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Abstract: Stem cells have received attention in various diseases, such as inflammatory, cancer, and
bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming
and repairing bone tissues. Herein, we isolated calycosin-7-O-β-glucoside (Caly) from the roots
of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated
the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas
Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and
enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of
MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic
protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3β, and phospho-AKT, inducing the
expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis
and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were
validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results
provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering
RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.
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1. Introduction

Mesenchymal stem cells (MSCs) are adult stem cells that are found in tissues including
bone marrow, fat, and dental pulp [1]. MSCs are also multipotent stem cells that are
capable of self-renewing and differentiating into diverse cell types through symmetric and
asymmetric cell divisions, which have become a major source of stem cell therapeutics [2].
MSCs are physiologically and pathologically important cells for forming, remodeling,
and repairing bone tissues [1]. In osteogenic conditions, human MSCs are committed
to the osteoblast lineages that are the major cellular component of bone tissues, and the
osteogenesis of MSCs leads to increases in alkaline phosphatase (ALP) activities and the
mineralization of the bone matrix with apatite crystals [3]. The osteogenesis of MSCs is
mainly mediated by BMP2 and Wnt3a, and their intracellular signaling molecules that
regulate runt-related transcription factor 2 (RUNX2) expression [3]. Therefore, these
osteogenic factors and signaling pathways are important targets for the treatment of bone
diseases, such as osteoporosis and periodontitis, which are the main hallmarks of osteoblast
dysfunction, including proliferation, migration, differentiation, and mineralization.
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Astragalus membranaceus, known as Huangqi, is one of the oldest and most frequently
used herbs for oriental medicine in Asian countries, including Korea, China, and Japan [4,5].
A. membranaceus possesses a variety of pharmaceutical properties and contains bioactive
compounds to improve overall health and to prevent and cure disease including neurode-
generative diseases, diabetes, and cancers [6]. The main active compounds of A. mem-
branaceus include polysaccharides, saponins, and flavonoids [7–9]. It was reported that As-
tragaloside I from A. membranaceus enhances osteoblast differentiation via Wnt/β-catenin
signaling [10]. More recently, Astragaloside IV from A. membranaceus increases osteogene-
sis and alleviates osteoporosis via vitamin D/FGF23/Klotho signaling [11]. A bioactive
compound, calycosin-7-O-β-glucoside (Caly), is an isoflavane belonging to flavonoids in A.
membranaceus [6]. To date, the molecular mechanisms of Caly in human MSCs have not yet
been reported.

In the present study, the bioactive compound Caly was obtained from the roots of A.
membranaceus, and the beneficial effects of Caly on ostogenesis and bone-forming activities
were investigated in human MSCs.

2. Results
2.1. Isolation of Bioactive Compound Caly from the Roots of A. membranaceus and Its Effects on
Cytotoxicity against Human MSCs

A. membranaceus (1 kg) was extracted twice with MeOH (3 L, 6 h) by refluxing in a
heating mantle. The crude extract (150 g) was suspended in distilled water (DW), and then
solvent partitioned using n-Hexane, EtOAc, and n-BuOH. The EtOAc fractions (4.9 g) were
divided into 14 fractions through the MPLC system (puriFlashTM430, interchim, Los Ange-
les, CA, USA, silica gel 230–400 mesh, 500 g, 20 mL/min, CHCl3:MeOH = 1:0~0:1). The
10 fraction was subjected to a prepLC (SpotII, Armen, France, YMC SIL, 250 × 20 mm, 5 µM,
6 mL/min, CHCl3:MeOH:DW = 7:3:1 lower phase). The active compound (63.04 mg) was
obtained from four subfractions (Figure 1A). The structure of calycosin-7-O-β-glucoside
was identified by comparing it to the spectral data in [12]. The 1H and 13C nuclear mag-
netic resonance (NMR) spectra, high-performance liquid chromatography (HPLC) chro-
matogram, and chemical structure of Caly (>95% purity) are shown in Figure 1B–D. Caly
was treated in MSCs for 24 h to evaluate cell toxicity at concentrations ranging from 0.1 to
30 µM using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay.
The measurements showed that the concentrations of Caly did not influence cytotoxicity
against MSCs (Figure 1E).

2.2. Caly Enhances the Cell Migration, ALP Staining and Activity, and ARS Staining during the
Osteogenesis of Human MSCs

The osteogenesis of MSCs and osteoblast lineages are initiated by the migration to
bone formation and repair sites. To determine whether Caly influences cell migration,
we caused the osteogenic differentiation of human MSCs using osteogenic supplement
medium (OM) with or without Caly for 24 h, after which the migration was evaluated using
a Boyden chamber assay. The assay exhibited that 1–10 µM Caly significantly promoted
the mobility, compared to OM alone (Figure 2A,B). Next, to examine the biological effects
of Caly in early osteogenesis, we measured the effects on the osteogenic differentiation of
Caly using alkaline phosphatase (ALP) staining, which is used as an early phase marker
during osteogenesis, after cultivating MSCs in OM with or without Caly for 7 days. The
results exhibited that 1–10 µM Caly elevated the staining of ALP (Figure 2C). Subsequently,
we carried out an ALP activity assay in response to 1–10 µM Caly treatment using a
spectrophotometer. The results exhibited that 1–10 µM Caly significantly elevated the
activity of ALP (Figure 2D). The ALP-positive expressing cells were confirmed using a light
microscope (Figure 2E). Mineralized nodule formation was further evaluated using Alizarin
red S (ARS) staining to monitor the degree of matrix mineralization, which is used as a late
phase marker during osteogenesis, after MSCs were cultivated in OM with or without Caly
for 21 days. The mineralization was detected using a scanner, and the results exhibited
that 1–10 µM Caly promotes the late osteogenesis of MSCs (Figure 2F). Quantitatively, the
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Caly-stimulated late osteogenesis was validated using a spectrophotometer (Figure 2G). In
addition, the mineralized nodules were observed using a light microscope (Figure 2H).
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Figure 1. Isolation of Caly from the roots of A. membranaceus, and its effects on cytotoxicity against
MSCs. (A) Roadmap of Caly isolated from root of A. membranaceus. (B,C) 1H and 13C NMR of Caly.
(D) HPLC and chemical structure of Caly. (E) Caly (0.1, 1, 5, 10, 20, and 30 µM) was treated for 24 h in
MSCs, and cell viability was analyzed using an MTT assay. Data are representative of three separate
experiments.
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Figure 2. Effects of Caly on the osteogenesis of human MSCs. (A) Cell migration was measured by
the Boyden chamber assay. The migrated cells were stained with 0.1% crystal violet and visualized
under a light microscope. Scale bar: 50 µM. (B) The bar graph shows cell migration rate (fold)
normalized to the control. (C–E) Early osteogenesis was measured by the ALP staining and activity
assay at 7 days. The early osteogenic cells were stained with ALP reaction solution. The staining was
visualized under a scanner (C). ALP activity was quantitatively measured using a spectrophotometer
(D). ALP-positive expressing cells were visualized under a light microscope (E). Scale bar: 50 µM.
(F–H) Late osteogenesis was measured by ARS staining assay at 21 days. After staining with 2%
ARS solution, the mineralization was visualized under a scanner (F), quantitatively analyzed using a
spectrophotometer (G), and visualized under a light microscope (H). Scale bar: 100 µm. Data are
expressed as the mean ± S.E.M. from three separate experiments (* p < 0.05 compared to the control,
and # p < 0.05 compared to OM).

2.3. Caly Activates the BMP2, Wnt3a, and AKT Signaling Pathways during the Osteogenesis of
Human MSCs

To elucidate the signaling pathways associated with the Caly-stimulated osteogenesis
in MSCs, BMP2, Wnt3a, and AKT were evaluated by Western blot analysis to detect the
levels of protein expression and phosphorylation. The results showed that first, 1–10 µM
Caly enhanced BMP2 expression and Smad1/5/8 phosphorylation, compared to that with
OM alone (Figure 3A). Second, 1–10 µM Caly enhanced Wnt3a expression and GSK3β
phosphorylation, compared to that with OM alone (Figure 3B). Third, 1–10 µM Caly
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enhanced AKT phosphorylation, compared to that with OM alone (Figure 3C). These data
imply that Caly will regulate RUNX2, which is a key protein for the osteogenesis of MSCs.
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Figure 3. Effects of Caly on the BMP2, Wnt3a, and AKT signaling pathways during the osteogenesis
of human MSCs. (A–C) BMP2 expression, Smad1/5/8 phosphorylation (p-Smad1/5/8), β-actin
expression (A), Wnt3a expression, GSK3β phosphorylation (p-GSK3β), β-actin expression (B), AKT
phosphorylation (p-AKT), and AKT expression (C) were analyzed using Western blot analysis. The
bar graph shows relative expression level (%) normalized to the control (right). Data are expressed as
the mean ± S.E.M. from three separate experiments (* p < 0.05 compared to the control, and # p < 0.05
compared to OM).

2.4. Caly-Activated Signaling Increases RUNX2 Expression and Promotes the Osteogenesis of
Human MSCs

Since RUNX2 is a main convergence protein of the BMP2, Wnt3a, and AKT signaling
pathways that cause the osteogenesis of human MSCs, we clarified whether Caly influenced
RUNX2 expression. As shown in Figure 4A, 1–10 µM Caly enhanced the expression of
RUNX2, compared to that with OM alone (Figure 4A). To demonstrate the functional associ-
ation of the expression of RUNX2 with Caly-activated signaling, MSCs were incubated with
10 µM Caly in the pretreatment of Noggin, a BMP2 inhibitor, and Wortmannin (Wort), an
AKT inhibitor. The increased expression of RUNX2 was significantly inhibited by Noggin
and Wort during the osteogenesis of MSCs (Figure 4B,C). Moreover, we demonstrated that
Noggin and Wort significantly abolished Caly-stimulated ALP activity and mineralized
nodule formation during the early and late osteogenesis of MSC (Figure 4D,E).
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Figure 4. Caly potentiates RUNX2 expression during the osteogenesis of human MSCs. (A) RUNX2
and β-actin expressions were analyzed using Western blot analysis at 2 days. The bar graph shows
relative RUNX2 level (%) normalized to the control (right). (B,C) After the pretreatment of Noggin
and Wort, RUNX2 and β-actin expressions were analyzed using Western blot analysis at 2 days
(B) The bar graph shows relative RUNX2 level (%) normalized to the control (C). (D,E) After the
pretreatment of Noggin and Wort, ALP activity at 7 days (D) and ARS stains at 21 days (E) were
quantitatively measured using a spectrophotometer. Data are expressed as the mean ± S.E.M. from
three separate experiments (* p < 0.05 compared to the control, # p < 0.05 compared to OM, and
$ p < 0.05 compared to OM + Caly).

2.5. Caly Promotes RUNX2 Expression and Osteogenesis in Pre-Osteoblasts Committed to the
Osteoblast Lineages from MSCs

In addition, we investigated whether Caly influences osteogenesis in pre-osteoblasts
committed to the osteoblast lineages from MSCs. The migration was carried out after
inducing osteoblast differentiation using osteogenic supplement medium (OS) with or
without Caly for 24 and 48 h. The migration assay exhibited that 1–10 µM Caly significantly
enhanced the mobility at 24 h, compared to OS alone (Supplementary Figure S1A,B). As
shown in Supplementary Figure S1C,D, 1–10 µM Caly significantly increased osteogenesis
in pre-osteoblasts (Supplementary Figure S1C,D). In addition, Western blot analysis and im-
munofluorescence observation exhibited that 1–10 µM Caly increased the total and nuclear
RUNX2 expression during osteogenesis in pre-osteoblasts (Supplementary Figure S2A,B),
suggesting that Caly also stimulates RUNX2 expression and osteogenesis in pre-osteoblasts
committed to the osteoblast lineages from MSCs.
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3. Discussion

Bone is continuously regenerated by bone cells including osteoblast lineages, which
maintain a healthy skeleton throughout life [13,14]. MSCs are differentiated into osteoblast
lineages to regulate bone development, regeneration, and repair processes through bone
protein synthesis and matrix mineralization [14,15]. Abnormalities of the physiological
process cause bone diseases, including osteoporosis and periodontitis [16–18]. As anabolic
drugs, compounds isolated from plants have been investigated to prevent and cure bone
diseases [19–21]. Previously, our group demonstrated the beneficial effects of various
natural compounds from plants on osteoblast lineages [22–27]. In the present study, we
demonstrated the osteogenic function of Caly obtained from A. membranaceus in human
MSCs.

The differentiation of MSCs is caused by complex processes including cell migration,
proliferation, commitment to osteoblast lineages, and the maturation and mineralization
of osteoblast leading to bone formation and repair in target areas [28,29]. Our present
results demonstrated that Caly potentiates the cell migration, the activity and expression
of ALP, and the formation of mineralized nodules by osteoblast lineages differentiated
from MSCs. The recruitment of MSCs from various locations including the bone marrow,
periosteum, and circulating blood to target areas is necessary during bone formation and
repair [28–30]. It was reported that ALP expression and activity are elevated in osteoblast
lineages differentiated from MSCs, and the calcium deposition of the organic bone matrix
is increased during osteoblast maturation [31–36]. Therefore, the findings suggest that Caly
has biological effects on the migration of MSCs, and their commitment to the osteoblast
lineage, and the maturation of osteoblasts, triggering the processes of bone formation and
repair.

The BMP2, Wnt3a, and AKT signaling pathways are involved in osteogenesis and
bone formation [37–40]. The interaction of BMP2 with BMP receptors stimulates the
phosphorylation of Smad1/5/8 proteins. The phosphorylated Smad1/5/8 proteins form
complexes with Smad4, translocate from cytosol into nucleus, and then cause gene tran-
scription [41]. The interaction of Wnt3a with Frizzled and LRP5/6 receptors increases the
phosphorylation of GSK3β protein, inhibits the activities of GSK3β that lead to β-catenin
degradation, and then causes gene transcription in the nucleus [42]. In addition, BMP2 and
Wnt3a stimulated AKT serine/threonine kinase activity in a PI 3-kinase-dependent manner,
respectively, and AKT signaling promotes osteogenesis [43–45]. Previous papers have also
demonstrated osteogenic effects in rat calvarial osteoblasts [46,47]. Consistent with the
previous literature, our present results demonstrated that Caly stimulates the BMP2, Wnt3a,
and AKT signaling pathways for osteogenic differentiation and bone-forming activities.
It was reported that these signaling pathways consequently modulate RUNX2 expres-
sion and are functionally integrated for osteogenesis [48–51]. In vivo and in vitro studies
demonstrated that RUNX2 is a core transcription factor for bone-specific gene expression
and matrix mineralization during osteogenesis and bone formation [52]. Moreover, in the
present study, we validated the osteogenic effects of Caly on pre-osteoblasts committed to
the osteoblast lineages from MSCs. These findings suggest that the functional cross-talks
of Caly stimulated these signaling pathways to induce osteogenesis and bone formation
through RUNX2 expression in MSCs and osteoblast lineages.

In conclusion, the safety and efficiency of natural compounds have received attention
in various diseases, including bone diseases [53–57]. Diet is also important in preventing the
risk of osteoporosis and treating patients with osteoporosis [58–60]. In particular, isoflavone-
rich cowpea has been reported to increase the proliferation and differentiation of human
osteoblasts through the activation of the BMP2 pathway. Soybean isoflavone treatment has
been reported to induce osteoblast differentiation and proliferation through the activation
of the Wnt3 pathway [61]. It has been reported that Icariin exhibits estrogen-like properties
to induce osteogenic effects through the activation of the AKT pathway [62]. In the present
study, we demonstrated that Caly induces RUNX2 expression by regulating the BMP2,
Wnt3a/GSK, and AKT pathways to cause osteogenesis in human MSCs. Previously,
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relevant papers have also demonstrated that Caly has osteogenic effects in mouse stromal
ST2 cell lines and rat calvarial osteoblasts [46,47,63]. Based on the previous literature and
our data, our findings suggest that Caly may be developed for the prevention and treatment
of bone diseases as an anabolic agent or used by being incorporated into adequate dietary
intake to stimulate the osteogenesis of MSCs.

4. Materials and Methods
4.1. General and Plant Materials

Nuclear magnetic resonance (NMR) spectra were obtained using a JEOL ECX-500
spectrometer (JEOL Ltd., Tokyo, Japan) operating at 1H-NMR (500 MHz) and 13C-NMR
(125 MHz) with tetramethylsilane (TMS) as internal standard. High-performance liquid
chromatography (HPLC) was performed using Agilent 1260 series (Agilent Technologies,
Santa Clara, CA, USA). The MPLC system (puriFlashTM430, interchim, Los Angeles, CA,
USA) and prep-LC equipment (SpotII, Armen, France) and Silica gel 60 (230–400 mesh
ASTM, Merck, Darmstadt, Germany) were used to separate the active compound. The
A. membranaceus were purchased at a commercial herbal medicine market. A voucher
specimen (P357) has been deposited in the Natural Products Bank, National Institute for
Korean Medicine Development (NIKOM).

4.2. Calycosin-7-O-β-glucoside (Caly)

White powder, EI-MS m/z 446.40 [M]+, molecular formula C22H22O10; 1H-NMR
(500 MHz, DMSO-d6) δ 3.27–3.34 (2H, m, H-2′′, 3′′), 3.16 (1H, t, J = 9.0 Hz, H-4′′), 3.44 (1H,
m, H-5′′), 3.48 (1H, dd, J = 5.5, 11.5 Hz, H-6′′a), 3.71 (1H, dd, J = 4.5, 11.5 Hz, H-6′′b), 3.79
(3H, s, OCH3), 4.60 (1H, t, J = 6.0 Hz, 6′′-OH), 5.08 (1H, t, J = 5.1 Hz, 4′′-OH), 5.09 (1H, d,
J = 7.8 Hz, H-1′′), 5.14 (1H, d, J = 4.5 Hz, 3′′-OH), 5.43 (1H, d, J = 4.8 Hz, 2′′-OH), 6.96 (2H,
br s, H-5′, 6′), 7.06 (1H, s, H-2′), 7.13 (1H, dd, J = 2.4, 8.7 Hz, H-6), 7.22 (1H, d, J = 2.4 Hz,
H-8), 8.04 (1H, d, J = 8.7 Hz, H-5), 8.39 (1H, s, H-2), 9.02 (1H, s, 3-OH); 13C-NMR (125
MHz, DMSO-d6) δ 153.6 (C-2), 124.4 (C-3), 174.6 (C-4), 127.0 (C-5), 115.6 (C-6), 161.4 (C-7),
103.4 (C-8), 157.0 (C-9), 118.5 (C-10), 123.6 (C-1′), 116.4 (C-2′), 146.0 (C-3′), 147.6 (C-4′),
111.9 (C-5′), 119.7 (C-6′), 55.7 (OCH3), 100.0 (C-1′′), 73.1 (C-2′′), 76.5 (C-3′′), 69.6 (C-4′′), 77.2
(C-5′′), 60.6 (C-6′′). Caly powder was dissolved in 100% DMSO, and the stock was diluted
at 1:1000. A final concentration of 0.1% DMSO was used as the control.

4.3. Human Mesenchymal Stem Cell (MSC) Culture

Human bone marrow-derived MSCs were purchased from ScienCell Research Labora-
tories (Carlsbad, CA, USA) and cultured in Mesenchymal Stem Cell Medium (Carlsbad,
CA, USA) containing basal medium, fetal bovine serum (FBS), mesenchymal stem cell
growth supplement, and penicillin/streptomycin solution. MSCs were then maintained at
37 ◦C in a humidified atmosphere with 5% CO2.

4.4. Pre-Osteoblast Culture

Pre-osteoblast MC3T3-E1 cells were purchased from the American Type Culture
Collection (ATCC, CRL-2593) (Manassas, VA, USA) and cultured in α-minimum essential
medium (WELGEME, Inc., Seoul, Republic of Korea) without L-AA containing 10% FBS
and 1 X Gibco® Antibiotic-Antimycotic (Thermo Fisher Scientific, Waltham, MA, USA) at
37 ◦C in a humidified atmosphere of 5% CO2 and 95% air, as previously described [64].

4.5. Osteogenesis of MSCs and Pre-Osteoblasts

The osteogenesis of MSCs was induced by changing to OM containing 10 mM β-
glycerophosphate (β-GP), 50 µg/mL L-ascorbic acid (L-AA), and 10 nM dexamethasone
(DEX) (Sigma-Aldrich, St. Louis, MO, USA). The medium was replaced every 2 days
during the incubation period.
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The osteogenesis of pre-osteoblasts was induced using OS containing 10 mM β-GP
and 50 µg/mL L-AA. The medium was replaced every 2 days during the incubation period,
as previously described [64].

4.6. Cell Viability Assay

Cells (1 × 104 cells/well) were seeded onto 96-well plates, and cell viability was
measured by performing an MTT assay to detect NADH-dependent dehydrogenase activity
retained in living cells as previously described [64]. Briefly, cells were incubated with MTT
solution for 2 h, and formazan was solubilized using 100% DMSO. The absorbance was
monitored at 540 nm using the Multiskan GO Microplate Spectrophotometer (Thermo
Fisher Scientific).

4.7. Migration Assays

Boyden chamber assay and wound-healing assay were performed as previously
described [64]. Briefly, for Boyden chamber assay, a nucleopore filter was coated with
Matrigel, and the 2 × 104 cells were incubated in the Boyden chamber for 4 h at 37 ◦C in
a humidified atmosphere of 5% CO2 and 95% air. Then, the cells were fixed and stained
with 0.5% crystal violet. For wound-healing assay, cells (1 × 106 cells/well) were seeded,
wounded, and incubated for 24 h at 37 ◦C in a humidified atmosphere of 5% CO2 and 95%
air. Cell migration was visualized using light microscopy.

4.8. ALP Staining Assay and ALP Activity Assay

Osteogenesis was induced for 7 days, and the assays were performed as previously
described [64]. Briefly, for ALP staining assay, cells (2 × 104 cells/well) were seeded,
fixed, and incubated for 1 h at 37 ◦C with ALP reaction solution (Takara Bio Inc., Tokyo,
Japan). The level of ALP staining was observed using a scanner and colorimetric detector
(ProteinSimple Inc., Santa Clara, CA, USA). ALP activity assay was carried out using an
alkaline phosphatase activity colorimetric assay kit, and the activity was quantitatively
monitored at 405 nm using the Multiskan GO Microplate Spectrophotometer (Thermo
Fisher Scientific).

4.9. ARS Staining Assay

The osteogenesis of MSCs was induced for 21 days, and the assay was performed
as previously described [64]. Briefly, cells (2 × 104 cells/well) were seeded, fixed, and
stained with 2% Alizarin red S (pH 4.2) (Sigma-Aldrich) for 10 min. For quantification,
stains were dissolved in 100% DMSO, and the absorbance was monitored at 590 nm using
the Multiskan GO Microplate Spectrophotometer (Thermo Fisher Scientific).

4.10. Western Blot Analysis

Western blot analysis was performed as previously described [65]. Briefly, proteins
were transferred to polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA),
and the membranes were blocked for 1 h at room temperature and incubated overnight
at 4 ◦C with the primary antibodies as follows: AKT (1:1000, #4691, Cell Signaling Tech-
nology, Beverly, MA, USA), p-AKT (1:1000, #4060, Cell Signaling Technology), β−actin
(1:1000, #sc-47778, Santa Cruz Biotechnology, Santa Cruz, CA, USA), BMP2 (CUSABIO,
#CSB-PAO9419AORb, Houston, TX, USA), Smad1/5/8 (1 : 1000, #sc-6031-R, Santa Cruz
Biotechnology), p-Smad1/5/8 (1:2000, 13820, Cell Signaling), GSK3β (1:1000, #12456, Cell
Signaling), p-GSK3β (1:1000, #9336, Cell Signaling), RUNX2 (1:1000, #12556, Cell Signaling
Technology), and Wnt3a (1:1000, #2721, Cell Signaling). Then, the membrane was incu-
bated with horseradish peroxidase-conjugated secondary antibodies (1:10,000, Jackson
ImmunoResearch, West Grove, PA, USA) for 1 h at room temperature. The protein signals
were monitored in the ProteinSimple detection system (ProteinSimple Inc., Santa Clara,
CA, USA).
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4.11. Immunofluorescence

Immunofluorescence assay was performed as previously described [64]. Briefly, cells
(1 × 104 cells/well) were seeded onto 8-well chamber slides (Thermo Fisher Scientific),
fixed with 10% formalin for 10 min at room temperature, permeabilized with 0.2% Triton X-
100 for 20 min, and blocked with 3% BSA for 1 h. The cells were incubated with anti-RUNX2
antibody (1:200, Cell Signaling Technology) overnight at 4 ◦C, followed by incubation with
Alexa Fluor 568-conjugated secondary antibody (1:500, Invitrogen, Carlsbad, CA, USA)
for 2 h and stained with DAPI (Sigma-Aldrich, St. Louis, MO, USA) for 10 min at room
temperature. The slides were washed three times and mounted using FluoromountTM

Aqueous Mounting Medium (Sigma-Aldrich).

4.12. Statistical Analysis

Data were analyzed using an unpaired Student’s t-test in the GraphPad Prism Version
5 program (GraphPad Software, Inc., San Diego, CA, USA). A value of p < 0.05 was
considered to be statistically significant.
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