�
𝑔𝑚

= 0, 𝑀
−1

𝑘

𝑀

∑
𝑚=1

Group 𝑘

�̆�
2

𝑔𝑚
= 1. (23)

in which �̆�
𝑔𝑚

is the (𝑔, 𝑚) element of matrix X̆. Each row
represents one gene (and two conditions), so that with this
transformation, all genes have equal energy and yet the
same within group intergene correlation structure as the
original X. Normalizing within-group sample mean squares
to unity is not implemented in the reranking algorithm.
The normalization is done here prior to any processing as
a first step in creating an expression matrix with known
differentiation of expression across groups for each gene, but
with realistic (derived from real data) intergene correlation.

To generate a test data set from X̆, its 102 columns were
randomly divided into groups of 𝑀

1
= 50 and 𝑀

2
= 52.

Next, 𝐺
+
(𝐺
−
) genes were randomly chosen for up- (down-

) regulation by adding a positive (negative) offset 𝑥
+
(𝑥
−
)

to the corresponding entries in group 2. The total number
of truly differentially expressed genes is denoted (𝐺

𝛿
is to

be contrasted with 𝐺
∗
, the number of genes determined by

experimentation to be differentially expressed):

𝐺
𝛿

= 𝐺
+

+ 𝐺
−
. (24)

We also denote by 𝑝
𝛿

def
= 𝐺

𝛿
/𝐺 the proportion of truly

differentially expressed genes, and, for future purposes, the
ratio of the size of the desired gene-discovery list to the
number of truly-differential genes, 𝑝

∗𝛿

def
= 𝐺
∗
/𝐺
𝛿
. In the

experiments, various choices of the simulation parameters,

P
𝛿

def
= {𝑝𝛿, 𝐺+, 𝐺−, 𝑥+, 𝑥−} , (25)

were tested to represent a range of data scenarios encountered
in practice. Also associated with each trial is a set of
parameters characterizing the gene-discovery experiments,
say,

P𝑒
def
= {𝑝0, 𝐺, 𝐺∗, 𝑀1, 𝑀2} . (26)

These parameter sets are detailed below.
In all experiments, results for the existing EDGE and

SAMmethodswere obtained using the subroutines statex.r
from the EDGE software package (http://www.genomine
.org/edge/) and samr.r from the SAMR package (http://
www-stat.stanford.edu/∼tibs/SAM/), respectively. Both rou-
tines computed their native gene summary statistics given the
matrix X and corresponding column labels. These statistics,
in turn, were used to determine the top 𝐺

∗
genes. Results

based on reranking proceed from the steps outlined in
Algorithm 1 with 𝐺

∗ values corresponding to the largest |̃𝑡1
𝑔
|

scores of the reranked list.

Three experiments (cases) involving the prostate data are
reported here. The first two cases were designed, by choice
of the proportion of truly differential genes, 𝑝

𝛿
, to represent

typical conditions of two general classes of gene-discovery
problems. The third case was carried out to test robustness
of the technique to small sample size.

Case 1 (Small𝑝
𝛿
). In the first case,𝑝

𝛿
is small,𝑝

𝛿
∼ 0.01–0.05,

meaning that there are relatively few truly differentially
expressed genes.The smaller 𝑝𝛿 is consistent withmicroarray
investigations seeking genes that distinguish subtypes of
cancer or diabetes, for example. The complete simulation
parameter set for Case 1 is

P
1

𝛿
= {𝑝
𝛿

= 0.025, 𝐺
+

= 2𝐺
−

= 200, 𝑥
±

= ±0.1} , (27)

where 𝑥
±

= ±0.1 means that 𝑥
+

= +0.1 and 𝑥
−

= −0.1.
For numerical simplicity, we based the experiments on 𝐺 =

12, 000 of Singh’s [47] gene expressions, so that 𝐺
𝛿

= 𝑝
𝛿
𝐺 =

300. Two sets of experiment parameters are used in Case 1,
differing only in the size of the list of discovered genes.

Subcase 1.1 (Small 𝑝𝛿, Small 𝑝∗𝛿). In the first experiment, the
parameter set is

P
1

𝑒
= {𝑝
0

= 0.5, 𝐺 = 12000, 𝐺
∗

= 100, 𝑀
1

= 50, 𝑀
2

= 52} .

(28)

The size of the gene-discovery list, 𝐺
∗ = 100, is significantly

smaller than 𝐺𝛿 = 300, or 𝑝∗𝛿 = 𝐺∗/𝐺𝛿 = 1/3. In practice, a
relatively small 𝐺∗ would be chosen to identify high-quality,
class-distinguishing features for expression-profiling-based
clinical diagnosis and prognosis, in which the goal is to build
accurate classifiers and predictors. Whereas Singh et al. [47]
build a classifier around only 16 of 12625 features, they discuss
the need to include as many reliable features as possible.

Figure 1(a) presents results for the test pair (P1
𝛿
,P1
𝑒
) of

Subcase 1.1. Remarkably, for 36 of 40 Xmatrices, the rerank-
ing procedure reports gene listswith no false discoveries at all,
while the other techniques fail to obtain a single gene list with
F < 0.5.This result is typical of many “small 𝑝𝛿” experiments
carried out with an array of parameter sets. In particular,
the quality of the results notwithstanding (as measured by
F, see below) the reranking strategy uniformly outperformed
EDGE and SAM in every scenario.

In any rational detection algorithm built around a
parametrized stochastic framework, it is possible to find
regions of the parameter space in which performance dete-
riorates. In the “small 𝑝𝛿” gene identification problem, for a
fixed 𝐺 and 𝑀, increasing 𝐺∗ (more specifically, increasing
the ratio 𝑝∗𝛿) or decreasing the “signal” magnitudes of
either up-( 𝑥+) or down-(𝑥−) regulation, all create increasing
probabilistic risk of false discoveries, F. As 𝐺

∗
was allowed

to approach 𝐺
𝛿
in Case 1 experiment above, the performance

of all methods, EDGE, SAM, and reranking, all deteriorated
as measured by F, yet the reranking approach remained
consistently superior to the others according to this measure.

http://www.genomine.org/edge/
http://www.genomine.org/edge/
http://www-stat.stanford.edu/~tibs/SAM/
http://www-stat.stanford.edu/~tibs/SAM/
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Figure 1: Results for two variations of Case 1 experiments. In both variations, the number of truly differential genes, 𝐺
𝛿

= 300, and the
“signal strength” (amount of up- or downregulation represented by 𝑥

+
and 𝑥

−
) is weak. (a) Results for Subcase 1.1 in which the size of the

gene-discovery list, 𝐺
∗

= 100, is small relative to 𝐺
𝛿
(𝑝
∗𝛿

= 1/3). The plot showsF (left ordinate) andF (right ordinate) values over 40 trials.
(b)F andF results, plotted similarly to those of part (a) of the figure, for Subcase 1.2, in which 𝐺

∗
= 300, large relatively to 𝐺

𝛿
(𝑝
∗𝛿

= 1).

“Better,” however, does not always mean “good.” For illustra-
tion, we report a second Case 1 experiment.

Subcase 1.2 (Small 𝑝𝛿, Large 𝑝∗𝛿). In this variation of Case 1
experiment, we take 𝐺∗ = 𝐺𝛿 = 300. This is still a “small 𝑝𝛿”
situation, but with a “greedy” approach to gene discovery, an
attempt to identify “all” genes (estimated to be) differentially
expressed, 𝑝

∗𝛿
= 1. Such a strategy would be employed in a

microarray study designed to liberally identify a set of genes
to be explored further—experimentally or computationally—
to gain better understanding of underlying gene networks.

Figure 1(b) shows plots of the number of false positives,
F, over 40 data sets for Subcase 1.2 experiment. The cor-
responding FDR, F = F/𝐺

∗
, is shown on the secondary

ordinate axis. With 𝑝
∗𝛿

= 1 and with relatively weak
differential expression “signals” (𝑥± = ±0.1), identifying a
good gene lists is not an easy task, as evident from the results.
Among all methods only reranking achieved sufficiently low
values of F to rescue a few X matrices, but, clearly, even
reranking would not provide scientifically useful or reliable
gene lists in this high-risk environment.

Case 2 (Large 𝑝
𝛿
). The second case employs a larger 𝑝

𝛿
∼

0.1, typical of studies comparing healthy versus diseased cell
activities. Simulation parameters for this case are

P
2

𝛿
= {𝑝
𝛿

= 0.1, 𝐺
+

= 𝐺
−

= 600, 𝑥
±

= ±0.02} . (29)

Relative to Case 1, there are many more truly differentially
expressed genes in Case 2 (increased by factor 4), thus
decreasing the risk of false discoveries, especially for a small
ratio 𝑝

∗𝛿
. This is akin to an increased prior probability

of a differentially expressed gene in a Bayesian detection

strategy. To further challenge the algorithms in the light of
the “increased prior,” the up/downregulation of expression
was made considerably weaker in Case 2 (reduced by factor
five relative to Case 1), as in Case 1, two sets of experiment
parameters were used in Case 2, differing only in the size of
the list of discovered genes.

Subcase 2.1 (Large 𝑝
𝛿
, Small 𝑝

∗𝛿
). In the first Case 2 test, the

experiment parameter set is given by

P
2

𝑒
= {𝑝
0

= 0.5, 𝐺 = 12000, 𝐺
∗

= 300, 𝑀
1

= 50, 𝑀
2

= 52} .

(30)

The test pair (P2
𝛿
,P2
𝑒
) represents a large 𝑝

𝛿
proportion, but

relatively small 𝑝
∗𝛿

= 300/1200 = 0.25. The experimental
results for this case over 40 trials are shown in Figure 2(a).
In spite of the decreased signal strength, the reranking
procedure produces no false discoveries in a vast majority
of trials, similarly to the small 𝑝𝛿, small 𝑝∗𝛿, experiment of
Subcase 1.1. EDGE and SAM consistently report a very large
proportion of false discoveries (typically 250, or 90%).

Subcase 2.2 (Large 𝑝𝛿, Large 𝑝∗𝛿). A second Case 2 experi-
ment was run to show the effects of “greedy” discovery lists,
or large 𝑝

∗𝛿
ratios.The parameters (P2

𝛿
,P2
𝑒
) remain identical

to those in Subcase 2.1 experiment, except that 𝐺
∗

= 1200,
so 𝑝
∗𝛿

= 1. Results are shown in Figure 2(b). Like the
large 𝑝

∗𝛿
experiment in Subcase 1.2, the reranking approach

significantly outperformsEDGEand SAM,with typicallyF ∼

0.5 for reranking and F ∼ 0.9 for the standard methods. The
sample variances forF andF are notably smaller in Subcase
2.2 trials relative to similar trials in Subcase 1.2. Also as in
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Figure 2: Case 2 F (left ordinate) and F (right ordinate) values over 40 trials with larger 𝑝
𝛿
data. The number of truly differential genes,

𝐺
𝛿

= 1200. The “signal” is very weak (𝑥
±

= ±0.02). (a) Subcase 2.1 results. 𝐺
∗

= 300, small relative to 𝐺
𝛿
(𝑝
∗𝛿

= 0.25). The plot shows the
number of false positives,F, over 40 data sets.The correspondingF = F/𝐺

∗
is shown on the secondary ordinate axis. In spite of the relatively

weak signal, reranking results in remarkably better performance than the standard approaches, and it produces the discovery list with no false
positives in a majority of the 40 trials. (b) Subcase 2.2 results.F andF 𝐺

∗
= 1200 (𝑝

∗𝛿
= 1).

Subcase 1.2, reranking consistently outperforms the standard
methods for large 𝑝

𝛿
throughout the range 0 < 𝑝

∗𝛿
≤ 1. At

some application-dependent point in this range, reranking,
although “better,” is not sufficiently “good” at producing
reliable discoveries. Clearly, in the present experiment in
which 𝑝∗𝛿 = 1, the reranking result of typicallyF ∼ 0.5 is not
indicative of reliable gene discoveries. For a few trials, the rate
drops as low asF ∼ 0.45, but even this best-case rate implies
∼540 false discoveries in the reported list of 1200 genes.

Case 3 (Tests of Robustness to Small Sample Size). The
number of microarray chips available to a study, 𝑀, is
ordinarily quite small compared with the number of genes
investigated, 𝐺. The gene discovery operation is therefore
required to draw conclusions from a sparse sampling of the
gene expressions. To gain some insight into the robustness of
the gene-discovery methods to small sample sizes, variations
on Case 2 (large 𝑝

𝛿
) experiments were repeated with the

further stressor of a significant reduction in the sample space.
𝑀
1
and 𝑀

2
were each reduced to 20. So that observations

could be more attributable to the sample size, 𝑀, the signal
levels were increased back to Case 1 values of 𝑥

±
= ±0.1. The

simulation parameters used in Case 3,P3
𝛿
, are identical toP2

𝛿

of (29). As in the previous cases, we ran two experiments, the
first (Subcase 3.1) with a “conservative” gene discovery list,
𝐺∗ = 300 or 𝑝∗𝛿 = 0.25 and the second (Subcase 3.2) with a
“greedy” gene discovery list of size 𝐺∗ = 1200 or 𝑝∗𝛿 = 1.

To create the data set for Case 3, 20 columns per treatment
group were chosen randomly from the original prostate
cancer expression matrix X. The data generation process
(including row standardization) detailed in Section 6.2.1 was
then applied to the selected columns. Some compensation for

the reduction in the number of samples is potentially present
in the increased differential signal. The F and F values over
40 trials for the three methods are shown in Figure 3(a) for
Subcase 3.1 and in Figure 3(b) for Subcase 3.2. Even with the
significantly reduced sample size, the reranking process pro-
vides consistently superior performancewith respect to exist-
ingmethods. As in previous experiments, however, the better
performance in the large𝑝∗𝛿 experiment of panel (b) does not
mean that the results are necessarily reliable or useful. Nev-
ertheless, these results suggest that the reranking procedure
increases power in the analysis of small sample data sets.

6.2.2. Simulated Data. Before devising the test data setup
of Section 6.2.1, the reranking method was tested on several
simulated data sets. We discuss some of these simulation
results that shed further light on the small sample behavior
of the method.

Let us denote by x
𝑚

the 𝑚th column of a simulated
expression matrix X. We assume that the random vector x

𝑚

is multivariate Gaussian with (stationary with index𝑚) mean
0𝐺×1 and covariance matrix Λ. Each such column represents
𝐺 = 3226 genes, which, in their null expressions, aremodeled
by a covariance matrix Λ that introduces roughly the same
amount of linear dependence as found in the BRCA data of
[55]. We chose simulation parameters

P
𝛿

= {𝑝
𝛿

= 0.031, 𝐺
+

= 𝐺
−

= 50, 𝑥
±

= ±1} , (31)

and the experiments were run with parameters

P
𝑒

= {𝑝
0

= 0.5, 𝐺 = 3226, 𝐺
∗
, 𝑀
1

= 𝑀
2

= 10} , (32)
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Figure 3: F and F values over 40 trials for Case 3 in which 𝐺
𝛿

= 1200. (a) Subcase 3.1, 𝐺
∗

= 300 (𝑝
∗𝛿

= 0.25); (b) Subcase 3.2, 𝐺
∗

= 1200

(𝑝
∗𝛿

= 1).
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Figure 4: F values over 40 trials using simulated expression data. Sample sizes are very small, 𝑀
1

= 10, 𝑀
2

= 10. (a) 𝐺
∗

= 50 (𝑝
∗𝛿

= 0.5);
(b) 𝐺
∗

= 100 (𝑝
∗𝛿

= 1).

for the two list sizes 𝐺
∗

= 50 (𝑝
∗𝛿

= 0.5) and 𝐺
∗

= 100

(𝑝∗𝛿 = 1).
Figures 4(a) and 4(b) show plots of the F and F values

over 40 trials for 𝐺
∗

= 50 and 𝐺
∗

= 100, respectively. With
a smaller 𝑀, preeminence of the reranking method scales
down. Nevertheless, for 26 out of 40 simulatedX realizations,
reranking achieves an FDR F < 0.15 and for 30 of 40 trials,
F < 0.25.

Table 1 shows results for some of the X realizations for
𝐺∗ = 100 (Figure 4(b)). Shown are the largest 100 values
of |̃𝑡1
𝑔
| and each corresponding original 𝑡𝑔 with concomitant

rank. Even in this challenging case, the results indicate

favorable aspects of the reranking procedure. First, it is
noteworthy that reranking results inF = 22 false discoveries
in the list of 100 genes, whereas F = 68 when raw 𝑡 statistics
are used. Further, all but two of the false discoveries reported
by reranking received an even higher ranking by 𝑡-statistics.
On the other hand, 46 of the correct discoveries by reranking
would not have appeared in the list of 100 genes reported by
𝑡-statistics. Results like these were observed repeatedly in our
data analysis. Consistent with the results of the prostate data
studies, the reliability and utility of all techniques lessen as
𝑝
∗𝛿 → 1, yet, reranking persistently outperforms the other

methods.
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Table 1: Top 100 �̃�1
𝑔
scores determined by re-ranking. Correspond-

ing 𝑡
𝑔
scores and their ranks are also shown. The results are for

some of the X realizations from Figure 4(b). Data representing false
discoveries are printed in boldface. #

�̃�
1
𝑔

def
= rank based on �̃�1

𝑔
score,

#
𝑡𝑔

def
= rank based on raw 𝑡

𝑔
score.

#
�̃�
1
𝑔

�̃�
1

𝑔
𝑡
𝑔

#
𝑡𝑔

1–50
1 4.22 5.87 1
2 −4.17 −5.55 2
3 −3.93 −4.26 5
4 −3.74 −4.12 7
5 −3.58 −4.49 4
6 −3.49 −3.34 28
7 −3.45 −4.25 6
8 3.35 3.87 10
9 −3.33 −3.20 35
10 3.33 3.77 13
11 3.25 3.42 25
12 −3.16 −2.18 260
13 3.14 4.54 3
14 3.10 2.87 65
15 −3.08 −3.54 17
16 −3.07 −2.80 80
17 3.06 3.49 20
18 3.02 2.29 213
19 −2.99 −3.34 27
20 −2.93 −3.13 38
21 −2.92 −2.92 57
22 2.86 3.26 31
23 −2.83 −2.82 74
24 2.82 2.37 180
25 −2.81 −2.13 276
26 2.81 3.48 21
27 −2.79 −3.01 47
28 2.70 2.87 64
29 −2.66 −3.15 37
30 −2.58 −3.85 11
31 −2.56 −2.84 71
32 −2.55 −1.72 524
33 −2.54 −2.63 106
34 −2.54 −2.69 98
35 2.53 2.30 209
36 2.48 2.45 148
37 −2.47 −2.29 212
38 −2.46 −3.21 33
39 −2.43 −2.44 154
40 2.43 2.71 94
41 2.40 2.86 66
42 −2.34 −2.60 115
43 −2.34 −2.98 50
44 −2.33 −3.80 12
45 −2.32 −2.06 306
46 2.29 1.81 444
47 −2.27 −1.17 1110
48 2.26 1.97 347

Table 1: Continued.

#
�̃�
1
𝑔

�̃�1
𝑔

𝑡
𝑔

#
𝑡𝑔

49 2.24 3.75 14
50 2.20 3.88 9

51–100
51 2.18 3.45 23
52 2.17 3.05 42
53 2.16 2.80 82
54 −2.15 −2.57 122
55 2.15 1.96 357
56 −2.14 −1.47 751
57 2.13 2.25 229
58 2.13 1.77 486
59 2.13 1.44 785
60 2.12 2.14 273
61 −2.11 −1.48 744
62 2.10 1.80 453
63 2.09 2.60 114
64 −2.09 −2.05 312
65 2.09 2.70 96
66 2.09 2.23 237
67 2.08 2.34 188
68 −2.08 −2.24 232
69 −2.06 −2.53 130
70 −2.04 −2.11 283
71 −2.04 −2.95 54
72 −2.03 −3.08 40
73 −2.02 −2.30 210
74 −2.01 −3.67 15
75 2.00 2.62 109
76 −1.98 −2.38 171
77 1.98 1.43 795
78 1.96 1.69 549
79 −1.95 −1.47 746
80 1.95 1.95 361
81 1.95 2.81 77
82 −1.94 −1.41 813
83 1.94 3.40 26
84 1.94 1.30 948
85 −1.94 −3.27 30
86 −1.93 −1.11 1190
87 −1.93 −1.37 872
88 −1.93 −3.44 24
89 −1.92 −3.07 41
90 −1.92 −1.50 726
91 1.90 3.62 16
92 −1.90 −2.82 75
93 1.89 1.25 1007
94 1.87 3.89 8
95 −1.86 −3.49 19
96 −1.86 −2.08 300
97 1.85 1.20 1074
98 −1.83 −2.90 60
99 1.83 1.39 833
100 −1.82 −1.95 367
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It is notable that, with a smaller 𝑀, SAM outperforms
EDGE and the use of raw t-scores. This is not entirely
surprising as a smaller 𝑀 can make the noise in the per gene
pooled variance 𝑠

𝑖
(and possibly the equivalent quantity in

the EDGE algorithm) more prominent. SAM mitigates this
issue in some measure by using the exchangeability factor 𝑠

0

to adjust the effective pooled variance [31].

7. Discussion and Conclusions

In most microarray data, there are at least three resources
that can be used to advantage: (i) identifiability, (ii) parallel
structure, and (iii) intergene correlation itself. Analysis in
papers by Efron [56, 57] suggests this view of the rich
information structure inherent in the data. In this light,
reranking can be viewed as exploiting more than correlation
as a means of sharing information across tests, as it also
involves identifiability.

Limited time and resources often require biomedical
researchers to work on only a small number of “hot (gene)
prospects.” Even under such highly conservative conditions,
however, misleading results can occur, as is evident in the
results of Figures 1–4. For all their expert development and
statistical power, even state-of-the-art tools like SAM and
EDGE can report spurious gene lists. The extra statistical
power of reranking promises to further guard against anoma-
lous results that can have serious consequences for the study
of gene function, causation, and interaction.

In summary, this paper has reported the development and
testing of a novel framework for the detection of differential
gene expression. The framework exploits identifiability—the
fact that in most microarray data sets, a large proportion of
genes can be identified a priori as nondifferential—to reduce
the correlation in the expression data for the remaining gene
candidates. When applied to the widely used two-sample 𝑡-
statistic approach, this viewpoint yielded a simple differential
analysis technique which requires as inputs only a gene
expression matrix, related two-sample labels, and the size of
desired output gene-list 𝐺∗. The method was tested on data
constructed from the prostate cancer database of Singh et
al. [47] and some simulated data. Compared with SAM [31],
EDGE [14], and the raw 𝑡-statistic approach itself, reranking
shows substantial improvement in statistical power. As is the
case with all published techniques, the reranking process’
power tends to increase considerably with an increase in
the number of microarray samples. However, even for small
sample sizes, performance was significantly better than the
alternatives in the experiments conducted here.
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