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Abstract
The synthesis of well-defined polymer architectures is of major importance for the development of complex functional materials. In

this contribution, we discuss the synthesis of a range of multifunctional star-shaped tosylates as potential initiators for the living

cationic ring-opening polymerization (CROP) of 2-oxazolines resulting in star-shaped polymers. The synthesis of the tosylates was

performed by esterification of the corresponding alcohols with tosyl chloride. Recrystallization of these tosylate compounds

afforded single crystals, and the X-ray crystal structures of di-, tetra- and hexa-tosylates are reported. The use of tetra- and hexa-

tosylates, based on (di)pentaerythritol as initiators for the CROP of 2-ethyl-2-oxazoline, resulted in very slow initiation and ill-

defined polymers, which is most likely caused by steric hindrance in these initiators. As a consequence, a porphyrin-cored tetra-

tosylate initiator was prepared, which yielded a well-defined star-shaped poly(2-ethyl-2-oxazoline) by CROP as demonstrated by

SEC with RI, UV and diode-array detectors, as well as by 1H NMR spectroscopy.
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Figure 1: Schematic representation of the investigated strategy for the synthesis of star-shaped poly(2-ethyl-2-oxazoline)s based on multi-tosylate ini-
tiators.

Introduction
Nowadays, well-defined polymer structures are of major impor-

tance for the development of ever more sophisticated and com-

plex materials, e.g., applications in drug delivery or as adaptive

materials. Star-shaped polymers are especially interesting since

their properties are distinctly different from their linear

analogues with regard to, e.g., number of functional end-groups,

hydrodynamic volume and thermal properties [1,2].

Poly(2-oxazoline)s represent a class of versatile polymer struc-

tures that can be prepared by the (CROP) of 2-substituted-2-

oxazoline monomers (see the bottom right corner of Figure 1

for the structure of poly(2-ethyl-2-oxazoline), as an example of

the polymer structure) [3,4]. The versatility of this class of poly-

mers comes from the living nature of the polymerization,

allowing control over the length of the polymer with a narrow

molar mass distribution and allowing the introduction of

specific end-groups by initiation and termination [4]. Moreover,

variation of the 2-substituent of the 2-oxazoline results in a

variety of the amidic side chains of the poly(2-oxazoline)s [5,6],

which strongly influences the properties of the resulting poly-

mers: ranging from hydrophilic to hydrophobic; and from hard

materials, with a high glass transition temperature via crys-

talline and chiral polymers [7], to soft materials, with a very

low glass transition temperature [8,9].

The synthesis of star-shaped poly(2-oxazoline)s has been

reported using a range of multifunctional electrophilic halide

initiators, such as tetrakis(bromomethyl)ethylene, yielding

4-armed star-shaped polymers [10], as well as other multi-

halide initiators based on, e.g., cyclotriphosphazine [11],

silesquioxane [12], porphyrin [13,14] and bipyridine metal

complex [15,16] cores. More recently, Jordan and coworkers

reported the use of multi-triflate initiators for the preparation of

well-defined star-shaped poly(2-methyl-2-oxazoline)s [17].

However, these multi-halide as well as multi-triflate initiators

are not easily prepared and are not stable upon storage, in par-

ticular in the presence of air. Therefore, we recently reported a

post-modification route for the synthesis of star-shaped poly(2-

ethyl-2-oxazoline) by coupling of an acetylene-functionalized

poly(2-ethyl-2-oxazoline) to a heptakis-azido functionalized

β-cyclodextrin [18]. However, this method required chromato-

graphic separation of the star-shaped polymer from the acety-

lene-precursor polymer.

To overcome the limitations of multi-halide, multi-triflate initi-

ators and post-modification methods, we investigated the use of

multi-tosylate initiators for the CROP of 2-oxazolines as

depicted in Figure 1. The advantages of multi-tosylate initiators

are their straightforward syntheses starting from commercially
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Scheme 1: General reaction scheme for the preparation of multi-tosylates from multifunctional alcohols (top) and schematic representation of the
structures of the investigated multi-tosylates (bottom). i: triethylamine in dichloromethane; ii: pyridine.

available alcohols, their easy purification based on their high

tendency to crystallize [19,20] and their stability under ambient

conditions. In this contribution, we report the synthesis and

crystal structures of various multi-tosylate initiators as well as

their use for the initiation of the CROP of 2-ethyl-2-oxazoline

for the formation of star-shaped poly(2-oxazoline)s.

Results and Discussion
Multi-tosylate preparation
The preparation of tosylates from alcohols is a straightforward

synthetic procedure using p-toluenesulfonic acid chloride (tosyl

chloride) in the presence of a base. Commonly applied pro-

cedures are performed in dichloromethane using triethylamine

as base or using pyridine both as solvent and base (Scheme 1,

top). The synthesis of diethyleneglycol ditosylate (DiTos-A;

Scheme 1) was not required since this compound is commer-

cially available. Recrystallization of this compound from

ethanol resulted in single crystals suitable for X-ray analysis.

Butane ditosylate (DiTos-B; Scheme 1) was synthesized from

1,4-butanediol and an excess of tosyl chloride using dichloro-

methane as solvent and triethylamine as base. After 24 h stir-

ring at ambient temperature, ethanolamine was added to this

reaction mixture to react with the excess of tosyl chloride

resulting in the water-soluble 1-hydroxy-2-ethyl tosylamide,

which could be removed by washing with 3 N hydrochloric acid

and brine. Final purification was performed by recrystallization

from ethanol.

The synthesis of the tetra-tosylate (TetraTos; Scheme 1) and

hexa-tosylate (HexaTos; Scheme 1) compounds was based on

tosylation of pentaerythritol and dipentaerythritol, respectively,

which are both insoluble in dichloromethane. Therefore, the

solvent was changed to pyridine, which also acts as a base.

After the reaction, the mixture was poured into acidified water

resulting in the precipitation of the product that could be puri-

fied by recrystallization from a mixture of ethanol and acetone.

Besides the common characterization techniques to prove the

purity of the compounds, i.e. 1H and 13C NMR spectroscopy

and elemental analysis, the chemical structures of the TetraTos

and HexaTos were verified by MALDI-TOF MS, revealing

only the desired mass peak corresponding to full tosylation

(Figure 2). The absence of residual hydroxyl groups is of major

importance for the use of these multi-tosylates as initiators for

the CROP of 2-oxazolines since they lead to side reactions with

the cationic oxazolinium propagating species.

Multi-tosylate crystal structures
Recrystallization of the prepared multi-tosylates from ethanol or

ethanol–acetone mixtures directly gave single crystals suitable

for X-ray analysis as we previously also observed for a tosylate

adduct of 2,2’:6’,2’’-terpyridine [20]. The obtained molecular

structures and the packing diagrams for DiTos-A, DiTos-B,

TetraTos and HexaTos are displayed in Figures 3–6,

respectively. The crystallographic data, selected bond lengths
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Figure 2: MALDI-TOF MS spectra of TetraTos a) and HexaTos b) Matrix: dithranol.

Figure 3: Molecular structure a) and packing diagram b) of the structure of diethyleneglyclol ditosylate (DiTos-A).

Figure 4: Molecular structure a) and packing diagram b) of the structure of 1,4-butanediol ditosylate (DiTos-B).
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Figure 5: Molecular structure a) and packing diagram b) of the structure of penthaerythritol tetra-tosylate (TetraTos).

Figure 6: Molecular structure a) and packing diagram b) of the structure of dipenthaerythritol tetra-tosylate (HexaTos).

and angles for the crystal structures can be found in the

supporting information. All structures show the expected bond

length and angles. The packing diagrams reveal space filling

packing without any π-stacking between the molecules.

Polymerizations
Since the goal of this research was the development of multi-

tosylate initiators for the preparation of well-defined star-

shaped poly(2-oxazoline)s, TetraTos and HexaTos were utilized

for the CROP of 2-ethyl-2-oxazoline under microwave irradi-

ation. Using the optimal polymerization conditions that were

previously determined for 2-ethyl-2-oxazoline with methyl

tosylate as initiator, i.e. 4 M monomer concentration in aceto-

nitrile, at 140 °C and 10 min for a monomer to initiator ratio of

60 [21,22]; no polymerization was observed at all when using

TetraTos or HexaTos as initiators. By contrast, when the poly-

merization with TetraTos was performed at a further elevated

temperature of 200 °C, the formation of polymer was observed

by SEC (Figure 7a). However, the resulting polymer had a

broad molar mass distribution with tailing at the low molar

mass side. In addition, residual tosylate initiator was still

observed after heating to 200 °C for 10 min. These results

clearly demonstrate that initiation with TetraTos is very slow,

which has also been observed for the polymerization with, e.g.

1-butyne tosylate, due to the decreased electrophilicity of the

initiator when compared to methyl tosylate [18]. However, the
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Figure 7: SEC traces obtained for the polymerization of 2-ethyl-2-oxazoline initiated with TetraTos a) and HexaTos b). The large signals at 9 to 9.5
min retention time correspond to the multi-tosylate initiators.

rate of initiation is further decreased for TetraTos compared to

1-butyne tosylate, which is most likely due to steric hindrance

in TetraTos resulting in a decreased accessibility of the initi-

ating groups. Similar disappointing polymerization results were

obtained with HexaTos as initiator as depicted in Figure 7b. In

fact, even less of the HexaTos was consumed after 10 min

heating to 200 °C at 4 M monomer concentration as a result of

the further increased steric hindrance. Variation of temperature

or concentration did not improve the polymerization results.

Therefore, it can be concluded that these pentaerythritol based

multi-tosylate initiators are not suitable for the CROP of 2-oxa-

zolines, which is in sharp contrast with the rather similar

pluritriflate initiators reported by Jordan [17]. This difference is

most likely related to both the smaller size and the higher re-

activity of the triflate groups compared to the tosylates.

To circumvent the poor initiation efficiency with the multi-tosy-

late pentaerythritol derivatives, a tetra-tosylated porphyrin

(TetraTos-B) was designed in which the rigid porphyrin keeps

the tosylate groups far apart. Scheme 2 depicts the schematic

path that was followed to synthesize TetraTos-B, and

subsequently, the four-armed star pEtOx. Tetrakis(hydroxy-

phenyl)porphyrin (porphyrin) was used to synthesize the rigid

star-shaped TetraTos-B initiator by reaction with a 20-fold

excess of 1,4-butane ditosylate (DiTos-B), followed by

chromatographic purification. This is not a straightforward syn-

thesis compared to the previously discussed multi-tosylates,

partly counteracting the advantages of multi-tosylate initiators

compared to multi-halides and multi-triflates. Figure 8 depicts

the MALDI-TOF MS spectrum of the porphyrin initiator Tetra-

Tos-B. The formation of TetraTos-B (mass 1582) and a minor

fraction, with only three tosylate groups and one methoxybu-

toxy group (mass 1446), next to the utilized matrix dithranol

(mass 226), are clearly evident in the spectrum (Figure 8). This

latter methoxylated side chain might have been present in the

DiTOs-B. Importantly, no hydroxyl groups remained that might

cause side reactions during the polymerizations.

Figure 8: MALDI-TOF MS spectrum of the tetra-tosylate-porphyrin
(TetraTos-B). Matrix: dithranol.

Subsequently, this tetrafunctional initiator was applied for the

microwave-assisted cationic ring-opening polymerization of

EtOx. The polymerization of EtOx with TetraTos-B as initiator

was performed with 2 M monomer concentration in CH3CN at

140 °C under microwave irradiation with a [M]/[I] ratio of 200,

corresponding to 50 monomer units per tosylate group. After
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Scheme 2: Schematic representation of the synthesis of a porphyrin initiated four-armed star-pEtOx starting from tetrakis(hydroxyphenyl)porphyrin
(porphyrin).
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Figure 9: a) 1H NMR spectra (in CDCl3) of the porphyrin initiator TetraTos-B (bottom) and star-pEtOx (top). b) SEC traces of TetraTos-B and star-
PEtOx (in CHCl3:NEt3:2-PrOH; UV-detector at 500 nm).

20 min polymerization time, the formation of the polymer was

observed and the initiator was completely consumed, which is

in clear contrast with TetraTos-A, indicating that indeed

decreasing the steric hindrance significantly improves the initi-

ation efficiency of the polymerization. The resulting porphyrin

centered star-shaped poly(2-ethyl-2-oxazoline) star-PEtOx was

purified by preparative SEC to remove unreacted monomer

since precipitation was unsuccessful due to the small scale of

the polymerization. Figure 9a depicts the 1H NMR spectra of

the tosylate-porphyrin TetraTos-B (bottom) and the star-PEtOx

(top). The porphyrin signals are still present in the star-PEtOx

spectrum, indicating that indeed a four-armed pEtOx with a por-

phyrin core was synthesized. Integration of both the polymer

backbone signals (l and m) and the porphyrin signals (a and b)

revealed that 188 EtOx units were incorporated into the

polymer, corresponding to 47 monomers per arm, which is

close to the theoretical number of 50.

SEC characterization of the TetraTos-B resulted in a negative

signal in the RI-detector, indicating that the porphyrin has a

lower RI than the eluent, and a positive signal in the

UV-detector at 500 nm, where the porphyrin has a strong

UV-absorption (Figure 9b). The Mn was calculated to be 1,580

g/mol with a polydispersity index (PDI) of 1.06 (against poly-

styrene standards). This PDI value results from diffusion of the

organic compound in the column since it is almost monodis-

perse (see MALDI in Figure 8). The star-PEtOx could not be

characterized with the RI-detector due to the combination of a

positive signal of the polymer and a negative signal of the por-

phyrin. However, detection with the UV-detector at

500 nm revealed a relatively narrow molar mass distribution

(Figure 9b), proving that the porphyrin is incorporated into the

polymer. The SEC analysis with the UV-detector yielded a Mn

of 10,700 g/mol and a PDI of 1.18 based on linear

poly(ethylene glycol) standards. The Mn is lower than the theo-

retical molar mass (~21,000 g/mol) due to calibration with

linear standards with a different molecular structure. The hydro-

dynamic volume, that determines the retention time, will be

very different for a star-shaped polymer when compared to a

linear polymer. Nonetheless, the narrow molar mass distribu-

tion indicates that the star-PEtOx was synthesized in a

controlled manner. Critical examination of the SEC trace does

show a slight shoulder at shorter retention times, indicating the

occurrence of minor side reaction leading to star-star coupling.

In addition, the specific porphyrin absorption spectrum could be

detected in the entire molar mass distribution using SEC with a

photodiode-array detector, indicating that the porphyrin is

indeed incorporated in all polymer chains (Figure 10).

Conclusion
The synthesis of various multi-tosylates was successfully

performed by esterification of the corresponding alcohols with

tosyl chloride. The tosylation of (di)pentaerythritols was only

successful using pyridine as solvent due to the limited solu-

bility of the respective educts in dichloromethane. Recrystal-

lization of these tosylate compounds yielded single crystals, and

the X-ray crystal structures of di-, tetra- and hexa-tosylates were

centrosymmetric with ideal space filling packing. The use of

tetra- and hexa-tosylates, based on (di)pentaerythritol as initi-

ators for the living cationic ring-opening polymerization

(CROP) of 2-ethyl-2-oxazoline, resulted in very slow initiation

and ill-defined polymers, which is most likely due to the steric
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Figure 10: SEC spectrum obtained for star-pEtOx utilizing a photo-
diode-array detector (eluent: DMF containing 5 mM NH4PF6).

hindrance of the multiple tosylate groups in these initiators.

Therefore, a porphyrin-cored tetra-tosylate initiator with signifi-

cantly reduced steric hindrance was successfully prepared by

reaction of 1,4-butane-ditosylate with 5,10,15,20-tetrakis(4-

hydroxyphenyl)porphyrin. Utilization of this star-shaped

initiator yielded a well-defined star-shaped poly(2-ethyl-2-oxa-

zoline) by CROP.

Experimental
Materials
Solvents were purchased from Biosolve Ltd. Acetonitrile (size

3 Å) was dried over molecular sieves. CH2Cl2 was distilled

over potassium. All other solvents were used without further

purification. EtOx (Aldrich) was distilled over barium oxide

(BaO) and stored under argon. Methyl tosylate (Aldrich) was

distilled over P2O5 and stored under argon. Diethyleneglycol

ditosylate (DiTos-A; Aldrich) was recrystallized from ethanol

and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (porphyrin;

Aldrich) was used without further purification.

Instrumentation
Polymerizations were carried out in an Emrys Liberator

(Biotage, formerly PersonalChemistry) with capped reaction

vials. All microwave polymerizations were performed with

temperature control (IR sensor).

NMR spectra were recorded on a Varian AM-400 spectrometer

or on a Varian Gemini 300 spectrometer. Chemical shifts are

given in ppm relative to TMS or residual solvent signals.

Size exclusion chromatography (SEC) was measured on a

Shimadzu system with a SCL-10A system controller, a

LC-10AD pump, a RID-6A refractive index detector, a SPD-

10A UV detector and a PLgel 5 μm Mixed-D column with chlo-

roform: triethylamine:2-propanol (94:4:2) as eluent and the

column oven set to 50 °C (polystyrene calibration). SEC with

photodiode-array detector was measured on a Waters system

with a 1515 pump, a 2414 refractive index detector and a

Waters Styragel HT4 column utilizing DMF containing 5 mM

NH4PF6 at a flow rate of 0.5 mL/min as eluent and the column

oven set to 50 °C (PEG calibration).

MALDI-TOF-MS was performed on a Voyager-DE™ PRO

Biospectrometry™ Workstation (Applied Biosystems) time-of-

flight mass spectrometer using the linear mode for operation

(positive ion mode; ionization with a 337 nm pulsed nitrogen

laser). Elemental analyses were performed on a EuroEA3000

Series EuroVector Elemental Analyzer for CHNS-O.

X-ray crystal structures were measured by mounting selected

crystals on a Bruker-AXS APEX diffractometer with a CCD

area detector. Graphite-monochromated Mo-Kα radiation

(71.073 pm) was used for the measurements. The nominal

crystal-to-detector distance was 5.00 cm. A hemisphere of data

was collected by a combination of three sets of exposures at 292

K. Each set had a different Φ angle for the crystal, and each

exposure took 20 s and in steps of 0.3° in ω. The data were

corrected for polarization and Lorentz effects, and an empirical

absorption correction (SADABS) was applied [23]. The cell

dimensions were refined with all unique reflections. The struc-

tures were solved by direct methods (SHELXS97). Refinement

was carried out with the full-matrix least-squares method based

on F2 (SHELXL97) [24] with anisotropic thermal parameters

for all non-hydrogen atoms. Hydrogen atoms were inserted in

calculated positions and refined riding with the corresponding

atom.

Synthesis of 1,4-butanediol ditosylate (DiTos-B)
To a solution of 1,4-butanediol (4.5 g, 50 mmol) and triethyl-

amine (6.07 g, 60 mmol) in dry CH2Cl2 (100 mL), a solution of

tosyl chloride (23.8 g, 125 mmol) in CH2Cl2 (100 mL) was

added dropwise over 75 min. The resulting solution was stirred

for 24 h under argon and subsequently, ethanolamine (6 mL)

was added to react with excess tosyl chloride. The resulting

mixture was poured into water (200 mL). The aqueous layer

was extracted with CH2Cl2, and the combined organic layers

were washed successively with 3 N HCl (2 × 100 mL) and brine

(150 mL). After drying with MgSO4 and filtration, the solvent

was evaporated under reduced pressure. Recrystallization of the

product from ethanol yielded the desired 1,4-butanediol ditosy-

late as white platelets in 58% yield (11,5 g, 28,9 mmol).
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1H NMR (CDCl3): δ 7.74 (d, 8.3 Hz, 4H, o-CH), 7.33 (d,

8.3 Hz, 4H, m-CH), 3.97 (t, 5.5 Hz, 4H, OCH2), 2.43 (s, 6H,

CH3), 1.68 (t, 5.5 Hz, 4H, OCH2CH2). 13C NMR (CDCl3): δ

144.8 (CCH3), 132.7 (CS), 129.8 (m-C), 127.7 (o-C), 69.2

(OCH2), 24.9 (OCH2CH2), 21.5 (CCH3).

Synthesis of pentaerythritol tetra-tosylate (TetraTos)
Pentaerythritol (1.36 g; 10 mmol) and pyridine (20 mL) were

weighed into a round-bottom flask and cooled to 0 °C. Subse-

quently, solid tosyl chloride (9.5 g; 50 mmol) was added

portionwise ensuring that the temperature remained below 5 °C.

The resulting solution was stirred overnight, during which time

it was allowed to warm slowly to ambient temperature. The

formed white-pinkish slurry was poured into 125 mL of a 6M

HCl solution yielding a white precipitate that was collected by

filtration. This solid was washed with water (2 × 100 mL).

Further purification was performed by recrystallization from a

mixture of ethanol (100 mL) and acetone (100 mL) yielding

4.7 g (62%) of the desired product as white crystals. Partial

evaporation of the acetone (~75 mL) from the filtrate yielded

another 1.6 g (22%) of crystals, resulting in a total isolated yield

of 84%.

1H NMR (CDCl3): δ 7.68 (d, 8.2 Hz, 8H, o-CHtos), 7.36 (d,

8.2 Hz, 8H, m-CHtos), 3.82 (s, 8H, SOCH2), 2.47 (s, 12H, CH3).
13C NMR (CDCl3): δ 145.3, 131.0, 129.8, 127.6, 65.2, 42.9,

21.4. C33H36O12S4: calcd. C 52.65, H 4.82, S 17.03; found C

52.87, H 4.89, S 17.21.

Synthesis of dipentaerythritol hexa-tosylate
(HexaTos)
This compound was prepared in a similar manner as TetraTos

using the following amounts: dipentaerythritol (2.5 g;

10 mmol), pyridine (20 mL) and tosyl chloride (14.3 g;

75 mmol). Recrystallization of the crude product from ethanol

yielded the desired product as white crystals (~8 g; 68%).

1H NMR (CDCl3): δ 7.66 (d, 8.2 Hz, 12H, o-CHtos), 7.35 (d,

8.2 Hz, 12H, m-CHtos), 3.77 (s, 12H, SOCH2), 3.14 (s, 4H,

OCH2) 2.44 (s, 18H, CH3). 13C NMR (CDCl3): δ 145.4, 131.7,

130.0, 127.8, 67.8, 66.5, 43.6, 21.5. C52H58O19S6: calcd.

C 52.96, H 4.96, S 16.31; found C 53.30, H 5.10, S 15.97.

Synthesis of 5,10,15,20-tetrakis(4-hydroxybutyloxy
tosylate)-21H,23H-porphyrin (TetraTos-B)
A mixture of 5,10,15,20-tetrakis (4-hydroxyphenyl)porphyrin 1

(170 mg, 0.25 mmol), 1,4-butanediol ditosylate 2 (2 g, 5 mmol)

and potassium carbonate (190 mg, 1,37 mmol) in dry CH3CN

was refluxed for 75 h. After this period, the solvent was evapo-

rated under reduced pressure and the residue was redissolved in

CHCl3. This solution was washed successively with water

(100 mL), saturated sodium hydrogen carbonate solution

(100 mL) and brine (100 mL). After drying with MgSO4 and

filtration, the solvent was removed under reduced pressure. The

resulting solid was purified by column chromatography (SiO2

with CH2Cl2) and preparative size exclusion chromatography

(biobeads SX-1 in CH2Cl2) resulting in the title compound 3

(38 mg, 0.024 mmol, 10% yield).

1H NMR (CDCl3): δ 12.3 (s, 2H, NH), 8.89 (s, 8H, CHpor), 8.20

(d, 8.5 Hz, 8H, OCCHCH), 7.90 (d, 8.2 Hz, 8H, o-CHtos), 7.42

(d, 8.2 Hz, 8H, m-CHtos), 7.21 (d, 8.5 Hz, 8H, OCCH), 4.26 (t,

5.6 Hz, 8H, COCH2), 4.15 (t, 7.2 Hz, 8H, SOCH2), 2.48 (s,

12H, CH3), 2.03 (m, 16H, OCH2CH2CH2). 13C NMR (CDCl3):

δ 158.3, 144.5, 135.3, 134.4, 132.9, 129.6, 127.7, 119.4, 112.3,

70.0, 66.8, 25.6, 25.2, 21.3. C88H86N4O16S4: calcd. C 66.73, H

5.47, N 3.54, S 8.10; found C 66.22, H 5.38, N 3.67, S 7.74.

GPC (CHCl3:NEt3:2-PrOH = 94:4:2; UV detector at 500 nm):

Mn = 1,580 g/mol; PDI = 1.06. MALDI-TOF-MS: m/z [M+]

1582, [M+-tosyl] 1446.

General polymerization procedure
The polymerizations of 2-ethyl-2-oxazoline with TetraTos and

HexaTos as initiators were performed under microwave irradi-

ation. Before use, the microwave vials were heated to 105 °C,

allowed to cool to ambient temperature and filled with argon

prior to use. Subsequently, the initiator, monomer and aceto-

nitrile were weighed in so that a 1.0 mL polymerization mix-

ture was obtained in which the ratio of monomer per tosylate

group is 25 and the desired monomer concentration is 1, 2 or

4 M. This polymerization mixture was heated by microwaves to

the desired temperature for a fixed time (5 min at 140 °C; 2 min

at 160 °C; 30 seconds or 10 min at 200 °C). After heating, the

polymerization mixtures were investigated by size exclusion

chromatography.

Microwave synthesis of 5,10,15,20-tetrakis(pEtOx)-
21H,23H-porphyrin (star-PEtOx)
A mixture of porphyrin tosylate 3 (7.92 mg, 0.005 mmol) and

EtOx (100 mg, 1 mmol) in CH3CN (0.4 mL) was heated to

140 °C for 20 min under microwave irradiation. After heating,

the solvent and residual monomer were evaporated under

vacuum and the resulting residue was purified by preparative

size exclusion chromatography (biobeads SX-1 with CH2Cl2),

resulting in 60 mg of polymer 4 (56% yield).

1H NMR (CDCl3): δ 12.23 (s, 2H, NH), 8.85 (br, 8H, CHpor),

8.10 (br, 8H, 8H, OCCHCH), 7.23 (br, 8H, OCCH), 4.35–4.17

(br, 16H, COCH2 + SOCH2), 3.75–3.20 (br, 752H, NCH2),

2.57–2.05 (br, 395H, COCH2 + OCH2CH2CH2), 1.11–1.09 (br,

574H, CH3). GPC (CHCl3:NEt3:2-PrOH = 94:4:2; UV detector

at 500 nm): Mn = 10,700 g/mol; PDI = 1.18.
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