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Abstract

Background: Based on the observation of an increased number of paralogous genes in teleost fishes compared
with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole
genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic
dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed
that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost
fish, notably by allowing the sub- or neo-functionalization of many duplicated genes.

Results: In this paper, we studied in a wide range of Actinopterygians the duplication and fate of the androgen
receptor (AR, NR3C4), a nuclear receptor known to play a key role in sex-determination in vertebrates. The
pattern of AR gene duplication is consistent with an early WGD event: it has been duplicated into two genes AR-
A and AR-B after the split of the Acipenseriformes from the lineage leading to teleost fish but before the
divergence of Osteoglossiformes. Genomic and syntenic analyses in addition to lack of PCR amplification show
that one of the duplicated copies, AR-B, was lost in several basal Clupeocephala such as Cypriniformes (including
the model species zebrafish), Siluriformes, Characiformes and Salmoniformes. Interestingly, we also found that, in
basal teleost fish (Osteoglossiformes and Anguilliformes), the two copies remain very similar, whereas, specifically
in Percomorphs, one of the copies, AR-B, has accumulated substitutions in both the ligand binding domain (LBD)
and the DNA binding domain (DBD).

Conclusion: The comparison of the mutations present in these divergent AR-B with those known in human to
be implicated in complete, partial or mild androgen insensitivity syndrome suggests that the existence of two
distinct AR duplicates may be correlated to specific functional differences that may be connected to the well-
known plasticity of sex determination in fish. This suggests that three specific events have shaped the present
diversity of ARs in Actinopterygians: (i) early WGD, (ii) parallel loss of one duplicate in several lineages and (iii)
putative neofunctionalization of the same duplicate in percomorphs, which occurred a long time after the WGD.
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Background

Actinopterygian fishes have provided the first clear dem-
onstration of an ancient whole genome duplication
(WGD) in vertebrate evolution [1]. This event was origi-
nally suggested based on the finding that zebrafish and
medaka possess seven Hox clusters [2-4], compared to
four in mammals and one in most invertebrates. It was
confirmed later on by comparative mapping [5] and
through the analysis of genome sequences of two puffer-
fishes [1,6]. Indeed, many short duplicated groups of
linked genes were identified in the Takifugu rubripes and
Tetraodon nigroviridis genomes [1,7]. The duplication
event leading to these duplicates was dated by molecular
clock to a window between divergence of Actinoptery-
gians from Tetrapods, and diversification of teleost fish
[8,9]. In addition, all chromosomes of Tetraodon nigro-
viridis were assigned to syntenic groups of duplicated
genes, demonstrating the genomic scale of the duplica-
tion. It was further shown that each pair of duplicated
genes was homologous to one non-duplicated human
chromosomal region [1].

Direct dating of fish gene duplications based on molecu-
lar clock was hampered by saturation of synonymous
changes at the time scales considered, as well as by differ-
ences in evolutionary rates between mammals and fishes
[1,10-13]. Less sensitive to these problems, phylogenies of
a few tens of gene families have shown a high frequency
of gene duplications to be a common feature among sam-
pled teleosts or euteleosts, but not among other fishes
[11,14]. Comparative mapping has recently shown that
paralogons are homologous between pufferfishes (which
belong to Percomorphs) and zebrafish (a Cypriniform),
implying that the whole genome duplication event
occurred before the divergence of these two lineages of
Euteleosts [7]. In addition, using a small number of genes,
Hoegg et al. [14] have scrutinized the existence of duplica-
tions in basal Actinopterygians and have found that the
WGD event took place after the split of the Acipenseri-
formes from the lineage leading to teleosts but before the
divergence of Osteoglossiformes, making it specific to the
teleostean fish (Figure 1). Because this event separates the
species-poor basal lineages from the species-rich teleost
lineages, the same authors have suggested that the addi-
tional number of genes resulting from this event might
have facilitated the evolutionary radiation and the pheno-
typic diversification of teleosts [15,16].

One basic question regarding gene duplication is the fate
of duplicated genes. According to the Duplication -
Degeneration - Complementation (DDC) model pro-
posed by Force et al. [17], duplicated genes may have three
main fates: the majority of duplicated copies are lost,
some duplicated genes are subfunctionalized (i.e. they
share the ancestral function of their non duplicated ances-
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tor) and some others undergo neofunctionalization (i.e.
they change their function when compared to their ances-
tor). In most cases the sub- or neofunctionalization events
are classically considered to have occurred relatively soon
after the duplication event. We recently suggested that a
biased subset of genes was retained as duplicates after the
genome duplication and that gene retention was biased
with regard to biological processes [18]. Most notably, we
observed an enrichment of fish genomes in new paralogs
implicated in development, supporting the link between
genome duplication and fish morphological diversity
[15,18]. In addition, several studies have shown that sub-
or neofunctionalization events can be observed at the
expression level when specific pairs of duplicated genes
are studied (see for example [19-21]). Of note, if there are
some examples of neofunctionalization events affecting
the biochemical function of genes after the vertebrate
WGD, much less numerous specific examples of that sort
were shown for fish duplicated genes [22-24].

Androgens play essential roles in sex differentiation, sex
maturation and behavior in vertebrates, including Actin-
opterygian fishes [25,26], and their actions are mediated
through a specific receptor, AR (NR3C4) which belongs to
the nuclear receptor super-family [27]. In Actinoptery-
gians, the mediation of androgen action is far more com-
plicated than in other vertebrates as there is a duality in
the active androgens involved in reproduction, i.e. regular
androgens (DHT) versus 11-oxygenated androgens (11KT)
[26]. Like every nuclear receptor, ARs are composed of
three main domains [27]: a hypervariable N-terminal
domain involved in transcriptional activation, a DNA-
binding domain (also referred to as the C Domain) which
permits the binding of receptor on target genes and a lig-
and-binding domain (also referred to as the E Domain).
The amino acid sequences of these last two domains
(DBD and LBD) are highly conserved from actinoptery-
gians to mammals with 90% and 70% identity with mam-
malian ARs for the DBD and the LBD respectively [28]. In
Actinopterygians, several duplicates of AR were character-
ized in the rainbow trout, Oncorhynchus mykiss [29], the
mosquitofish, Gambusia affinis [30], Astatotilapia burtoni
(see Table 1 for accession numbers), the Nile tilapia, Ore-
ochromis niloticus, the Japanese eel, Anguilla japonica
[31,32] and in Gasterosteus aculeatus [33]. Interestingly, in
addition to these molecular clones corresponding to two
duplicated genes, different forms of ARs, termed AR-A and
AR-B, have also been biochemically characterized based
on their binding affinities for different androgen ligands
in the Atlantic croaker, Micropogonias undulatus [34] and
the kelp bass, Paralabrax clathratus [35]. These two recep-
tors display different tissue distributions with AR-A
present only in the brain and AR-B found both in the
brain and the gonads [34]. In addition, the different bind-
ing affinities of these two ARs suggest that the receptors
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Classification of the fish species used in this survey as
in [51,52]. The Whole Genome Duplication (also named 3R)
event is indicated.

mediate the actions of different androgens, 11KT and
DHT, in different tissues of teleost fish [36].

The case of AR in fish is particularly interesting to study as
sex determination mechanisms are known to be particu-
larly plastic in Actinopterygians [37,38]. For example,
sequential hermaphroditism is common among marine
fishes, particularly in tropical and subtropical seas, and
can involve females becoming males (protogyny) or
males becoming females (protandry), and also bidirec-
tional (repetitive) sex changes [39-42]. Sex changes
among species with well organized social and mating sys-
tems are controlled by social cues [41,43-45] and involve
complete alterations in gonadal anatomy and function, as
well as changes in color and behavior. It is known that sex
steroid hormones play important roles in sex change and
behavior in many fish species, and androgens have been
shown to be crucial for completion of this process in
many protogynous hermaphrodites [46-48].

Interestingly, in human, mutations of the AR gene repre-
sent the molecular basis of androgen insensitivity syn-
drome (AIS) [49]. AIS is characterized by defective
virilization in 46, XY individuals. The phenotypic spec-
trum of AIS is extremely large: Complete AIS (CAIS) is
characterized by completely female external genitalia. In
Partial AIS (PAIS) the phenotype ranges from almost
female external genitalia through ambiguous forms to
predominantly male external genitalia with hypospadias.
Minimal (or Mild) forms of AIS exist which are character-
ized by impaired spermatogenesis with or without a slight
virilization deficit. In addition, the androgen receptor is
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also implicated in prostate cancer and a specific set of
mutations often occurred in patients whose cancer
became androgen-independent, an evolution of poor
clinical prognosis [50].

In this paper, we reconstructed the evolutionary history of
AR in Actinopterygians. We observed a complex history
shaped by three successive events well separated in time:
(i) an ancestral duplication event specific to teleost fishes
corresponding to the WGD; (ii) a parallel loss of one
duplicated copy (AR-B) in basal Clupeocephala and (iii) a
major sequence divergence indicative of a change in func-
tional constraints in the AR-B duplicate of Percomorphs.
This evolutionary history together with the striking muta-
tion patterns is indicative of a putative neofunctionaliza-
tion event that took place late during AR-B evolution It is
tempting to link this neofunctionalization event to the
plasticity of sex determination in Percomorphs.

Results and discussion

The Androgen receptor is duplicated in teleost fishes
Using a combination of RT-PCR with degenerate primers
designed in the conserved C and E domains and in silico
search against various databases, we were able to charac-
terize 26 different new AR cDNA fragments from 20 differ-
ent fish species. Along with these AR cDNA fragments, we
also identified other steroid receptors (NR3C group) in A.
baerii and E. stoutii (Genbank accession numbers
ABF50787 and ABF50785). This is probably due to a com-
bination of the high conservation of the C and E domains
used to design primers among all steroid nuclear receptors
and the low stringency of touchdown PCR procedure that
we used. In this study, five new sequences of AR were also
identified using database searches and 21 new sequences
of AR were isolated by RT-PCR with degenerated primers,
the majority of them being teleosteans (20), one being
chondrichthyan, one being Dipnoi and one being chon-
drostean (Table 1).

Of note, one expressed sequence tag in Oryzias latipes was
found to match with the 5' end region of the divergent AR
in Haplochromis burtoni (AF121257). The corresponding
clone was further sequenced and was confirmed to be a
medaka AR. No more than one gene was identified in
zebrafish by searching both EST databases and the whole
genome sequence (see below). Additional file 1 provides
an amino acid alignment of a representative choice of
these sequences, focusing on complete DBD and LBD
sequences. A complete alignment is available upon
request to F.B.

Using the 30 full length sequences identified in our
screens, we reconstructed the phylogeny of the Actinop-
terygian ARs using Neighbor-Joining, Maximum Parsi-
mony, Maximum Likelihood and Bayesian methods
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Table I: Androgen receptors, species names and their accession numbers.

Genus_AR Scientific name Common name Class_lInfraclass Order SWP_TrEMBL_ID Ensembl_Prot_ID GenBank_Acc_Nb
Homo_AR Homo sapiens Human Mammalia Primates ANDR_HUMAN ENSP00000363822 P10275
Mus_AR Mus musculus Mouse Mammalia Rodentia ANDR_MOUSE ENSMUSP00000052648 NP_038504
Gallus_AR Gallus gallus Chicken Aves Galliformes Q2ACEOQ_CHICK ENSGALP00000007301 BAE80463
Xenopus_t_AR Xenopus tropicalis European clawed frog Amphibia Anura na. ENSXETP0000001 1091 na.
Xenopus_I_AR Xenopus laevis African clawed frog Amphibia Anura P70048_XENLA _ AAC97386
Protopterus_AR Protopterus annectens Protopterus annectens Sarcopterygii/dipnoi Lepidosireniformes A3QQ74_PROAN _ ABF50783*
Myoxocephalus_AR-B Myoxocephalus scorpius  Shorthorn sculpin Actinopterygii/Teleostei Scorpaeniformes A3QQ70_MYOSC ABF50779*
Takifugu_AR-A Takifugu rubripes Fugu Actinopterygii/Teleostei Tetraodontiformes na. SINFRUP000001563 | 8* na.
Takifugu_AR-B na. SINFRUP00000135072* na.
Tetraodon_AR-A Tetraodon nigroviridis Spotted green pufferfish Actinopterygii/ Teleostei Tetraodontiformes Q4S8Q7_TETNG GSTENP00022234001 CAG02975
Tetraodon_AR-B Q4RT97_TETNG GSTENP00029350001 CAG08385
Tetraodon_f_AR-A Tetraodon fluviatilis Green pufferfish Actinopterygii/Teleostei Tetraodontiformes A3QQ72_TETFL _ ABF5078|*
Porichthys_AR-A Porichthys notatus Plainfin midshipman Actinopterygii/Teleostei Batrachoidiformes QA4F6Z1_PORNO _ AAZ 14095
Oryzias_AR-A Oryzias latipes Medaka Actinopterygii/ Teleostei Beloniformes Q76LM5_ORYLA ENSORLP0000001 1941*  BAC98301
Oryzias_AR-B A8CMD5_ORYLA ENSORLP00000010323*  ABV55993
Rivulus_AR-A Rivulus marmoratus Mangrove rivulus Actinopterygii/Teleostei Cyprinodontiformes QI5HT9_RIVMA _ AB 12
Gambusia_AR-A Gambusia affinis Western mosquitofish Actinopterygii/Teleostei Cyprinodontiformes Q5NU07_GAMAF _ BAD81046
Gambusia_AR-B Q5NU08_GAMAF _ BAD81045
Gasterosteus_AR-A Gasterosteus aculeatus Three-spined stickleback  Actinopterygii/Teleostei Gasterosteiformes Q801Z2_GASAC ENSGACP00000026869 AAQ83572
Gasterosteus_AR-B na. ENSGACP00000024489*  n.a.
Micropogonias_AR-A Micropogonias undulatus  Atlantic croaker Actinopterygii/Teleostei Perciformes Q66VR6_MICUN _ AAU09477
Acanthopagrus_AR-A Acanthopagrus schlegeli Black porgy Actinopterygii/Teleostei Perciformes Q800S7_ACASC _ AAQ61694
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Table I: Androgen receptors, species names and their accession numbers. (Continued)

Haplochromis_AR-A Haplochromis burtoni Burton's mouthbrooder Actinopterygii/Teleostei Perciformes Q8QFV7_HAPBU _ AAL92878

Haplochromis_AR-B Q9We6F4_HAPBU _ AAD25074
Dicentrarchus_AR-A Dicentrarchus labrax European sea bass Actinopterygii/Teleostei Perciformes Q4G497_DICLA _ AAT76433
Dicentrarchus_AR-B A3QQ67_DICLA _ ABF50776*
Lepomis_AR-A Lepomis gibbosus Lepomis gibbosus Actinopterygii/Teleostei Perciformes A3QQ57_9PERO _ ABF50766*
Oreochromis_AR-A Oreochromis niloticus Nile tilapia Actinopterygii/Teleostei Perciformes Q8UWB7_ORENI _ BAB20082

Oreochromis_AR-B Q8UWBBS_ORENI _ BAB2008|

Perca_AR-A Perca fluviatilis Perch Actinopterygii/Teleostei Perciformes A3QQ55_PERFL _ ABF50764*
Pagrus_AR-A Pagrus major Red sea bream Actinopterygii/ Teleostei Perciformes 093497_PAGMA _ BAA33451

Pomatoschistus_AR-B Pomatoschistus minutus Sand goby Actinopterygii/Teleostei Perciformes A3QQ69_POMMI _ ABF50778*
Halichoeres_AR-A Halichoeres trimaculatus ~ Three-spot wrasse Actinopterygii/ Teleostei Perciformes Q9DDJ4_HALTR _ AAG48340
Salmo_AR-A Salmo salar Atlantic salmon Actinopterygii/Teleostei Salmoniformes Q8UWEF7_SALSA _ AAL29928

Oncorhynchus_AR-Al Oncorhynchus mykiss Rainbow trout Actinopterygii/ Teleostei Salmoniformes 093244_ONCMY _ BAA32784
Oncorhynchus_AR-A2 093245_ONCMY _ BAA32785
Cyprinus_AR-A Cyprinus carpio Common carp Actinopterygii/Teleostei Cypriniformes A3QQ59_CYPCA _ ABF50768*
Carassius_AR-A Carassius auratus Goldfish Actinopterygii/Teleostei Cypriniformes Q8QFV2_CARAU _ AAM09278
gtenopharyngodon_AR— Ctenopharyngodon idella  Grass carp Actinopterygii/ Teleostei Cypriniformes A3QQ60_CTEID _ ABF50769*
Labeo_AR-A Labeo rohita Indian major carp Actinopterygii/Teleostei Cypriniformes A3QQ58_LABRO _ ABF50767*
Pimephales_AR-A Pimephales promelas Fathead minnow Actinopterygii/ Teleostei Cypriniformes Q9I8F5_9TELE _ AAF88138

Danio_AR-A Danio rerio Zebrafish Actinopterygii/Teleostei Cypriniformes A4GVF3_DANRE ENSDARP000000 16299 ABO21344
Gymnocorymbus_AR-A Gymnocorymbus ternetzi  Black Widow tetra Actinopterygii/ Teleostei Characiformes A3QQ7I_9TELE _ ABF50780*
Clarias_AR-A Clarias gariepinus Sharptooth catfish Actinopterygii/Teleostei Siluriformes A3QQ63_CLAGA ABF50772*
Heterotis_AR-A Heterotis niloticus Heterotis Actinopterygii/ Teleostei Osteoglossiformes A3QQ64_9TELE ABF50773*
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Table I: Androgen receptors, species names and their accession numbers. (Continued)

Heterotis_AR-B A3QQ65_9TELE ABF50774*
Anguilla_AR-A Anguilla japonica Japanese eel Actinopterygii/Teleostei Anguilliforme QI9PWGS5_ANGJA BAA83805
Anguilla_AR-B QI9YGVI_ANGJA BAA75464
Acipenser_AR Acipenser baerii Siberian sturgeon Actinopterygii Acipenseriformes A3QQ77_ACIBE ABF50786*
Squalus_AR Squalus acanthias Spiny dogfish Chondrichthyes Squaliformes Q56VU2_SQUAC AAP55843
Ginglymostoma_AR Ginglymostoma cirratum  Nurse shark Chondrichthyes Orectolobiformes A3QQ75_GINCI ABF50784*
Leucoraja_AR Leucoraja erinacea Little skate Chondrichthyes Rajiformes QIKXY2_RAJER ABDA46746

Names of the species used in this analysis and their accession numbers retrieved from SwissProt, TrEMBL, Ensembl and Genbank. Asterisks show the genes sequenced in this survey. Non available: n.a.
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(Figure 2 and see Additional file 2). The shorter PCR frag-
ments were used for sequence signature analysis to assess
their orthology relationships. Note that given the overall
strong conservation of the AR sequences and the relatively
short size of the alignable conserved regions, we obtained
many branches supported by relatively weak bootstrap
values. The AR gene is thus certainly not an adequate
marker to decipher fish phylogeny and the topologies we
obtained are often not in accordance with accepted con-
cepts in fish phylogeny [51,52]. Nevertheless, the main
branches discussed in this paper are well supported and
allow the drawing of clear conclusions.

In all cases, only one AR sequence was identified in each
tetrapod. Based on partial sequence analysis, the AR from
the west African lungfish branched at the root of this tetra-
pod cluster (not shown). We obtained only one AR
sequence in the sturgeon, Acipenser baerii and this
sequence is, as expected, clearly located at the base of the
Actinopterygian sequences, suggesting that it corresponds
to a non-duplicated version of the AR gene (Figure 3). In
contrast in Heterodontis niloticus, a member of the Oste-
oglossiformes, which is located at the base of the teleosts
according to recent phylogenies based on mitochondrial
and nuclear genes [51,53], we found two AR sequences, as
in many other teleost fishes such as the eel, the medaka or
the cichlids (Table 1 and Figure 2). This suggests that the
duplication giving rise to the AR-A and AR-B genes
occurred specifically at the base of the teleost tree after the
split of the Acipenseriformes from the lineage leading to
teleosts but before the divergence of Osteoglossiformes
(see Figure 1). This phylogenetic dating obtained with AR
is in accordance with the data recently obtained with
other genes such as Sox11 and tyrosinase by Hoegg et al.,
[15]. In contrast to the data from these authors, our data
set does not contain sequences from Semionotiformes
(gars) or Amiiformes (the bowfins, Amia calva) that would
allow us to confirm more accurately that the WGD
occurred specifically in teleosts. Nevertheless, our data are
fully consistent with this likely scenario.

That the two sequences AR-A and AR-B are indeed the
product of the ancestral WGD specific of teleosts is further
supported by the chromosomal location of the two tetrao-
don AR sequences. Indeed, these two genes are located on
chromosomes T1 and T7 in the tetraodon genome (Figure
4). From a global synteny analysis, we have previously
shown that these two chromosomal regions have a com-
mon origin [1,18]. This is further supported by the obser-
vation that in the medaka genome, the two AR genes are
located on chromosomes M10 and M14 that also share
many duplicated genes (|16] and data not shown). Taken
together, these data unambiguously show that the AR
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gene was duplicated to give rise to two paralogs AR-A and
AR-B during the teleost specific WGD.

AR-B was secondarily lost in basal Clupeocephala,
including zebrafish

When analyzing the tree presented in Figure 1, we were
puzzled to observe that the AR-B sequence can be found
in basal teleosts (Heterotis, Anguilla) as well as in many
Percomorphs but is missing in many basal Clupeocephala
lineages.

As this observation could be due to an experimental bias
linked to a failure to amplify a divergent gene by PCR, we
then first checked that this observation was not due to an
artifactual lack of detection of the AR-B gene. To this end,
we focused our analysis on zebrafish for which a large
number of data (complete genome, ESTs, etc...) are avail-
able. First, we carried out RT-PCR experiments using dif-
ferent batches of primers and several RNA extracts of
zebrafish embryos at various developmental stages, as
well as adult organs. In all cases, we detected only one AR
sequence whereas our primer batches were able to detect
divergent NR3C steroid receptors such as GR, MR or PR.
PCR experiments based on DNA amplification of short
fragments contained in only one exon also failed. Finally,
we intensively screened the release Zv7 (13 July 2007) of
the zebrafish genome using various fragments of the AR
gene as baits without any significant hit. Of note, no
sequence reminiscent of a pseudogene was detected.

Due to the availability of a complete and assembled
zebrafish genome sequence, we tried to better understand
the fate of the AR-B gene in zebrafish. In Tetraodon, we
found two AR genes, AR-A and AR-B (Table 1 and Figure
2). Since we and others previously showed that an exten-
sive synteny persists between Tetraodontiformes and
zebrafish genomes [1,7,54], we precisely mapped in
Tetraodon and zebrafish the syntenic regions containing
AR-A and AR-B. Figure 4 clearly shows that AR genes map
in a large duplicated region corresponding to chromo-
somes T1 and T7 in Tetraodon. Chromosome T7 in Tetrao-
don is syntenic to chromosomes 75, Z10 and Z21 in
zebrafish. Interestingly, the zebrafish AR-A ortholog is
present in chromosome Z5, as predicted based on con-
served synteny. A detailed map shows that the organiza-
tion of this region is conserved between tetraodon and
zebrafish (data not shown). The Tetraodon AR-B gene map
to chromosome T1 and the region encompassing the gene
corresponds mainly to the zebrafish chromosome Z14.
The mapping of the region containing the Tetraodon AR-B
sequence on the zebrafish genome shows that this region
has been scrambled during evolution. Many gene orders
are not conserved and large fragments are missing or were
exchanged (data not shown). The same consideration is
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Figure 2

Phylogenetic analysis of the AR in fish. Top values are posterior probabilities given with MrBayes. Bottom values are max-
imum likelihood for 1000 iterations of bootstrap values. Default parameters of PhyML were used. AR-A branches are in green,

AR-B branches are in red.
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Figure 3
Maximum likelihood analysis of all species using PhyML. Default parameters of PhyML were used. 100 bootstrap repli-

cates were used and only values above 30 are indicated. Since short sequences are included here, the bootstrap support is
lower than on the tree based on complete sequences as in Figure 2. AR-A branches are in green, AR-B branches are in red.
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723 222 721 720
724 1 l 719

D species gene ensembl access number chr  begins
Tetraodon AR-A GSTENP00022234001 T7 5709839
Zebrafish AR-A ENSDARP00000016299 Z5 29754568
Tetraodon AR-B GSTENP00029350001 T1 3750253

Figure 4

Syntenic analysis of the AR in fish. We used the rose window method as described in Jaillon et al. [1] and Brunet et al. [18]
(see also Additional file 3). (A) Rose window showing the 2| Tetraodon chromosomes, illustrating the two-by-two relation
between duplicates originating from the teleost specific WGD event. AR-A and AR-B in Tetraodon are located respectively on
chromosome T1 and T7, chromosomes that have been described as originating from the teleosts WGD. The red line shows
the relationship between these two genes. (B and C) relationship between the genes present in Tetraodon chromosomes T7
(B) and T (C) with the genes present in the 25 zebrafish chromosomes. As shown in panel B, the AR A gene is found in the
zebrafish on chromosome Z5 (red line) and a very strong synteny exists in general between T7 and Z5 chromosomes. As
shown in panel C, a clear synteny is found between T1| and the Z14 chromosomes, although less univocal than in the previous
case (orthology based from Ensembl v48, in agreement with reciprocal best-hit analyses we performed, data not shown).
Importantly, the AR-B ortholog in the zebrafish could not be detected neither on chromosome Z14 nor on other locations in
the whole genome. (D) Table indicating the positions and Ensembl accession numbers of the relevant AR genes.

reached when the medaka genome is considered (see
Additional file 3).

These data indicate clearly that a secondary loss of AR-B
occurred in zebrafish. Interestingly, in related Cyprini-
formes (5 species), Characiformes (1 species) and Sil-
uriformes (1 species) that altogether form the well-
supported clade Otophysi [55], we also found only one
AR-A sequence and no AR-B one. We recently screened
EST data available for all these species and we could not

find any sequence reminiscent of AR-B. Of course,
although complete genome sequences are not available
and RT-PCR results can artifactually miss a divergent
sequence, these data collectively suggest that an unique
event of loss of AR-B occurred early on in the Otophysi
lineage.

Strikingly, the exact same situation was observed in
another independent lineage of Clupeomorph: the Sal-
moniformes. In the 2 species analyzed one more time, we
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found only AR-A and not AR-B. Of note, in Salmoni-
formes two AR-A sequences are observed (corresponding
to the two subtypes named ar-alpha and ar-beta known in
rainbow trout [29]). These correspond to the tetraploidi-
zation event that occurred 25 to 100 MYTr ago specifically
in the salmonid lineage [56]). It is important to note that
even in the divergent AR-B sequences that we analyzed in
Percomorphs (see below), the regions targeted by the var-
ious PCR primers that we used are well-conserved. In
addition, once again, the screening of the ESTs available
in salmon and trout (the most widely used species of Sal-
moniformes in aquaculture and genomic research) has
not delivered any AR-B type sequence. Thus, although this
conclusion is only tentative in the absence of a complete
genome, the most likely scenario, considering all existing
data, is that AR-B gene was lost in Salmoniformes as in
Otophysi (Figure 5).

It is clear that loss of duplicated genes is a very common
fate after a genome duplication event but the present anal-
ysis nicely illustrates a late case of neofunctionalization.
Our data suggest that basal teleosts and percomorphs kept
two functional copies of AR whereas "intermediate" line-
ages such as Otophysi and Salmoniformes lost it second-
arily (see below). According to the topology of teleost fish
phylogeny presented in Figure 1, our results imply two
independent losses of AR-B, one at the base of Otophysi
and one at the base of Salmoniformes (see also Figure 5).
This is based on the assumption that the current topology
based essentially on complete mitochondrial DNA analy-
sis is correct in the respective placement of Salmoniformes
and Otophysi [51,55,57]. If, as suggested by some
authors, these two groups form a monophyletic clade, it
may be possible that in fact only one ancestral event of
loss occurred [58]. In that case, we can predict that AR-B
should not be found in Esociformes. In any case, our
present data plead for the search of AR-A and AR-B in
orders of Actinopterygians located at key positions in the
evolutionary tree: it would be interesting for example to
see if AR-B is present in other Ostariophysi lineages such
as Gonorhynchiformes, or Clupeomorphs [55] as well as
other Protacanthopterygii such as Esociformes, Argen-
tinoidea and Osmeroidea. This will allow a more precise
determination of when the events of loss occurred [51].

It is difficult to speculate with the data available why the
Otophysi and the salmonids apparently do not need a sec-
ond AR-B gene. Given the major function of AR in sex
determination and sex organ differentiation, it is tempting
to link these events with these processes but given that
these data on Otophysi and salmonids are limited to
some specific models such as zebrafish, salmon and trout,
it is up to now difficult to find an obvious connection. It
is striking that zebrafish and salmonids are extremely dif-
ferent regarding sex determination and sex differentiation.
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In addition, as discussed above, the exact phylogenetic
range of this loss of AR-B is still unclear.

Functional shift of AR-B in Euteleosts

In the tree presented in Figure 2, we noticed the presence
of a highly divergent terminal group of AR-B sequences.
This is confirmed when a larger dataset including partial
sequences is used to construct a phylogeny with any of the
4 methods used (Figure 3 and data not shown). In all
cases, we found a long terminal branch uniting divergent
AR-B sequences. This divergent AR-B subtype unambigu-
ously (bootstrap value: 1000 out of 1000; posterior prob-
abilities: 1.00) clusters AR sequences of fish belonging to
the percomorphs, i.e., the seabass D. labrax, the sand goby,
P. minutus, the nile tilapia, O. niloticus and A. burtoni, a
scorpaeniforme with M. scorpius, the shorthorn sculpin,; a
beloniforme with the medaka, O. latipes, a cyprinodon-
tiforme with the mosquitofish, G. affinis, and 2 tetraodon-
tiformes with the tetraodon, T. nigroviridis and the fugu, T.
rubripes. Indeed, when we considered the sequence align-
ment (see Additional file 1), we observed a serie of muta-
tions that are present only in the percomorph AR-B
sequences (highlighted in green). The divergence of these
sequences corresponds to a transient episode of sequence
divergence as the AR-B sequences clustered inside this
group are not particularly variable. Thus, all these data
suggest that the percomorphs AR-B are connected to the
basal teleosts AR-B through a long branch and exhibit
some striking sequence divergence at key positions. From
the phylogenetic range of species in which these divergent
AR-B sequences are found, it is likely that this acceleration
occurred specifically in percomorphs, although this
remains to be fully established by a broader taxonomic
sampling including other Neotelestoi lineages such as
basal Acanthomorphs (e.g. Gadiformes; [59]) as well as
Bericyformes [52]. To really assess if this event is found in
all Percomorphs, some basal lineages (e.g. Ophidii-
formes) of this extremely vast group of fishes should also
be studied [52]. In the mean time, given our observation
that divergent AR-Bs are found only in percomorphs from
our dataset, we will refer to these divergent sequences as
"percomorph AR-B".

It is important to insist on the fact that basal teleosts
(Anguilla and Heterotis) clearly contained AR-A and AR-B
paralogs. For AR-A, this is not difficult to establish given
that this gene is present in a wide phylogenetic range of
species. For AR-B, the assignment is less obvious since, as
discussed above, this gene has been lost in basal Clupeo-
cephala. The fact that the AR-Bs from Anguilla and Hetero-
tis are indeed orthologs of the percomorph AR-B is
indicated by several features: (i) these sequences exhibit a
few key sequence signatures that represent synapomor-
phies of AR-B sequences (highlighted in yellow and
orange in Additional file 1), this is for example the case of
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Model of evolution of the AR in fish based on the
same phylogenetic background as Figure |. A WGD
occurred at the base of the Teleostei, and two successive
losses occurred in the lineages leading to the Otophysi and
the Oncorhynchus. Last, in the percomorphs, all the AR-B
genes harbor an event of acceleration, while the AR-A ones
show no sign of such rapid evolution at the molecular level.

Gly633, Ser861 and Ser928 in the LBD; (ii) the topology
of the phylogenetic tree supports this assumption albeit
with a moderate support (posterior probability of 0.96,
bootstrap value of 459%o; Figure 2). Of note, we con-
structed trees based on Bayesian analysis which confirm
that the topology presented in Figures 2 and 3 is robust
(see Additional file 2).

The most likely scenario accounting for the data available
concerning Actinopterygian AR evolution is therefore a
three step model (Figure 5): (i) ancestral duplication of a
unique AR gene during the WGD event specific of teleost
fishes. This explains why Anguilla and Heterotis have two
AR sequences, AR-A and AR-B; (ii) secondary loss of AR-B
in basal Clupeocephala (Otophysi and Salmoniformes)
explaining the restricted phylogenetic occurrence of AR-B
when compared to AR-A; (iii) a late specific divergence of
AR-B. The long branch connecting percomorph AR-B to
the basal AR-B sequences is indicative of the accumulation
of numerous mutations and we thus proposed that it cor-
responds to a functional shift that has affected the AR-B
protein.

We therefore wanted to test whether the two groups of
paralogous genes AR-A and percomorph AR-B were under
different selective pressures. We reasoned that if selective
pressures differed between the two groups, there should
be sites undergoing substitutions in the AR-A subtree and
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constrained in the percomorph AR-B subtree, and sym-
metrically sites constrained in the AR-A subtree undergo-
ing substitutions in the AR-B subtree. Patterns of
evolutionary rates in one subtree versus the other were
compared to answer this question: are they significantly
more different than they would be if branches were picked
at random among the two subtrees? Expected numbers of
substitutions were estimated for all branches of the tree
and all sites of the alignment [60]. A non-symmetric cor-
respondence analysis was applied on these numbers of
substitutions, and the percentage of variance between
branches explained when branches are clustered accord-
ing to the two subtrees was computed. The significance of
this percentage was assessed by a permutation test based
on 500 000 replicates, where branches are picked ran-
domly from the two subtrees. Among the 500 000 ran-
dom clusterings, only 0.36% explained a higher
percentage of variance among branches than the cluster-
ing according to the paralogous subtrees (See Additional
file 4). As branches have been normalized with respect to
their lengths by the correspondence analysis, this variance
comes from differences in patterns of substitutions, not
branch lengths. Therefore, patterns of substitutions are
significantly more different between the two groups of
paralogous genes than between two random groups of
branches. This suggests that selective pressures differ
between AR-A and AR-B genes, which is in favor of a pos-
sible neofunctionalization. The same conclusion is
reached with the use of the PAML software [76]. A signifi-
cant change in the selective pressure onto the branch spe-
cific to the AR-B in percomorphs (p-value = 1.688343e-
08) is unequivocally detected, although the test is not sen-
sitive enough to tell whether it is a relaxation of the selec-
tive pressure or positive selection that drove this change.
It should be made clear that, in the absence of a functional
characterization, including a comparison of a basal non-
duplicated AR (e.g. sturgeon), duplicated AR with a non-
divergent AR-B (e.g. eel) and duplicated AR with a diver-
gent AR-B (e.g. medaka) this neofunctionalization cannot
yet be formaly proved and should be regarded as only
putative.

This pattern of a late spectacular divergence of a dupli-
cated gene in a precise taxonomic group is an interesting
case in which the duplication and the functional shifts are
clearly two recognizable events that were decoupled in
time. The AR-B gene will thus be a very interesting model
to study the precise functional and biological impact of
these two events since we have sequences of non-dupli-
cated fish AR (sturgeon), duplicated AR-A (in eel and
medaka for example), duplicated and non divergent AR-B
(eel) and duplicated and divergent AR-B (medaka). In
addition, we have other interesting cases for comparison
such as a unique zebrafish AR-A gene with secondary loss
of AR-B. The fact that AR is a gene encoding a nuclear hor-
mone receptor with a known ligand, a clear biological role
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and for which several functional tests are available renders
this gene particularly suitable for a precise integrated
study of the consequences and respective roles of duplica-
tion and evolutionary sequence divergence. For example,
it may be very interesting to study if, as proposed recently
at a broader scale for nuclear receptors, sequence diver-
gence is correlated to expression divergence [19].

Analysis of the substitution pattern in relation to human
Androgen Insensitivity Syndrome

As a first step to analyze the possible consequences of the
duplication and divergence of AR-B in Percomorphs, we
scrutinized the mutations found in divergent AR-B versus
AR-A. We first detected how the various mutations
observed in Actinopterygian ARs are located in function of
the complex evolutionary history described above. We
thus categorized the mutations in four classes (Figure 6
and see Additional file 5): (i) mutations found only in AR-
A and not in AR-B or ARs from Amniotes (yellow in Figure
6); (ii) mutations observed specifically in divergent AR-B
(red star clade in Figure 5; shown in blue in Figure 6); (iii)
positions found to be identical in AR-A and AR-B but dif-
ferent in Amniotes AR (red in Figure 6); and finally (iv)
positions that are different in Amniotes AR-A and AR-B
(green in Figure 6). From this analysis, it is obvious that
the divergent AR-B effectively accumulated mutations.
Out of 58 amino acid mutations, we found that AR-As
exhibit 14 (= 5 + 9; see Figure 6) specific mutations
whereas divergent AR-B have 38 (= 29 + 9) specific muta-
tions. This difference is highly significant (Chi-square test
> 15.34%%*%).

We thus studied in more detail the 38 mutations found in
the divergent AR-B sequences in order to see if some of
them could have obvious functional consequences. Of
note, and not surprisingly, none of these mutations affect
the positions known to directly interact with the ligand or
implicated in coactivator binding as determined in the 3D
structure of the AR LBD complexed with various ligands
[61-63]. Few specific changes are observed such as L744V,
M749L, Q783H and M895I (numbering according to the
consensual human AR mutations database). Some substi-
tutions are also observed in the AF-2 region: A898 is sub-
stituted to a S in most AR-Bs and to a G in most AR-As, as
well as I1899 is substituted to a V in most AR-Bs. Of note,
they are observed in both AR-As and divergent AR-Bs and
overall, they are unlikely to account for significant func-
tional consequences.

Then, we scrutinized the positions in the DBD and LBD
divergent in AR-B and we checked whether these muta-
tions are affecting amino acids found mutated in human
pathologic conditions (Figure 6 and see Additional file 6).
We were particularly interested by mutations occurring in
Androgen Insensitivity Syndrome (AIS) or prostate cancer
since these pathologies affect the ability of the receptor to
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regulate transcription of target genes in response to ligand
binding. AIS is a pathologic condition in humans defined
by the eventual occurrence of female differentiation
despite the male XY genome and results from germinal
mutations in the human AR gene. As discussed above, AIS
can be complete (CAIS), partial (PAIS) or mild (MAIS)
[49]. We noted that effectively, some divergent AR-B spe-
cific mutations are localized in close proximity to func-
tionally relevant residues and may thus impact, in a subtle
manner, the function of the receptor. For example the
substitution Y739L is observed in all divergent AR-Bs (see
Additional file 1). Located close to M742, another amino
acid involved in ligand binding, Y739 could influence lig-
and binding by itself since its substitution to aspartic acid
has been described in a CAIS patient [64]. The same ques-
tion addresses several other amino acids specifically dif-
ferent in divergent AR-Bs as compared to AR-As, such as
the F856L substitution which has been observed in
patients with CAIS [65] (see Additional file 6).

We thus compared the mutation pattern observed in the
divergent percomorphs AR-B gene (that is 38 mutations
found in the LBD as well as 22 mutations in the DBD)
which are linked to a neofunctionalization event to the
mutation pattern occurring in the pathological conditions
(Figure 6 and Table 2; see also Additional file 7). When
these various types of mutations are mapped on the struc-
ture of the human receptor (see Figure 6 for the LBD and
Additional file 5 for the DBD), we found that most of the
mutations found in AR-B are distinct from pathological
mutations. Nevertheless, as discussed above, we also
observed some positions mutated both in AR-B and in
human patients. Globally, 6 of the 38 LBD mutations
found in the divergent AR-B involve amino acids known
to be implicated in PAIS + MAIS, whereas only 3 are found
in CAIS (see Androgen Receptor Gene Database [75] and
references herein; see Additional file 6). Although this dif-
ference is not statistically significant, this is in accordance
with the notion that AR-B is a functional gene the function
of which is only modified (and not drastically reduced) by
the specific mutations arising during the putative neo-
functionalization event. The fact that we found 7 muta-
tions common between fish AR-B and prostate cancer
mutants is more difficult to interpret since mutated ARs in
prostate cancer are functionally diverse (from totally inac-
tive receptors to receptors activated by antagonists).

Conclusion

The above analyses suggest that these sequence differences
between AR-A and AR-B will affect the functionality of
these receptors and are linked to a putative neofunction-
alization event. This remains of course to be directly
addressed through in vitro and in vivo analysis of the role
of AR-A and AR-B in suitable fish models. How this func-
tionality is precisely affected remains therefore an open
question. The teleost duality in terms of active androgens
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involved in reproduction [26] is of great interest in that
context. Of note, AR-A and AR-B have been shown to both
bind regular androgens and the fish specific 11-oxygen-
ated androgens (11KT) although no direct comparison
between AR-A and AR-B has been carried out in the same
species until now. We thus have no clear comparison of
the respective affinities and potencies of AR-A and AR-B
for DHT and 11KT. Of special interest are the in vivo bind-
ing studies carried out in two perciform species, i.e. the
Atlantic croaker, Micropogonias undulates and the kelp
bass, Paralabrax clathratus, that demonstrated the existence
of two different nuclear androgen receptors that may
mediate the physiological actions of different androgens
[34-36]. The mutation pattern we observed in AR-B is
indicative of a neofunctionalization event at the func-
tional level, but it is likely that this may also be coupled
to differences at the expression level. Indeed, neofunc-
tionalization of the expression pattern has been suggested
in the cichlid fish A. burtoni in which it has been shown
that AR-A and AR-B have distinct expression patterns in
the brain [66], with a differential implication of these
receptors in the maintenance of social dominance status
of male fish [67]. Taking into account the functional shift
that we specifically observed in the Percomorph lineage, it
is tempting to link this functional shift and the sexual
lability that is observed in this lineage as the Percomorphs
contain nearly 90% of all the hermaphrodite species
known to date [37]. One may thus hypothesize that the
existence of two functionally divergent AR genes play a
role in the plasticity of sex determination often observed
in these fishes. In this sense, the presence of the divergent
AR-B gene could be viewed as a permissive factor allowing
the evolvability of divergent sex determination in these
fishes.

Methods

Fish and RNA extraction

Common and scientific names of all fish species used in
this study are given in Table 1. Tissues samples (whole
fish, ovaries, testis and brain) were obtained from fish
specimens collected in the wild (Perca fluviatilis, Lepomis
gibbosus, Pomatoschistus minutus, Myoxocephalus scorpius,
Protopterus annectens, Labeo rohita and Eptatretus stoutii),
bred in captivity in experimental or aquaculture facilities
(Dicentrarchus labrax, Ctenopharyngodon idella, Gambusia
fluvalis, Tetraodon fluvalis, Danio rerio, Carassius auratus,
Clarias gariepinus, and Heterotis niloticus) or from local
aquarium fish retailers (Gymnocorymbus ternetzi and Aci-
penser baerii). For Ginglymostoma cirratum, we used the
Epigonal Nurse Shark cDNA Library provided by Dr. M.F.
Flajnik at the University of Miami School of Medicine
[68]. All animals were anesthetized with 2-phenoxyetha-
nol and then sacrificed by decapitation before the sam-
pling of tissues. Total RNA was prepared after
homogenization in TRIZOL® reagent (Invitrogen, Cergy
Pontoise, France) following the manufacturer's instruc-
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tions and mRNA was further purified from 500 pg of total
RNA using the OligoTex mRNA kit (Qiagen).

Reverse transcription

For cDNA synthesis, 2 pg of mRNA were denatured in the
presence of oligo (dT) (0.5 pg) for 5 min at 70°C, and
then chilled on ice. Reverse transcription (RT) was per-
formed at 37°C for 1 hour using M-MLV reverse tran-
scriptase (Promega, Madison, WI) as described by the
manufacturer. Namely, 2 ug of mRNA were reverse tran-
scribed with 200 units of M-MLV reverse transcriptase in
the presence of 1.25 pul of each ANTP at 10 mM, 5 pl of M-
MLV 5x reaction buffer and 25 units of RNasin® (Promega,
Madison, WI, USA), in a total volume of 25 pl.

Primer design

Degenerate oligonucleotide primers were designed after
alignment of various fish, reptile, bird and mammalian
AR amino acids sequences. Two degenerate primers,
AR.AS: TGY TAY GAR GCI GGI ATG AC [CYEAGM] and
AR.AAS: AAT ACC ATI ACI BYC CTC CA [WMGVMVEF],
were selected respectively in the highly conserved DBD (C
domain) and steroid LBD (E domain) regions. The align-
ment of the divergent H. burtoni AR-B (see Table 1)
sequence was used to design another specific degenerate
primer, AR.BS: TGC TTY ATG KCG GGN ATG [CFMSGM|]
in the same region as AR.AS. AR.AS and AR.BS were both
used in conjunction with AR.AAS [AR.AS x AR.AAS and
AR.BS x AR.AAS]. A second set of degenerate primers out-
side the PCR fragments produced by AR.AS x AR.AAS or
AR.BS x AR.AAS was designed: AR3S: GTI TTY TTY AAR
AGR GCI GC [VFFKRAA] and AR3AS: CCA ICC CAT IGC
RAA TAA TAC CAT [MVFAMGW] and were used in a nested
PCR strategy.

Touchdown RT -PCR and cloning of AR sequences

The RT-PCR strategy was used according to Escriva et al.
[69]. PCR reactions were set up using 2 pl of cDNA or 2 pl
of Epigonal Nurse Shark cDNA library and 0.5 units of Taq
Polymerase (Sigma), 200 uM of dNTPs, 30pmol of each
degenerated primer and 2.5 pl of Taq buffer 10x (Sigma).
The total volume of the reaction was 25 pl and the cycling
Touchdown PCR conditions were: 94°C for 1 min, 20
cycles of regularly decreasing annealing temperature from
50°C to 40°C for 30 sec and 72°C for 30 sec, and 30
cycles at the annealing temperature of 40°C, ending at
72°C for 30 sec. PCR products were analyzed on agarose
gel (1%) and amplified DNA fragments of the anticipated
length (average between 370 and 450 bp) were subse-
quently subcloned into pCR 2.1 plasmid. Bacteria
(INVaF, E. coli TOP10 cells, Invitrogen) were transformed
by electroporation, spread on LB-ampicillin agar plates
and incubated overnight at 37°C. From 10 to 20 ran-
domly selected recombinant colonies were then screened
either using PCR with primers amplifying the inserts (T7
and M13 reverse primers) or by hybridization of nitrocel-
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Incomplete AIS
(PAIS+P&M AIS+MAIS)

prostate
cancer

AR in fish

other AR 668 669 671 686 691
14 ARA=ARB  692777782783796

887 890 895 902

9 AR-A = AR-B 697 714 739832833
848849 851 861

5 AR-A 721755773 836 888

670672 673 675683
29 717722727 756 757
760789 793 795 798
811816 825842844
847 852 853 856 857
868 878 896 899

Figure 6

Location of mutations in the 3D structure of the androgen receptors. Cubic view of localization of the substitutions
onto the surface representation of the LBD of the human AR (IXNN.pdb). (Top): number of substitutions characterizing
CAIS, PAIS + MAIS, and the prostate cancer. The mutations are those listed in Additional file 6. Amino acid changes (regardless
of the kind of substitutions) can lead to different phenotypes: e.g. 5 is the number of aa found in CAIS in a patient, and prostate
cancer in another; 9 is the sum of 5 aa reported as found in both PAIS and prostate cancer, etc... See details in Additional file 7.
Color codes are reported in the 3D structure. (Bottom): Localization of the substitutions characterizing AR-A and AR-B in fish
compared to all other AR. There are 14 identical substitutions in the 2 ARs (that are found in fish AR but not in other verte-
brates). We found respectively 14 and 38 substitutions in AR-A and AR-B, 9 of them being common with different substitu-
tions in these two ARs (in green). Color codes are reported onto the 3D representation.
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Table 2: Common substitutions in fish AR and AR diseases in human.

CAIS PAIS+MAIS prostate cancer
DBD LBD DBD LBD DBD LBD DBD LBD
Length/nb 86 257 14 74 17 75 7 39
AR-A all 2 14 0 | 0 | 0 2
AR-Ball 22 38 0 3 0 6 | 7
AR-A =B 2 14 0 | 0 3 0 4

Number of substitutions common to the various human phenotypes of AR diseases and AR-A and AR-B in fish (see Additional file 6 for details)

lulose membrane lifts with a rainbow trout AR radiola-
belled (dCTP32) probe. Positive clones were sequenced
using a dideoxy cycle-sequencing method with the Dye
Terminator Cycle Sequencing Kit (Applied Biosystems)
and reaction sequences were read on an ABI PRISM 310
Genetic Analyzer (Applied Biosystems). A secondary
nested PCR was carried out for RNA samples from G. tern-
ezi, D. rerio, P. annectens, and A. baerii species (see Table 1)
using as template a first PCR reaction, obtained using the
primers [AR3S x AR3AS], ata 1/100 dilution and a second
set of nested degenerate primers [AR.AS x AR.AAS]| or
[AR.Bs x AR.AAS]. PCR conditions, subsequent cloning,
clone selection, and sequencing were as described above.

Searching AR in sequence databases

Homologous DNA and protein fish ARs were searched on
available public databases (non redundant, Expressed
Sequence Tags) using the various BLAST programs availa-
ble through the network servers at the National Center of
Biotechnology Information http://
www.ncbi.nlm.nih.gov/BLAST/. We also retrieved AR
sequences from the whole genome databases at the
Ensembl Genome browser http://www.ensembl.org/
index.html. From Ensembl v48 (Aug. 2007), we retrieved
AR sequences belonging to the Ensembl family
ENSFO00000000291.

Sequence and structural analysis

Multiple alignments of the deduced amino acid sequences
were generated with Muscle using the default parameters
[70]. Phylogenetic trees were realized by multiple align-
ments of deduced amino acid sequences using the neigh-
bor-joining and parcimony methods implemented in
PhyloWin [71]. PhyML [72] was used to generate maxi-
mum likelihood phylogenetic trees. Bayesian trees were
generated using MrBayes v3 http://mrbayes.csit.fsu.edu/

index.php.

To test whether the two groups of paralogous genes AR-A
and AR-B were under different selective pressures, patterns

of substitutions estimated in the AR-A subtree versus the
AR-B one in percomorphs were compared. Expected num-
bers of substitutions per site and per branch were esti-
mated with the CoMap program [60] based on the Bio++
library [73]. This produced a matrix containing branches
of the tree as rows, and sites of the alignment as columns.
Branches belonging to the AR-A and AR-B subtrees were
selected, discarding the two eel sequences, so that the
number of branches was the same in the two subtrees. A
non-symmetric correspondence analysis was applied on
the resulting submatrix, and the percentage of variance
between branches explained when branches are clustered
according to the two subtrees computed. The significance
of this percentage was assessed by a permutation test
based on 500,000 replicates, where branches were clus-
tered randomly. All these analyses were conducted with
the ade4 package [74] in the R environment (R develop-
ment core team).

In order to determine any change in the selective pressure
along the branch leading to the percomorphs AR-Bs
beside of this previous test, we also used PAML version 4

http://abacus.gene.ucl.ac.uk/software/paml.html[76].

Location of all the substitutions found in the LBD of the
human AR was retrieved from Bruce Gottlieb's database at
his web site http://androgendb.mcgill.ca/[75]. Amino
acid substitutions in this human AR database and those
specific to the two main lineages were thus positioned
onto the 3D structure using PyMOL (by Warren L. Delano,

version 2004, http://pymol.sourceforge.net/).
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Additional material

Additional file 1

ARs sequences alignment. Alignment of the DBD and LBD sequences of
ARs compared to that of human (see Table 1 for accession numbers). In
this alignment, a dot refers to the same aa as in the first sequence.
Sequences not known in 5' and 3' are shown by a hyphen ("-") sign, as
well as gaps. AR-B sequences are visualized by the grey background. Align-
ment with other non AR sequences are available upon request. In red are
the gaps or insertions characterizing the ARs in fish. Amino acids shown
in green are those conserved in divergent AR-B sequences whereas those
in yellow are the substitutions characterizing all AR-Bs. Positions in blue
are those specific to AR-A and those in violet are common to the actinop-
terygian ARs.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-S1.doc]

Additional file 2

Phylogenetic analyses of complete AR-A and AR-B. Phylogenetic anal-
yses of complete AR-A and AR-B with sequences encompassing the DBD
and the LBD. Four methods were used: bayesian with MrBayes, maxi-
mum likelihood (ML) with PhyML with 1000 bootstrap replicates; max-
imum parcimony (MP) and neighbor joining (N]) as implemented in
Seaview.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-52.pdf]

Additional file 3

Orthology relationships between medaka, tetraodon and zebrafish
chromosomes. As referenced in legend Figure 4, these rose windows show
the orthology relationship between chromosomes on which AR A and AR-
B are located in the medaka, Tetraodon and the zebrafish. The excellent
synteny observed between the chromosomes are strong remnants of the
WGD that occurred specifically in the Teleost lineage. The red lines show
the orthology link of the ARs among all the other orthologs (orthology
based from Ensembl v48, in agreement with reciprocal best-hit analyses
we performed, data not shown) shown here in green. (A) AR-A is found
on chromosome T7 in the Tetraodon and on chromosome M14 in the
medaka. A strong synteny is observed between these two chromosomes. (B)
AR-B is found on chromosome T1 in the Tetraodon and on chromosome
M10 in the medaka. A strong synteny is observed is also observed between
these two chromosomes. (C) AR-A is found on chromosome Z5 in the
zebrafish and on chromosome M14 in the medaka. An unequivocal syn-
teny is observed between these two chromosomes, as shown in Figure 4-B
between this zebrafish chromosome and that of the Tetraodon. (D)
Although AR-B is found on chromosome M10 in the medaka and that a
good synteny is observed with the chromosome Z14 in zebrafish, as
observed in Figure 4-C for this species with the chromosome T1 of Tetrao-
don, the zebrafish lacks AR-B to the point we could not detect its pseudo-
gene. (E) Table indicating the positions and Ensembl accession numbers
of the relevant AR genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-53.pdf]

http://www.biomedcentral.com/1471-2148/8/336

Additional file 4

Statistical distributions of the AR-A and AR-B substitutions in fish.
Statistical representation of the distributions of the AR-A and AR-B sub-
stitutions in fish. The bell distribution is a random distribution of the sub-
stitutions, the diamond shows that the specificity of AR-A and AR-B
versus the other AR is statistically clearly not random.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-S4.pdf]

Additional file 5

Human and fish substitutions along the DBD of the human AR. Rep-
resentation of the DBD of the human AR modified from [77]. The aa in
green are the ones specific to AR-B; in blue, the ones specific to AR-A; in
orange and red, when respectively the aa is hit by a common substitution
or a different one when compared to other vertebrate ARs. Arrowheads
refer to mutations found in CAIS, PAIS, MAIS and prostate cancer respec-
tively in color pink, orange, blue and black. Different aa substitutions are
shown by arrowheads side by side.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-85.pdf]

Additional file 6

List of human substitutions in AR leading to AIS phenotypes and pros-
tate cancer. List of substitutions in human AR leading to CAIS, PAIS,
MAIS and prostate cancer phenotype, as referenced into Bruce Gottlieb's
database (androgendb.mcgill.ca/AR23C.pdf) [75], and list of the AR-A
and AR-B specific substitutions detailed in Additional file 1.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-S6.xls]

Additional file 7

Detailed analysis of Table 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-8-336-S7 xls]
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