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Abstract. Interactions between multiple genes are involved in 
the development of complex diseases. However, there are few 
analyses of gene interactions associated with papillary thyroid 
cancer (PTC). Weighted gene co-expression network analysis 
(WGCNA) is a novel and powerful method that detects gene 
interactions according to their co-expression similarities. In 
the present study, WGCNA was performed in order to identify 
functional genes associated with PTC using R package. First, 
differential gene expression analysis was conducted in order 
to identify the differentially expressed genes (DEGs) between 
PTC and normal samples. Subsequently, co-expression 
networks of the DEGs were constructed for the two sample 
groups, respectively. The two networks were compared in 
order to identify a poorly preserved module. Concentrating 
on the significant module, validation analysis was performed 
to confirm the identified genes and combined functional 
enrichment analysis was conducted in order to identify more 
functional associations of these genes with PTC. As a result, 
1062 DEGs were identified for network construction. A brown 
module containing 118 highly related genes was selected as 
it exhibited the lowest module preservation. After valida-
tion analysis, 61 genes in the module were confirmed to be 
associated with PTC. Following the enrichment analysis, 
two PTC-related pathways were identified: Wnt signal 
pathway and transcriptional misregulation in cancer. LRP4, 
KLK7, PRICKLE1, ETV4 and ETV5 were predicted to be 
candidate genes regulating the pathogenesis of PTC. These 

results provide novel insights into the etiology of PTC and the 
identification of potential functional genes.

Introduction

Thyroid cancer is the most common type of endocrine 
malignancy. The incidence of thyroid cancer has increased 
markedly worldwide in the last decade (1). Papillary 
thyroid cancer (PTC) is the most common type of thyroid 
cancer, accounting for approximately 80% of all cases (2). 
Understanding of the genetic mechanisms underlying PTC 
has improved remarkably in recent years, which provides more 
support for molecular diagnosis of the disease (3,4). However, 
predicting PTC as a result of the complicated molecular 
interactions participating in the pathogenesis of this type of 
cancer remains a clinical challenge (5). In addition, a number 
of patients with PTC demonstrate recurrence, invasion and 
distant metastasis due to resistance to surgical and radioiodine 
treatment. Novel molecular-targeted treatments hold potential 
for these cases (6). Therefore, investigation of the molecular 
mechanisms involved is expected to aid the identification of 
candidate biomarkers and improve molecular diagnosis and 
treatment of patients with PTC.

Previous studies of the genetic basis of PTC mainly focus 
on a single susceptibility gene, which does not take into 
account the interactions of multiple genes. However, complex 
traits are modified by the cumulative effect of interactive 
genes (7). Elucidation of the interactions between genes and 
molecules is essential for understanding the molecular basis 
underlying complex diseases. Correlation network analysis 
identifies the correlation patterns among genes according 
to their co-expression similarities by grouping highly 
correlated genes into one module (8). Another advantage of 
network-assisted analysis is that transcriptional data has a more 
direct impact on protein expression than genomic data, which 
provides more biological information regarding the interactive 
genes (9). The method applied in the present study is weighted 
gene co-expression network analysis (WGCNA) (8), which has 
been successfully used for detection of genetic determinants in 
many human diseases, such as osteoporosis (10), obesity (11), 
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familial combined hyperlipidemia (12) and metaphyseal chon-
drodysplasia (13).

A gene harboring changeable interactions with other genes 
between diseased and normal conditions indicates that it may 
play a crucial role in pathology of the disease. Based on this 
hypothesis, Riquelme Medina and Lubovac-Pilav successfully 
employed WGCNA to identify genes and pathways involved in 
the development of type 1 diabetes (14). In the present study, 
WGCNA is employed to generate two networks derived from 
PTC and normal tissue control samples, respectively. The 
two networks were compared in order to identify the module 
with the lowest preservation, which contains genes harboring 
changeable interactions. To the best of our knowledge, the 
present study is the first to apply WGCNA innovatively in 
order to identify the genetic mechanisms of PTC.

Materials and methods

Gene expression data and processing. The gene expression 
dataset (accession number: GSE33630) was downloaded 
from the NCBI Gene Expression Omnibus database 
(http://www.nibi.nih.gov/geo/). Microarray data were obtained 
from RNA samples comprised of 49 PTC samples and 45 
adjacent normal thyroid samples. The research was approved 
by Ehics Committees of the Institute of Endocrinology and 
Metabolism in Kiev, Imperial College in London and the 
Medical Radiological Research Centre in Obninsk. Details 
about the data can be found in the original publication (15). 
The platform used for profiling was the Affymetrix U‑133 Plus 
v.2.0 array. The raw CEL data were processed and normalized 
using affy package in R software 3.3.0 (16). The probe IDs 
were converted into gene symbols using the annotation file for 
probes of the platform. The median expression levels of these 
probe IDs that correspond to the same gene were selected as 
the final expression value of a gene.

Differential gene expression analysis. In order to identify 
differentially expressed genes (DEGs) between the PTC and 
normal samples, empirical Bayes method was performed 
using limma package (17) in R. P-values were adjusted using 
the Benjamini and Hochberg method to control the false 
discovery rate caused by multiple testing. Genes were selected 
as DEGs for subsequent analysis according to the following 
criteria: logFC (fold change) >1 and adjusted P-value <0.05. 
Fold change was calculated as the ratio of the differential 
expression.

Construction of weighted gene co‑expression networks. 
Network construction was performed using the WGCNA 
R package (8,18). First, cluster sampling was conducted for 
both the PTC and normal samples based on the expression 
levels of the DEGs to identify and remove potential outliers. 
The parameter beta of power function for network construc-
tion was then set as 8 according to the scale-free topology 
criterion as described in a previous study (8), making 
the established network satisfy approximate scale-free 
topology (linear regression model‑fitting index R2 >0.9). 
WGCNA identifies modules with highly correlated genes; 
these genes usually have similar connectivity patterns with 
other genes, which can be defined as the topological overlap 

measurement (TOM). Genes were hierarchically clustered 
and visualized in a dendrogram according to dissimilarity 
TOM (1-TOM) (18). The branches of the tree representing 
highly correlated genes were grouped into one module 
marked by a particular color. Grey donates background genes 
that belonged to none of the modules. Different numbers of 
modules were established from the dendrogram in the PTC 
and normal samples, respectively.

Module preservation between PTC and normal networks. 
Module preservation analysis is capable of assessing 
whether a module defined in a reference dataset (PTC 
sample network in the present study) is also in the test 
dataset (normal sample network in the present study). Two 
composite preservation statistics, Zsummary (Eq1) and medi-
anRank (Eq2), were used to compare relative preservation 
among multiple modules, which considers both density and 
connectivity preservation (19). The former is based on the 
extent of gene interconnectivity, while the latter is based on 
the connectivity pattern of genes.

Zsummary=(Zdensity + Zconnectivity)/2 (Eq1)

medianRank=(medianRank.density +  
medianRank.connectivity)/2 (Eq2).

Studies have shown that Zsummary thresholds distinguish 
module preservation as follows (19): Zsummary<2, no preserva-
tion; Zsummary>10, strong evidence of module preservation; and 
2<Zsummary<10, weak to moderate evidence of preservation. 
Modules with lower Zsummary values are expected to be less 
preserved. MedianRank is a rank-based measurement that 
relies on a observed preservation statistic that shows no depen-
dence on modulesize. A higher medianRank measurement 
indicates that the module exhibits less preservation. Modules 
of poor preservation are significant modules that perturbate 
important pathways and biological processes when comparing 
diseased and normal networks.

Intramodule gene interaction analysis. K.in, also known as 
intramodule connectivity, describes the connectivity of a gene 
with other genes in the same module (10). The k.in rank of a 
gene is the ranking of k.in among all of the genes in a particular 
module. K.in rank change refers to the difference of the k.in 
ranks between the PTC and normal sample networks. A gene 
with a large k.in rank change represents a large difference in 
its interactions with other genes in PTC and normal samples 
and indicates that it has an important role in the development 
of PTC.

Validation analysis using another gene expression dataset. In 
order to partially validate the identified genes in the significant 
module, a gene expression validation analysis was performed 
using another gene expression profile. The expression array 
for the validation was downloaded from the NCBI Gene 
Expression Omnibus database (accession number: GSE3678) 
and was derived from 7 PTC samples and 7 normal thyroid 
control samples. The point-biserial correlation coefficient 
was employed to estimate the relationship between PTC and 
gene expression levels. After 1000 bootstrap replications, the 
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average of the correlation coefficients was calculated as the 
final point‑biserial correlation coefficient of each gene.

Functional and pathway enrichment analyses of the significant 
module. Functional annotation of the genes in the significant 
module was accomplished using the online tool Database for 
Annotation Visualization and Integrated Discovery (DAVID) 
(http://david.abcc.ncifcrf.gov/) (20), depending on the GO 
term database and pathway database. Pathway enrichment of 
the module of interest was performed with another online tool, 
ConcensusPathDB (http://cpdb.molgen.mpg.de/) (21), based 

on the database of KEGG. This step evaluated the potential 
function of the genes related to thyroid carcinomas according 
to the known databases and known molecular pathways.

Results

Differential gene expression analysis. A total of 1062 genes 
were identified as DEGs for network construction based on 
the aforementioned criteria. The 1062 genes consisted of 653 
up-regulated genes and 409 down-regulated genes in the PTC 
samples compared with the normal samples.

Figure 1. The cluster dendograms for (A) PTC sample network and (B) normal sample network. Each branch (vertical line) represents an individual gene. Each 
module is marked by a particular color which contains highly correlated genes. PTC, papillary thyroid cancer.
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Network construction for the PTC and normal samples with 
WGCNA. WGCNA R package was applied in order to generate 
two different co-expression networks for the two sample groups 
with the 1062 DEGs. Hierarchically clustered dendrograms 
were generated and modules containing highly interconnected 
genes were detected. Seven modules, represented by blue, brown, 
green, grey, red, turquoise and yellow, were detected in the PTC 
samples, with module sizes of 230, 118, 65, 198, 59, 276 and 

116 genes, respectively. Three modules were identified in the 
normal samples, represented by blue, grey and turquoise, which 
contained 358, 240 and 464 genes, respectively. The gene cluster 
dendrograms and detected modules are presented in Fig. 1.

Comparison of networks between the PTC and normal 
samples. In order to visualize the difference between the 
two networks, the same color of the module that each gene 

Figure 2. Visual change between PTC sample network and normal sample network. As a result, integrated modules in PTC sample network were divided into 
several parts in normal sample network. PTC, papillary thyroid cancer.

Figure 3. Preservation of modules in normal sample network compared with PTC sample network. The left panel shows the statistic medianRank vs. module 
size. The right panel shows the composite statistic Zsummary vs. module size. PTC, papillary thyroid cancer.
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belonged to in the PTC sample network was applied to the 
corresponding gene in the normal sample network, without 
changing the hierarchically clustered dendrogram of the 
normal sample network. Visual change of the module struc-
ture is presented in Fig. 2. Integrated modules in the PTC 
sample network were found to be divided into several parts in 
the normal sample network.

To objectively estimate whether a module is preserved, 
Zsummary and medianRank were employed in order to investi-
gate the module preservation quantitatively. Visual results of 
the module preservation analysis including the statistics medi-
anRank and Zsummary are presented in Fig. 3. The brown module 
has the highest medianRank as well as the lowest Zsummary 

among all the modules, indicating that it has the strongest 
preservation of all the modules. However, the Zsummaryvalue 
of the brown module is <3, which indicates no preservation 
according to the criterion of Zsummary. The brown module was 
selected for further analysis, when its medianRank and Zsummary 
statistics were both taken into account.

Identification of genes associated with PTC in the brown 
module. The k.in rank change was calculated for each gene 
in the brown module in order to detect gene interaction 
changes when PTC occurs. After validation of the 118 genes 
in the brown module using point-biserial correlation coef-
ficient, 61 genes were confirmed to be significantly relevant to 

PTC with P‑value <0.05. The validation results of the signifi-
cant genes with the top20 k.in rank change values are listed 
in Table I.

Functional annotation and enrichment analyses. The top10 
significantly enriched terms in DAVID are shown in Table II, 
which includes extracellular region, integral component of 
plasma membrane, negative regulation of ERK1 and ERK2 
cascade, extracellular space and cell-cell signaling.

Table III shows the results of pathway enrichment based on 
the KEGG database with the top5 enriched pathways. Several 
significantly enriched pathways are expected to be involved in 
PTC, such as transcriptional misregulations in cancer and Wnt 
signaling pathway (22,23).

Discussion

Though studies of genomic events concerning the genetic 
mechanisms of PTC have achieved great progress in recent 
years (3,4), few of them have noted interactions of correlated 
genes thus far. Correlation network-based analysis is a novel 
method for investigation of biologically interactive genes 
associated with complex disease. Network analysis groups 
interactive genes into one module in which genes are enriched 
for specific biological pathways. Moreover, expression data 
used for gene grouping are from tissues and cells involved in 
the disease, so the interconnections between genes are only 
revealed in the specific disease conditions.

Previous studies using expression data mainly focus on 
the DEGs in order to identify potential genes involved in 
PTC (24-27). In the present study, in addition to performing 
differential gene expression analysis, co-expression networks 
were established for the PTC and normal samples, respectively, 
using the 1062 DEGs identified. Comparison of gene‑gene 
interaction between normal and disease networks is useful for 
identifying dysregulated pathways in the process of disease. 
This method enhances the ability to detect functional genes 
with regards to changing crosstalk with other genes rather than 
merely changing expression levels. Module preservation anal-
ysis was applied in the present study and a poorly preserved 
module comprised of 118 interactive genes was identified.

Analyzing the genes in the brown module, the k.in rank 
change for each gene was calculated in order to detect gene 
interaction changes when PTC occurs. Subsequently, 61 genes 
were validated to be significantly relevant to PTC in the valida-
tion analysis. LRP4 is a promising candidate gene for PTC as it 
ranks first based on the k.in rank changes among the 118 genes 
in the brown module and also has a high correlation coefficient 
(r=0.7444) with PTC. In addition, it has been demonstrated to 
be associated with PTC in previous studies.LRP4 is reported 
to be overexpressed in PTC samples (28) and is included in a 
molecular classifier that is able to discriminate thyroids with 
PTC accurately from normal thyroids (29). KLK7 is also a 
potential oncogene for PTC. KLK7 has the fifth largest k.in 
rank change, as shown in Table I, as well as a significant 
correlation coefficient (r=0.8085) with PTC in the validation 
analysis. KLK7 has highly increased levels of expression in 
PTC compared with those in normal tissue (30). Furthermore, 
a previous study suggested that KLK7 promotes tumorgenesis 
and progress in PTC in vitro and in vivo experiments (31).

Table I. Validation results of the significant genes with top20 
k.in rank change values.

   k.in rank
Gene symbol ra P-value changeb

LRP4 0.744359743 8.71x10-05 108
TMEM108 0.663751001 0.001446 94
ETV4 0.801399494 5.13x10-06 89
CAPN3 0.751756977 6.33x10-05 79
KLK7 0.808517499 3.36x10-06 76
TNRC6C-AS1 0.864710246 5.44x10-08 75
FXYD5 0.676025828 0.001009 74
KCNK5 0.673939248 0.001074 73
ST3GAL5 0.761898241 4.00x10-05 72
KLK10 0.789168637 1.02x10-05 71
PRICKLE1 0.747557852 7.60x10-05 69
BCHE -0.514997779 0.031851 68
NELL2 0.589338467 0.008726 68
IGFBP6 0.565886466 0.013735 61
LOC102724312 0.718083931 0.000247 61
LPL 0.833774975 6.39x10-07 61
SLIT1 0.568912151 0.012987 61
MYH10 0.785351749 1.25x10-05 59
LGALS1 0.500150827 0.039436 57
LRRK2 0.843001019 3.24x10-07 57 

aPoint‑biserial correlation coefficients; bthe difference of k.in rank 
between PTC and normal sample network. PTC, papillary thyroid 
cancer.
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To further investigate the functional relevance of the 
identified genes in PTC, functional annotation and enrichment 
analyses were performed and two significant pathways which 
may play a role in pathogenesis of PTC were identified. One 
of the significant pathways is the Wnt signal pathway, which 
has been implicated in the genesis and development of PTC 
in previous studies (22,23). CCND1 and PRICKLE1, which 
are enriched in this pathway in the enrichment analysis, have 
both been shown to be significantly relevant in PTC with high 
correlation coefficient values (r=0.8263 and r=0.7476, respec-
tively) in the validation analysis. CCND1 has been reported 
to be a vital gene in PTC. Studies have shown that CCND1 
expression is significantly associated with PTC growth and 
lymph node metastases through aberrant activation of the 
Wnt/beta-catenin pathway (32,33). PRICKLE1 is potential 
gene associated with PTC. PRICKLE1 encodes prickle planar 
cell polarity (PCP) protein 1and is a core signaling molecule 
in the Wnt/PCP signaling pathway (34,35). Previous studies 
indicate that the Wnt/PCP signaling pathway plays critical 
roles in the proliferation and migration of tumor cells (36,37). 
The other pathway identified to be involved in PTC is tran-
scriptional misregulation in cancer. ETV4, ETV5 and DUSP6, 
which are enriched in this pathway, were all confirmed to be 
relevant to PTC in the validation analysis.DUSP6 has been 
reported to play an essential role in the initiation and progres-
sion of PTC by many functional experiments (38-40). ETV4 
and ETV5 are both oncogenic E26 transformation‑specific 
family transcription factors (41) and are implicated in many 

other types of cancer, such as colorectal (42), prostatic (43), 
endometrial (44) and ovarian (45) cancer. The results of the 
present study provide novel direction for better understanding 
the molecular mechanisms involved in PTC.

The present study has several limitations. Firstly, not all 
of the genes associated with PTC that have been reported in 
previous genetic studies were identified as the present study is 
only a supplement to the current investigations of the genetic 
mechanism of PTC. However, previous studies often focus on 
the effect of a single gene on PTC, while the present study 
highlights the impact of gene-gene interactions on the tumor 
pathological process, which provides a novel insight for detec-
tion of potential functional genes. Secondly, the exact effects 
of the identified genes require corroboration with biological 
experiments. However, validation and enrichment analyses 
were used to confirm the identified genes in the present study. 
Certain genes, such as CCND1 and DUSP6, were confirmed 
that have been shown to be involved in the pathology of PTC 
by previous functional and experimental studies.

In conclusion, the present study applied correlated 
network analysis in order to concentrate on gene interac-
tions. Identified genes were validated using another set of 
expression data and then functional enrichment analysis was 
used to identify more biological associations. A number of 
novel genes, such as LRP4, KLK7, PRICKLE1, ETV4 and 
ETV5, and pathways (Wnt signal pathway and transcrip-
tional misregulation in cancer) were identified that may exert 
important functions in PTC. These results contribute to the 

Table III. Pathway enrichment in ConsensusPathDB.

Pathway name No. of genes Genes P-value

Taste transduction 3 KCNK5, CHRM3, GABBR2 0.0104
Transcriptional misregulation in cancer 4 ETV4, ETV5, PLAU, DUSP6 0.0164
Regulation of actin cytoskeleton 4 MYH10, RRAS, CHRM3, CYFIP2 0.0288
Wnt signal pathway 3 CCND1, PRICKLE1, WIF1 0.0424
Rennin secretion 2 ADORA1, KCNJ2 0.0489

Table II. Module functional enrichment in DAVID.

Category GO ID GO term No. of genes P-value

CC GO:0005576 Extracellular region 21 5.4x10-04

CC GO:0005887 Integral component of plasma membrane 19 8.1x10-04

BP GO:0070373 Negative regulation of ERK1 and ERK2 cascade 4 4.1x10-03

BP GO:0051965 Positive regulation of synapse assembly 4 4.9x10-03

CC GO:0005615 Extracellular space 16 7.9x10-03

BP GO:0060976 Coronary vasculature development 3 8.4x10-03

BP GO:0016042 Lipid catabolic process 4 1.2x10-02

BP GO:0007411 Axon guidance 5 1.2x10-02

BP GO:0007267 Cell-cell signaling 6 1.3x10-02

MF GO:0005198 Structural molecule activity 6 1.5x10-02

GO, gene ontology; CC, cellular components; BP, biological processes; MF, molecular functions.
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understanding of the genetic basis of PTC and provide novel 
insights into the identification of potential functional genes 
in PTC.
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