
 International Journal of 

Molecular Sciences

Review

Proton Transport in Cancer Cells: The Role of
Carbonic Anhydrases

Holger M. Becker 1,* and Joachim W. Deitmer 2

����������
�������

Citation: Becker, H.M.; Deitmer, J.W.

Proton Transport in Cancer Cells: The

Role of Carbonic Anhydrases. Int. J.

Mol. Sci. 2021, 22, 3171. https://

doi.org/10.3390/ijms22063171

Academic Editor: Shinji Asano

Received: 3 February 2021

Accepted: 17 March 2021

Published: 20 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Zoology and Animal Physiology, Institute of Zoology, TU Dresden, D-01217 Dresden, Germany
2 Department of Biology, University of Kaiserslautern, D-67653 Kaiserslautern, Germany;

deitmer@biologie.uni-kl.de
* Correspondence: holger.becker@tu-dresden.de

Abstract: Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net
outward transport of H+ is a prerequisite for normal physiological function, since a number of intracel-
lular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH
regulation results in extracellular acidification and the formation of a hostile environment in which
cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3

−-
coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms,
to alter intra- and extracellular pH to values that promote tumor progression. Many of the trans-
porters could closely associate to CAs, to form a protein complex coined “transport metabolon”.
While transport metabolons built with HCO3

−-coupled transporters require CA catalytic activity,
transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA
catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH
regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and
therapeutic intervention.
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1. Introduction

Cancer cells, especially those located in a hypoxic microenvironment, often display a
significant increase in glycolysis, as compared to healthy cells. This deregulation in cellular
energetics has been considered as a hallmark of cancer [1]. Metabolic reprogramming of
cancer cells can be elicited by local, intermitted or long term, hypoxia, which arises from
unrestrained cell proliferation and insufficient or chaotic vascularization of the tumor
mass [2]. However, tumors display considerable metabolic heterogeneity. Therefore, cancer
cells can also produce their energy not only by glycolysis, but also from oxidation in the
tricarboxylic acid (TCA) cycle [3–6]. Excessive production of metabolic acids, either in
the form of CO2 or lactate and protons, together with a distorted pH regulation, results
in extracellular acidification and the formation of a hostile environment, in which cancer
cells, which tolerate considerably low pHe values, can outcompete healthy local host
cells [7–11]. Besides killing adjacent host cells, the low pHe facilitates cell migration and
the formation of metastasis, e.g., by pH-dependent modulation of integrin-mediated cell-
matrix adhesion and degradation of the extracellular matrix [11–15]. Furthermore, the acid
microenvironment supports immune escape of cancer cells by inhibiting chemotaxis of
immune cells [16] and T-cell activation [17]. Metabolic reprogramming and modifications in
the pH-regulation lead to a small intracellular alkalization, which has a profound impact on
the cells’ physiology. High pHi promotes cell proliferation and reduces apoptosis, and, in
addition, drives cell migration, invasion and formation of metastasis [12,18–23]. Therefore,
changes of intra- and extracellular pH in cancer cells can be considered as an evolutionary
strategy, by which cancer cells create a tumor-permissive microenvironment, in which
they can grow and outcompete non-cancer cells. Thereby, the acidic tumor environment
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favors cancer somatic evolution [9,11,24–26]. Regulation of intracellular and extracellular
tumor pH is governed by the concerted interplay between cytosolic and exofacial carbonic
anhydrases and acid/base transporters, the expression and activity of which are often
modified during tumorigenesis.

2. Carbonic Anhydrases in Cancer Cells

Out of the 15 human CA isoforms, CAIX and CAXII have received most attention
in cancer tissue, both as diagnostic markers and potential drug targets. CAIX and CAXII
can be highly overexpressed in many tumors and are, therefore, often regarded as tumor-
associated carbonic anhydrases [10,27]. While CAXII is highly expressed in many healthy
tissues, including kidney, prostate, pancreas, intestine and lymphocytes, expression of
CAIX in healthy tissue is believed to be restricted largely to stomach and gut epithelial
tissues [28–31]. Due to this limited expression in healthy cells and the strong upregulation
in many aggressive tumors, the CAIX isoform is the preferred isoform for pharmacological
intervention. Expression of CAIX is controlled by the hypoxia-inducible factor HIF1α.
Therefore, the enzyme is often upregulated in hypoxic tumor regions [32]. Under normoxia
HIF1α is constantly hydroxylated at conserved proline residues and marked for ubiquina-
tion and proteosomal degradation by the von Hippel–Lindau tumor suppressor (pVHL).
Hypoxia stabilizes HIF1α which could form a complex with HIF1β in the nucleus. The
HIF1 complex binds to the hypoxia responsive element (HRE) in the CA9 promotor to
induce gene transcription and increase the expression level of CAIX [32,33]. Under chronic
and mild hypoxia, CAIX expression can also be regulated by components of the mitogen-
activated protein kinase (MAPK) pathway [34,35]. Furthermore, expression of CAIX can
be induced by inactivation mutations of the von Hippel–Lindau tumor suppressor (VHL)
gene, which leads to constitutive activation of HIF [36,37]. Expression of CAIX is often
associated with chemoresistance and an overall poor prognosis in most cancers [38–41]. In
contrast to CAIX, overexpression of CAXII has been linked to both good and bad tumor
prognosis. In colorectal and kidney cancer as well as in oral squamous carcinoma, CAXII
was found to correlate with poor prognosis [29,42]. In breast, lung and cervical cancer,
however, CAXII was shown to correlate with good outcome [43–45]. Even though CAIX
and CAXII are considered to be the most important CA isoforms in development of tumors,
other CA isoform may also play a role in cancer progression. CA isoform I, for example,
contributes to microcalcification, tumorigenesis and migration of breast cancer cells [46].
Like CAIX and CAXII, expression of CAII is upregulated in a variety of cancers. However,
in the majority of the investigated tumors, a down-regulation of CAII is associated with
poor prognosis [47–49]. For a comprehensive review about CA isoforms in cancer see [50].

Carbonic anhydrases are of fundamental importance for dynamics of both intracellular
and extracellular pH in tumors. Thereby, a central role is attributed to CAIX, which was
suggested to function as a “pH-stat”, which sets tumor pHe to a tightly controlled acidic
value. Tumors display considerable metabolic heterogeneity and produce a considerable
fraction of their energy not only by glycolysis, but also from oxidation in the TCA (for
review see [51–53]). Therefore, CO2 is a significant source of metabolic acid production
also in cancer cells [54]. However, the mere release of metabolic acids alone does not suffice
to fully describe the low pHe values found in solid tumors. First evidence for a role of
CAIX in pHe control was provided by Svastova and colleagues [55], who showed that
ectopic expression of CAIX in hypoxic MDCK canine kidney epithelial cells in culture
leads to an acidification of the extracellular medium. Furthermore, they could show that
inhibition of CAIX catalytic activity as well as overexpression of a catalytically inactive
CAIX mutant reduced extracellular acidification in hypoxic HeLa cells [55]. A later study
by Switach et al [56] showed that expression of CAIX in spheroids of HCT116 human colon
carcinoma cells results in a higher pHi (6.6 with CAIX vs. 6.3 without CAIX) and a more
acidic pHe (6.6 vs. 6.9). The results were confirmed by a study in HCT116 tumor xenografts,
which showed that expression of exofacial CAIX results in a slight extracellular acidification
(6.71 vs. 6.86) without changing pHi [57]. The ability of CAIX to set pHe precisely to these
values might arise from the enzyme’ unique catalytic kinetics. Measurements of CAIX
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catalytic activity with gas-analysis mass spectrometry revealed that at a pH of 7.4, the
enzyme’s rate constant for hydration was faster than for dehydration [58]. At pH values
below 6.8, however, the rate of dehydration exceeded the hydration rate. For pH 6.8, the
rate constants for hydration and dehydration were essentially the same [58]. CAIX displays
an apparent pK of 6.84 and is inhibited at lower pH values [59]. Therefore, a low pHe could
limit further H+-production by CAIX in the extracellular space. In other words, at pH
values below 6.8, CAIX favors the dehydration reaction, while at pH values above 6.8 the
hydration reaction is preferred [55]. Taken together, these observations indicate that CAIX
functions as a pH-stat that sets tumor pHe to an acidic value of around 6.8 [55–59]. This
more acidic pHe value can be regarded as an evolutionary strategy of cancer cells (“niche
engineering”) to create an environment that promotes tumor growth and tumor invasion.
In addition, hydrolysis of cell-derived CO2 by CAIX, allows the parallel diffusion of CO2,
HCO3

− and H+ to the blood capillaries, thereby speeding up CO2 venting from the cell [56]
(Figure 1).
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Figure 1. Tumor pH regulation by carbonic anhydrase and acid/base transporters. In tumor cells,
metabolic acids are produced primarily by glycolysis and subsequent hydrolysis of ATP (lactate− + H+),
and mitochondrial respiration (CO2). At the outer face of the cell membrane, CO2 is hydrated by CAIX to
form HCO3

− and H+. This allows the parallel diffusion of all three ion species through the extracellular
space accelerating CO2 removal to the blood capillary. Furthermore, the hydration of CO2 by CAIX
sets extracellular pH to a more acidic value. A fraction of the HCO3

− is reimported into the cell by
Na+/HCO3

− cotransporters (NBC). In the cytosol, HCO3
− reacts with H+ to form new CO2, which can

leave the cell by diffusion. Thereby, NBC supports the venting of H+ from the cell and contributes to
cytosolic pH regulation. Protons are also removed from the cell by Na+/H+ exchangers (NHE) and in
cotransport with lactate by monocarboxylate transporters (MCT). In the figure, solid arrows symbolize
catalytic reactions or ion transport. Dotted arrows symbolize ion diffusion.

Besides controlling acidity of the extracellular environment, CAs have also been
attributed a central function in the regulation of intracellular pH. Heterologous expression
of exofacial CAIX in spheroids of RT112 bladder carcinoma cells induces a near uniform
pHi, while spheroids of WT RT112 cells not expressing CAIX, or spheroids in which CAIX
was pharmacological inhibited with acetazolamide, exhibited an acidic core [60]. The study
concluded that CAIX coordinates the spatial pHi spectrum by facilitating CO2 diffusion
in the extracellular space. Interestingly, catalytic activity of intracellular CA seems to be
of minor importance as compared to extracellular CA catalytic activity. Indeed, it was
demonstrated that in cancer cells with high intracellular CA activity, fluctuations in the
extracellular CO2 concentration (which can occur in poorly vascularized tumors) evoked
faster and larger pHi oscillations [61]. These pHi oscillations increased Ca2+ oscillations, as
well as inhibited the mTORC1 pathway, which is a common driver for tumor progression.
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These findings might explain why low expression of intracellular CAII is associated with
good prognosis in various cancer types [47–49].

3. Acid/Base Transport Proteins in Cancer Cells

Even though CAs play a major role in acid venting from cancer cells, regulation of pHi
requires the constant extrusion of acid via transport proteins (Figure 1). One of the major
proton extruders in mammalian cells is the Na+/H+-exchanger NHE1 (SLC9A1). Oncogene-
induced overexpression of NHE1, which often occurs already at an early stage in cancer
development, results in intracellular alkalinization and extracellular acidification [62].
This shift in the pH balance is considered a key driver in malignant transformation and
progression of tumors [63,64]. NHE1 is further involved in cell migration and the formation
of metastasis. In migrating cells, NHE1 redistributes to the protruding edge of the cell.
Thereby, it contributes to the formation of a pH gradient along the cell, with an acidic pHe
and alkaline pHi at the migrating front. While the low pHe modulates local cell adhesion,
higher pHi values support the reorganization of the cytoskeleton and local cell swelling
to drive cancer cell migration and invasion [65–67]. For a comprehensive review of the
various roles of NHEs in tumor development and progression see [63].

Protons are also extruded from the cell via monocarboxylate transporters (MCTs),
which mediate the H+-coupled transport of lactate and other monocarboxylates like pyru-
vate, ketone bodies and branched chain keto acids across the cell membrane [68–71]
(Figure 1). Lactate coupled H+-extrusion is pivotal for hypoxic tumor cells, which show
a drastic increase in glycolytic activity. The major MCT isoforms found in cancer cells
are MCT1 (SLC16A1) and MCT4 (SLC16A3) [10]. Expression of MCT1 and MCT4 were
found to be upregulated in many cancer types, including breast cancer [72,73], colorectal
cancer [74], glioblastoma [75,76], prostate cancer [77], clear cell renal cell carcinoma [78],
and lung carcinomas [79]. Interestingly, a recent study demonstrated that inhibition of
MCT transport activity with the non-steroidal anti-inflammatory drug diclofenac could
restrict tumor proliferation and increase the efficiency of immune checkpoint therapy [80].

Proton extrusion from cancer cells can also be mediated by V-type H+-ATPase. Al-
though these proton pumps are usually located in intracellular vesicles in healthy cells,
V-type H+-ATPases have been shown to relocate to the plasma membrane of several types
of cancer cells, where they mediate proton extrusion [81,82].

Intracellular pH homeostasis is not only controlled by the constant export of protons,
but also by the import of HCO3

− into cells. HCO3
− import is mainly mediated by the

Na+/HCO3
− cotransporters NBCn1 (SLC4A7) and NBCe1 (SLC4A4). NBC-mediated im-

port of HCO3
− supports CO2/HCO3

−-dependent pH-buffering of the cytosol [83]. Indeed,
NBCs, which are often overexpressed in human breast cancer tissue [64,84], have been
suggested to function as the prime acid/base regulators in those cells [84]. Like NHE1,
NBCe1 accumulates at the leading edge of migrating cells [85,86]. In this compartment,
NBCe1 can cooperate with the Cl−/HCO3

− exchanger AE2 (SLC4A2) to drive cell migra-
tion. In healthy cells, AE2 functions as a HCO3

− exporter, which either protects the cell
from intracellular alkalosis or mediates alkalization of the extracellular fluid [87,88]. In
cancer cells, which produce and release high amounts of acid, AE2 is primarily involved in
the facilitation of cell migration [8,12]. AE2 was shown to accumulate at the leading edge of
migrating cancer cells, where it colocalizes with NBCe1 and NHE1 [85,86]. In this compart-
ment, AE2 exports HCO3

− (which was imported by the NBC) in exchange for osmotically
active Cl− to support local water uptake via aquaporins [86]. The cooperation between
NBCn1 and AE2, together with the local activity of NHE1, results in the net-import of Na+

and Cl− to support local swelling of the lammelipodia and drive cell migration [12,85,86].

4. Acid/Base Transport Metabolons in Cancer Cells

Most of the acid/base transporters overexpressed in cancer cells are associated with
intra and/or extracellular CAs to form a protein complex coined transport metabolon.
A metabolon has been defined as a “temporary, structural-functional, supramolecular com-
plex of sequential metabolic enzymes and cellular structural elements, in which metabolites
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are passed from one active site to another, without complete equilibration with the bulk
cellular fluids (channeling)” [89–91]. Evidence for the existence of acid/base transport
metabolons have been found in various cells and tissues, including erythrocytes [92,93],
cardiomyocytes [94], astrocytes [95], and gastric mucosa [96]. For a complete list of trans-
port metabolons, see Table 1 in [97]. First direct evidence for the existence of a transport
metabolon in cancer cells was provided in 2012 by Svastova et al [86]. Using conven-
tional immunocytochemistry and an in situ proximity ligation assay (PLA), the authors
could show that CAIX is closely colocalized with NBCe1 and AE2 in hypoxic A549 lung
carcinoma cells and SiHa squamous cell carcinoma cells, respectively. Interestingly, the
colocalization between the bicarbonate transporters and CAIX was most evident in the
leading edge of migrating cells [86,98]. In line with these findings, it was shown that
expression of catalytic active CAIX facilitates cell migration in MDCK and hypoxic HeLa
cells [86], while inhibition of CAIX catalytic activity results in impaired formation of
invadopodia and degradation of the extracellular matrix [98]. These results lead to the
conclusion that CAIX forms a transport metabolon with HCO3

− transporters in the leading
edge of migrating cancer cells to facilitate ion transport and pH control at the protruding
front of the moving cell and thus drives cancer cell migration [86,98]. CAIX does not only
interact with HCO3

− transporters in cancer cells, but is also closely colocalized with the
Na+/H+ exchanger NHE1 and the Na+/Ca2+ exchanger NCX1 (SLC8A1), as shown by in
situ PLA in hypoxic SiHa cells [99]. Physical interaction between the three proteins was
demonstrated by immune co-precipitation of NHE1 and NCX1 with CAIX in SiHa cell
lysates [99]. Interestingly, silencing or pharmacologic inhibition of NCX1 diminished the
ability of hypoxic cancer cells to control their pHi, even though NCX1 does not transport
acid/base equivalents itself. NCX1, NHE1 and CAIX seem to form a protein complex
which operates as a transport metabolon to extrude protons from the cells. Within this
complex, CAIX supports NHE1 activity, by removing H+ from the extracellular site of the
transporter pore, thereby stabilizing the H+ gradient for the NHE1. NCX1 and NHE1 create
a Na+ short circuit which stabilizes the local Na+ gradient for the proton extruder [99].

Even though there is strong evidence that CAIX might form transport metabolons
with acid/base transporters in cancer cells, studies which have investigated the molec-
ular mechanism by which CAIX facilities transport activity of NHE, NBC and AE are
still scarce. Coexpression of the Cl−/HCO3

− exchangers AE1 (SLC4A1), AE2 (SLC4A2)
and AE3 (SLC4A3) with CAIX in HEK293 cells increased AE-mediated bicarbonate trans-
port [96]. Co-immunoprecipitation of AE1, AE2 and AE3 with CAIX and truncation mutants
of the enzyme revealed direct binding of the CAIX catalytic domain to the transporters [96].
In line with these findings, pull-down experiments with GST-fusion proteins demon-
strated that CAIX binds to the 4th extracellular loop of the AE1 protein [94]. The same
study also demonstrated binding between CAIX and the 4th extracellular loop of the
Na+/HCO3

− cotransporter NBCe1 and showed that inhibition of CAIX catalytic activity
with 6-ethoxy-2-benzothiazolesulfonamide (EZA) decreased NBCe1 transport activity in
NBCe1-expressing HEK293 cells [94]. Taken together, these data indicate that CAIX binds
to an extracellular moiety of the membrane acid/base transporters to catalyze the inter-
conversion of CO2 and HCO3

−/H+ in the immediate vicinity of the transporter and hence
facilitates bicarbonate transport activity. These findings are in line with other studies on
the physical and functional interaction between acid/base transporters and intracellular
and extracellular carbonic anhydrases [100–106]. Taken together, these studies demonstrate
that CA-mediated facilitation of acid/base transport activity requires both CA catalytic
activity and direct binding of the enzyme to the transporter. However, it should also be
noted that the general concept of a transport metabolon has been questioned by several
studies, both with respect to the formation of a protein complex as well as to the functional
significance of colocalization between transporter and enzyme [107–110]. An in-depth dis-
cussion on the various types of acid/base transport metabolons, including the controversy
about this concept, is given by a number of reviews [91,97,111–114].
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5. Non-Catalytic Transport Metabolons in Cancer Cells

In contrast to the transport metabolons described so far, monocarboxylate transporters
form transport metabolons with carbonic anhydrases that operate independent from the
enzyme’s catalytic activity. The existence of such a non-catalytic transport metabolon
in cancer cells was first described for hypoxic breast cancer cells [115]. By measuring
changes in intracellular lactate concentration with the lactate-sensitive FRET nanosensor
laconic [116], the authors could show that lactate flux is significantly increased in hypoxic
cancer cells expressing CAIX as compared to normoxic cells without CAIX [115]. Expres-
sion levels of MCTs, however, remained unaltered under hypoxia. Interestingly, chemical
inhibition of CAIX catalytic activity did not reverse the augmentation of lactate flux in
hypoxic cancer cells, while siRNA-mediated knock-down of CAIX decreased lactate flux
to the level observed in normoxic cells [115]. From these data the authors concluded that
CAIX facilitates lactate flux in cancer cells by a non-catalytic mechanism. This assump-
tion was supported by measurements of the glycolytic Proton Efflux Rate (glycoPER) in
the triple negative breast cancer cell line UFH-001 with a Seahorse analyzer [117]. The
cells were treated with the HIF1α-stabilizing agent desferrioxamine (DFO) to simulate
hypoxia. CRISPR/Cas9-mediated knockdown of CAIX resulted in a significant decrease in
glycoPER, while isoform-specific inhibition of CAIX catalytic activity with three ureido-
substituted benzene sulfonamides did not affect proton flux. In line with these results,
the same group could demonstrate that full inhibition of CAIX catalytic activity with the
imidazole-substituted benzenesulfonamide SLC-149 did not affect growth of MCF10A,
UFH-001, and T47D breast cancer cells, indicating a non-catalytic function of CAIX in
cancer cell proliferation [118]. An in situ PLA demonstrated close colocalization between
MCT1/MCT4 and CAIX in hypoxic breast cancer cells [119]. These data indicate that CAIX
forms a protein complex with MCTs to facilitate lactate transport via a mechanism that does
not involve CAIX catalytic activity. The MCT1/4-CAIX metabolon was not only found in
cultivated breast cancer cells, but also in tissue samples of human breast cancer patients,
with an increasing amount of transport metabolons in higher grade tumors [119].

The mechanisms underlying this non-catalytic facilitation of lactate flux were eluci-
dated by heterologous protein expression in Xenopus oocytes. Co-expression of MCT1 and
MCT4 with CAIX resulted in a doubling of MCT transport activity, resembling the observa-
tions made in breast cancer cells [115]. Pull-down experiments and pH-measurements in
Xenopus oocytes revealed that CAIX does not directly bind to the transporter itself, but to
the Glu73 residue in the Ig1 domain of the MCT1/4 chaperon CD147 [119]. Interestingly,
binding was mediated by His200 in the CAIX catalytic domain (also referred to His64
in the CAII nomenclature). This histidine is considered to be the central residue of the
CAIX intramolecular proton shuttle, which mediates the rapid exchange of H+ between the
enzyme’s catalytic center and the surrounding bulk solution [120]. This binding resembles
the interaction between MCTs and the extracellular carbonic anhydrase CAIV. Like CAIX,
CAIV binds to the Ig1 domain of the MCT1/4 chaperon CD147 and the MCT2 chaperon
GP70 [121]. Binding of CAIV is mediated by human CD147-Glu73, rat CD147-Lys73, and
GP70-Arg130, suggesting that the position of the binding site is conserved among the
chaperons, while the identity of the amino acid can vary. In CAIV, binding is mediated by
His88, the central residue of the CAIV intramolecular proton shuttle, and the analogue to
CAIX-His200 [121]. These data indicate that CAIX forms a complex with MCTs by hydro-
gen binding to the transporter’s chaperon. In line with this, application of an antibody
against the CAIX binding site of CD147 removed CAIX from the transporter-chaperon
complex, as shown by in situ PLA, decreased MCT transport activity in hypoxic breast
cancer cells, and inhibited glycolytic activity as well as cell proliferation [117]. These data
show that the increase in lactate transport capacity, mediated by the MCT1/4-CD147-CAIX
transport metabolon, is crucial to maintain a high rate of glycolysis and proliferation in
hypoxic breast cancer cells.

However, since CAIX catalytic activity is not required for the increase in MCT transport
activity, the question remained as to which mechanism the transport metabolon facilitates
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lactate flux. Proton diffusion in an unbuffered solution is very fast (diffusion coefficient
DH = 1187 × 10−7 cm2 s−1 [122]). However, in a highly buffered solution such as the
cytosol or the extracellular space, H+ diffusion is much slower. In rabbit ventricular
myocytes, an apparent DH of 3.78 × 10−7 cm2 s−1 was found, which is more than 300 times
lower than the DH in an unbuffered solution [123]. Indeed, due to the high buffering
of protons, H+ mobility resembles the diffusion rate of mobile buffers [123]. The low H+

mobility in a highly buffered solution has significant consequences for H+ transporting
proteins in the cell membrane. Computational models of proton diffusion revealed that
H+ transporters like MCTs show an apparent turnover rate that exceeds the maximum
supply capacity for protons by diffusion [124,125]. That means that MCTs operate at an
rate that is way above the rate of H+ (buffer) diffusion to or away from the transport
pore [124,125]. This paradoxical observation implies that H+ transporters need to receive
protons not only directly from the bulk solution, but from an additional, intermediate
“harvesting” compartment [125]. Such H+ harvesting antennae have been described in
cytochrome c oxidase or bacteriorhodopsin [126,127]. In short, these proton harvesters
are composed of a cluster of acidic glutamate and aspartate residues that function as
“proton collectors” and histidines that function as “proton retainers”. Thereby, the antenna
enhances the protonation rate of functional groups and creates a “H+ reservoir” on the
protein surface [128]. Since MCTs lack such a proton collecting mechanism at their surface,
it was suggested, that CAs might function as external proton antennae for the transporter
which collect or distribute H+ from/to protonatable residues in the immediate vicinity
of the transporter [129]. The rapid transfer of H+ between transporter and surrounding
protonatable residues in the immediate vicinity of the transporter would overcome slow
H+ diffusion in the cytosol or extracellular space and prevent the formation of local H+

microdomains (regional depletion or build-up of H+ around the transporter pore) (Figure 2).
Indeed, fluorometric H+ imaging in Xenopus oocytes demonstrated that protons, which
enter the cell via MCTs at a focal spot, travel longer distances along the inner face of the
plasma membrane when CAII is present in cell [130].

CAIX is comprised of a catalytic domain, which is tethered to the extracellular face of
the cell membrane via a single transmembrane domain, and a short intracellular C-terminal
tail. Furthermore, CAIX features an N-terminal proteoglycan-like (PG) domain, which
is unique to CAIX and plays a role in the formation of focal adhesion contacts during
cell migration [131,132]. The 59 amino acid long PG domain of human CAIX contains
18 glutamate and 8 aspartate residues. These 26 acidic amino acids have been suggested
to function as an intramolecular H+ buffer for the CAIX when operating in an acidic
environment [133]. Coexpression of MCT1/4 with a truncated form of CAIX, lacking the
PG domain, did not facilitate MCT transport activity in Xenopus oocytes [134]. These results
let to the theory, that CAIX might facilitate the aspartate and glutamate residues in the PG
domain to move protons between the MCT transporter pore and surrounding protonatable
residues at or near the extracellular side (Figure 2). In line with these results, former
studies on the intracellular CAII revealed that CAII, which binds to the C-terminal tail of
MCT1 and MCT4 [95,135], facilitates the two acidic residues Glu69 and Asp72 to shuttle
protons between the MCT transporter pore and surrounding protonatable residues [136].
However, the identity of the surrounding protonatable residues, which could donate or
receive H+ to/from the CA is still unknown. This lack of data has to be attributed to
the almost infinite number of possible H+ donors and acceptors within a living cell. In
line with the theory that the PG domain functions as a proton antenna application of an
antibody against the CAIX PG domain, but not against the catalytic domain, significantly
decreased CAIX-mediated increase in MCT transport activity in Xenopus oocytes as well as
in MCF-7 and MDA-MB-231 cells [134]. In hypoxic breast cancer cells, application of the
antibody against the PG domain did not only decrease lactate flux, but also inhibited cell
proliferation, as did knockdown of CAIX with siRNA [115,134]. In contrast, inhibition of
CAIX catalytic activity, or application of an antibody against the CAIX catalytic domain,
did not alter proliferation of cancer cells [115,134]. Taken together, the data indicate that
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CAIX forms a transport metabolon with MCT1/4 via their chaperon CD147 in breast
cancer cells. Formation of the complex is mediated by hydrogen bonding between Glu73
in the CD147-Ig1 domain and His200 in CAIX. Aspartate and glutamate residues in the
PG domain of CAIX facilitate the movement of protons between the transporter pore and
surrounding protonatable residues at or near the outer membrane surface. Thereby, CAIX
functions as a proton antenna for the transporter to facilitate proton-coupled lactate efflux
from hypoxic cancer cells to maintain glycolysis and cell proliferation (Figure 2).
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Figure 2. Carbonic anhydrases function as proton antennae for MCTs. Intracellular and extracellular
carbonic anhydrases form a non-catalytic transport metabolon with MCT1 and MCT4. The interaction
is independent of CA catalytic activity, but requires a special set of proton-collecting residues in
the CA protein (CAII-Glu69/Asp72 and the CAIX-PG domain). Extracellular-facing CAIX binds to
the Ig1 domain of the MCT1/4 chaperon CD147, while intracellular CAII binds to the transporter’s
C-terminal tail. This binding positions the enzymes close enough to the transporter pore to establish
an efficient proton shuttle between transporter and enzymes. During proton/lactate efflux, CAII
collects H+ from surrounding protonatable residues of yet unknown identity (green circles) near or at
the plasma membrane and shuttles them to the transporter. On the extracellular site, CAIX removes
H+ from the transporter pore and shuttles them to protonatable residues at the extracellular face of
the plasma membrane or in the extracellular space. This rapid exchange of H+ impairs the formation
of proton microdomains around the transporter pore and drives the efflux of protons and lactate
out of the cell. Note that both CAIX and the MCT1/4-CD147 complex exist as dimers at the cell
membrane [137,138]. In the figure, dotted arrows symbolize ion diffusion. Solid arrows symbolize ion
transport or proton transfer.

Even though CAIX is considered the most important CA isoform for pH regulation
in cancer cells, other carbonic anhydrases can also form transport metabolons in those
cells. Knockdown, but not chemical inhibition, of intracellular CAII resulted in a de-
crease in lactate transport capacity and cell proliferation in both normoxic and hypoxic
MCF-7 cells [136]. Interestingly, the effect of CAII knockdown was more pronounced in
hypoxic cells (expressing CAIX) than in their normoxic counterparts. This suggests that
intracellular CAII and extracellular CAIX may cooperate to facilitate lactate flux across
the cell membrane (Figure 2). Such a “push and pull principle” was also observed for
MCT1/4, CAII and CAIV in Xenopus oocytes [139]. The basic structure and function of
the MCT-CAII transport metabolon seems to resemble the MCT-CD147-CAIX complex.
CAII was shown to bind directly to the C-terminal tail of MCT1 and MCT4. Binding is
mediated by CAII-His64 (which also functions as central residue of the CAII intramolecular
H+ shuttle) and a cluster of three glutamic acid residues in the MCT C-terminal tail (E489EE
in MCT1 [94], and E431EE in MCT4 [135]). Interestingly, His64 is not involved in proton
transfer between enzyme and transporter. Proton transfer is instead mediated by Glu69
and Asp72, which are located at the surface of the CAII protein and have been suggested
to form a proton-collecting antenna for the enzyme [136]. By this proton-shuttling mecha-
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nism, hypoxic cancer cells, which produce high amounts of lactate and protons, can ensure
constant extrusion of both ions to protect themselves from larger intracellular acidification
and keep up their high glycolytic rate.

Besides the facilitation of H+-coupled lactate export from cancer cells via MCTs, CAIX
could also drive glycolysis by regulation of different signaling pathways under hypoxia. In
a recent study, silencing of CAIX in hypoxic breast cancer cells increased the level of the
regulatory microRNA let-7 and decreased the level of the RNA-binding protein LIN28 [140].
Aberrant expression of Lin28 and its downstream target let-7 had previously been shown to
facilitate aerobic glycolysis in cancer cells by activation of pyruvate dehydrogenase kinase
1 (PDK1) [141,142]. PDK1 inactivates the pyruvate dehydrogenase complex (PDH) and
thereby blocks the conversion of pyruvate to acetyl-CoA, inhibiting the citric acid cycle
and promoting glycolysis. In line with this, knockdown of CAIX resulted in decreased
lactate production in cancer cells [140]. Interestingly, silencing of CAIX did also decrease
the expression of NF-κB, which functions as a direct activator of LIN28. Furthermore,
incubation of the cells at low pHe values resulted in increased expression of NF-κB, while
pharmacological inhibition of CAIX catalytic activity decreased NF-κB expression, indi-
cating that CAIX drives expression of NF-κB, and thereby glycolytic activity, through its
pH regulatory function [140]. In line with these findings, transient knockdown of CAIX
in hypoxic HeLa cells decreases the level of the glycolytic key enzymes, phosphoglyc-
erate kinase, enolase, and fructose-bisphosphate aldolase, as well as the enzyme lactate
dehydrogenase A (LDH-A), which converts pyruvate into lactate [143]. The decrease in
LDH-A activity directly correlated with the CAIX-knockdown efficacy, indicating func-
tional coupling between the two proteins. Furthermore, both knockdown of CAIX and
overexpression of a catalytically inactive CAIX isoform reduced pHi, which resulted in
attenuated glycolytic flux, reduced export of lactate and protons, and ultimately reduced
cell proliferation. Interestingly, application of α-ketobutyrate (α-KB), which serves as an
alternative substrate for LDH-A, reversed the drop in pHi in CAIX knockdown cells by
increased proton secretion, and rescued glycolytic flux and cell proliferation. These data
indicate that CAIX stabilizes pHi not only by production of HCO3

− ions and facilitated
extrusion of lactate and protons via MCTs, but also by maximizing glycolytic flux through
increased LHD-A activity [143].

6. Targeting Transport Metabolons for Cancer Therapy

Targeting the acid/base regulatory machinery of cancer cells appears to be a promising
tool for cancer therapy. Disruption of tumor pH homeostasis could either affect cancer
cell function directly or could render the cells more susceptible for conventional therapy.
Indeed, several acid/base transporters have been considered as potential targets for the
treatment of cancer. For example, inhibition of NHE1 transport activity with chemical
inhibitors like cariporide, EIPA, DMA or amiloride was shown to sensitize chemo-resistant
cancer cells for chemotherapeutic drugs like doxorubicin [144,145], Imatinib [146] or pacli-
taxel [147]. However, cariporide failed in phase 3 clinical trial as therapeutic drug for the
treatment of myocardial infarction, due to the occurrence of severe side effects [148,149].
This demonstrates that direct inhibition of acid/base transport for cancer therapy could
lead to complications due to the widespread expression of these transport proteins in
healthy tissue.

Since expression of CAIX is mostly restricted to cancer cells, targeting of CAIX trans-
port metabolons might pose a more specific impact on cancer cells than targeting of the
transporters directly. Bicarbonate transport metabolons per se have not been targeted
for tumor therapy so far, but since these metabolons require CAIX catalytic activity, it
can be assumed that conventional CA inhibitors also target transport metabolons. CA in-
hibitors are already used in the treatment of various diseases, including glaucoma [150,151],
epilepsy [152–154] and high-altitude sickness [155,156]. Furthermore, CAs have been sug-
gested to serve as therapeutic targets in the treatment of neuropathic pain [157] and
obesity [158]. In solid tumors, the acidic tumor environment, which is created by CAIX
catalytic activity, provides a potential target for cancer therapy, since it is a unique feature
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for solid tumors and a common phenotype of a wide spectrum of cancer types [54]. Indeed,
various preclinical studies have shown that CA inhibitors like acetazolamide derivates,
glycosyl coumarins, or the ureido-substituted benzenesulfonamide SLC-0111 can inhibit
tumor growth, formation of metastasis, and reverse malignancy in cultured cancer cells, in
spheroids and in tumor xenografts [159–162]. However, inhibition of CAIX might be most
efficient in a smart combination therapy [163]. For example, inhibition of CAIX activity
with acetazolamide rendered hypoxic HT29 colon carcinoma cells more susceptible to the
chemotherapeutical drug doxorubicin [164].

Although inhibition of CAIX catalytic activity by conventional CA inhibitors might
also target bicarbonate transport metabolons, those inhibitors would not target the
MCT-CD147-CAIX transport metabolon, since CAIX-dependent facilitation of MCT activ-
ity is independent of CA catalytic activity. Indeed, inhibition of CAIX catalytic activity
with three CAIX-specific ureido-substituted benzene sulfonamides did not alter glycolytic
flux (glycoPER) in pseudohypoxic UFH-001 breast cancer cells, while knockout of CAIX
reduced glycoPER [116]. In line with these findings, the same group could show that inhibi-
tion of CAIX activity with SLC-149, a patented, imidazole-substituted benzenesulfonamide
inhibitor, which is currently in preclinical trial stage [165], did not affect the growth of
cultivated breast cancer cells [118]. In contrast, application of an antibody against the
CAIX-PG domain, which was suggested to function as proton antenna for the metabolon,
resulted in a decrease in lactate transport capacity, cell proliferation and migration in
hypoxic MCF-7 and MDA-MB-231 cells [123]. In line with this, application of an antibody
against the CD147 Ig1 domain, close to the CAIX binding site, resulted in a decrease in
lactate transport capacity and cell proliferation in hypoxic MCF-7 and MDA-MB-231 cells.
The antibody displaces CAIX from the MCT-CD147 complex and leads to disruption of the
transport metabolon [117]. These experiments provide a proof of concept that targeting of
the MCT-CD147-CAIX transport metabolon, either by interference with the CAIX antenna
function or by disruption of the protein complex, can provide a useful tool for future
tumor therapy.

7. Conclusions

Mechanisms of pH regulation belong to a number of unique adaptations of cancer
cells to allow tumor tissue to grow and migrate in spite of unfavorable conditions such as
hypoxia and the production of large amounts of acid. In order to avoid severe acidosis,
expression of CA isoform IX in tumor tissue, in addition to other intra- and extracellular
CA isoforms, supports proton translocation. In particular, the formation of transport
metabolons with acid/base and metabolite transporters, whereby CAs operate as proton
antennae, can promote survival and growth of tumors. Such transport metabolons may
well serve as specific targets for therapeutic interventions to derange proton transport and
pH regulation in cancer cells.
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Abbreviations

α-KB α-ketobutyrate
AE Cl−/HCO3

− anion exchanger
CA carbonic anhydrase
DFODMA desferrioxamine5-(N,N- dimethyl) amiloride
glycoPER glycolytic Proton Efflux Rate
EIPA 5-(N-Ethyl-N-isopropyl)amiloride
EZA 6-Ethoxy-2-benzothiazolesulfonamide
FRET Förster resonance energy transfer
Ig Immunoglobulin
LDH-A lactate dehydrogenase isoform A
MAPK mitogen-activated protein kinase
MCT monocarboxylate transporter
mTORC1 mammalian target of rapamycin complex 1
NBC Na+/HCO3

− cotranspoter
NCX Na+/Ca2+ exchanger
NF-κB nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells
NHE Na+/H+ exchanger
PDAC pancreatic ductal adenocarcinoma
PDH pyruvate dehydrogenase
PDK pyruvate dehydrogenase kinase
PG proteoglycan-like
PLA proximity ligation assay
TCA tricarboxylic acid cycle
VHL von Hippel–Lindau tumor suppressor
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