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Abstract

The obesity epidemic is a costly public health crisis that is not improving. In addition to the stigma 

and discomfort associated with carrying extra weight (at the expense of range of movement), 

obesity also goes hand-in-hand with co-morbidities like fatty liver disease, diabetes, cardiovascular 

disease, and increased risk of some forms of cancer. Currently there are no long-lasting treatments 

for obesity other than diet and exercise, which are not feasible for many populations that may not 

be equipped with the resources and/or support needed to lead a healthy lifestyle. Although there 

have been some pharmacological breakthroughs for treating obesity, each FDA-approved drug 

comes with unpleasant side-effects that make adherence unlikely. As a result, alternate approaches 

are necessary. In this review, we outline the relationship between skin lipid metabolism and whole-

body glucose and lipid metabolism. Specifically, by summarizing studies that employed mice that 

were genetically modified to interrupt lipid metabolism in the skin. As a result, we propose that 

skin might be an overlooked, but viable target for combating obesity.
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The obesity epidemic is a costly public health crisis that is not improving. In addition to the 

stigma and discomfort associated with carrying extra weight (at the expense of range of 

movement), obesity also goes hand-in-hand with co-morbidities like fatty liver disease, 

diabetes, cardiovascular disease, and increased risk of some forms of cancer [1]. Currently 

there are no long-lasting treatments for obesity other than diet and exercise, which are not 

feasible for many populations that may not be equipped with the resources and/or support 
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needed to lead a healthy lifestyle [2]. Although there have been some pharmacological 

breakthroughs for treating obesity, each FDA-approved drug comes with unpleasant side-

effects that make adherence unlikely. For example, Orlistat is a lipase inhibitor that prevents 

fat absorption in the gut. However, this leads to gastrointestinal tract issues; indeed, some 

users have reported faecal incontinence [3]. On the other hand, Naltrexone/Bupropion, an 

opioid agonist that is effective for treating symptoms of metabolic syndrome, is not as 

effective in eliciting loss of fat mass [4]. For these reasons, alternate approaches are 

necessary. In this review, we outline the relationship between skin lipid metabolism and 

whole-body glucose and lipid metabolism and propose that skin might be an overlooked but 

viable target for combatting obesity.

Functions of Skin

The skin is primarily regarded as a barrier tissue that protects individuals from ultraviolet, 

microbial, chemical, and physical insults [5]. To protect humans from sun-damage, the skin 

employs the shielding power of melanocytes [6]. In the fight against infiltration of 

pathogenic microorganisms, the body’s innate commensal microbes, lipids, and Langerhans 

immune cells work together to overcome these intruders [7]; Chemically, lipids are 

important for waterproofing and moisturizing the skin as well as contributing to anti-

microbial defences [8]. The elasticity provided by collagen and elastin-in combination with 

the multi-layer design of skin-helps to maintain its integrity throughout a person’s lifetime 

[9]. Even though environmental protection is the skin’s primary function, other important 

secondary functions (detailed discussions in subsequent paragraphs) include, maintaining 

body temperature, maintaining whole-body water homeostasis, communicating with internal 

organs, and excreting both aqueous and lipid-soluble toxic material [10].

Maintaining body temperature and water homeostasis

Thermoregulation, vasodilation, vasoconstriction, and blood flow comprise the initial 

mechanisms used to combat disturbances in core body temperature [11]. Dilated blood 

vessels and increased blood flow promote heat loss, whereas constriction and decreased 

blood flow retain body heat [11], which manifest as sweating and shivering, respectively 

[11]. Water homeostasis, or trans-epidermal water loss (TEWL), is a constitutive mechanism 

in which water evaporates from the surface of the skin; TEWL does not involve sweat gland 

activity but can lead to severe dehydration if the process is out of equilibrium [12].

Communication with internal organs

A common example of skin communication with internal organs is the recruitment of 

immune cells when the skin is lacerated [13]. Briefly, chemo-attractant proteins located in 

the skin recruits neutrophils and monocytes to the site of the wound. Neutrophils reside in 

the blood, whereas monocytes reside in the spleen and bone marrow [13]. Of course, this 

process is not specific to skin but to all tissues that experience injury. A more remarkable 

and skin-specific example is that the skin can communicate with the kidney and liver in 

order to biosynthesize the active form of vitamin D [14].
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Excretion of toxic material

The eccrine sweat glands of the skin are equivalent to one kidney by weight, contributing to 

the elimination of water-soluble toxins such as heavy metals and drugs [15]. Interestingly, 

some substances, such as excess nicotinamide, are preferentially secreted in sweat rather 

than urine [16]. Secretion of sebaceous lipids has been suggested to play a role in whole-

body lipid clearance in response to diet. This is because low-calorie diets lead to low levels 

of sebum lipids, whereas high-fat diets lead to high lipid levels in sebum [17,18]. Analysis of 

the sebum content on the surface of skin after high-fat feeding indicated increased 

triglyceride and cholesterol ester levels which is characteristic of blood lipids used to 

diagnose dyslipidemia [19]. Furthermore, isotretinoin, a potent anti-acne drug that 

remarkably decreases sebum production, leads to significantly increased blood lipids [20]. 

Curiously, a retrospective study of more than 11,000 men found that those who suffered 

from acne in their youth had significantly decreased mortality from coronary heart disease 

[21]. Taken together, this suggests that lipid substances excreted from the face might have 

long-term whole-body effects that are protective against developing lipid-related diseases 

such as coronary heart disease.

Even though it might be clear that the function of skin extends beyond acting as a barrier 

tissue, there is still some resistance to the notion that skin health can translate into whole-

body health. Fortunately, researchers have created a variety of mouse models with changes 

in the skin-specifically in enzymes of lipid metabolism-that develop changes in whole-body 

metabolic function.

The Structure of Skin

A review of skin lipogenesis and metabolism necessitates a brief discussion of skin structure 

first. The skin is made up of 3 major layers:1) The epidermis; 2) The dermis; 3) The 

hypodermis [22]. The epidermis is the outer layer that is visible to the eye and is mostly 

made up of keratinocytes. This first layer of skin can be divided into 4 further layers: 1) The 

stratum basale; 2) The stratum spinosum; 3) The stratum granulosum; 4) The stratum 

corneum. The stratum basale is the first layer of the epidermis, which is in contact with the 

dermis and is the source of proliferating keratinocytes that mature towards the skin surface 

[22]. The stratum spinosum functions to anchor the stratum basale and stratum spinosum to 

each other by producing cytoskeletal proteins; and also initiates the maturation process of 

keratinocytes [22]. The stratum granulosum produces proteins of the corneocyte (or fully 

matured keratinocyte), lipids, and crosslinking enzymes that move upward to the surface 

[22]. The stratum corneum is the final layer that is made up of corneocytes, lipids, and cross-

linked proteins and is the final, indispensable component of the skin’s function as a barrier 

tissue [22]. The dermis makes up the majority (90%) of the skin; it contains the hair follicles 

and sebaceous glands, which are collectively called the pilosebaceous unit [22,23]. The 

dermis is mostly made up of fibroblasts, which constitute a heterogeneous population of 

cells that secrete collagen, elastin, and hyaluronic acid [22]. Finally, the hypodermis (also 

known as the subcutaneous fat layer) anchors the dermis to the body. This highly 

vascularized layer is made up of white adipocytes, fibroblasts, and macrophages [22,23]. 

Figure 1 shows overview of skin structure.
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Lipid Species and Lipogenesis of the Skin

The stratum corneum (SC) is made up of terminally differentiated keratinocytes (called 

corneocytes) that are embedded in a lipid mixture of ceramides, cholesterol, and free fatty 

acids in a 1:1:1 molar ratio [22,24]. Since the SC makes up the visible horny layer of the 

skin, SC lipids also represent a portion of surface lipids. However, the larger portion is made 

up of sebum arising from sebaceous glands in the dermis [25]. The sebaceous gland is made 

up of immature and mature sebocytes that eventually undergo holocrine disruption to release 

its contents onto the surface of the skin [25]. The lipid components of human sebum are as 

follows: glycerides (30%−50%), free fatty acids (15%−30%), wax esters (26%−30%), 

squalene (12%−20%), cholesterol esters (3%−6%) and free cholesterol (1.5%−2.5%). It is 

important to note that sebum composition varies among mammalian species. Both 

keratinocytes and sebocytes express the full complement of de novo lipogenesis (DNL) 

enzymes [25–27]. In keratinocytes, disruption of the skin barrier elicits increased DNL [27]; 

this increased DNL is observed in the skin of burn patients, premature babies, and following 

repeated tape-stripping of the epidermis [28]. Sebocytes, similar to adipocytes, are obligate 

lipid producing cells, except that sebocytes produce lipids that are secreted by holocrine 

disruption, whereas adipocytes produce lipids for storage as energy reserves in 

subcutaneous, visceral, and/or epididymal white adipose depots [25,29]. Therefore, 

sebocytes are capable of de novo lipid synthesis, which sharply increases during puberty 

[25]. Even though both keratinocytes and sebocytes produce their own lipids, they both can 

also actively take up lipids from circulation. For example, essential fatty acids are found in 

large quantities in both skin cell types [30].

Skin Lipogenesis and Whole-Body Metabolic Health

Vitamin D is perhaps the archetypal example of the importance of skin metabolism in 

whole-body metabolism. Even though it is not directly involved with lipogenesis, vitamin D 

is derived from a cholesterol precursor that is the product of sterol biosynthesis. Ultraviolet 

(UVB) rays of the sun hit the surface of the skin, where a cholesterol precursor called 7-

dehydrocholesterol is converted into pre-vitamin D3 [14]. Pre-D3 must then travel to the 

liver to be converted into 25-hydroxyvitamin D3 (25 (OH)-D3), which is another 

intermediate metabolite of vitamin D synthesis [10]. Finally, (25 (OH)-D3) must travel to 

the kidneys, where the active form of vitamin D (1, 25-dihydroxyvitamin D3 (1, 25 (OH) 

2D)) is produced [14]. Vitamin D is not only important for aiding calcium absorption in the 

gut, preventing the development of bone diseases such as rickets and osteomalacia, but it is 

also implicated in protection from prostate, breast, and colon cancer [14,31]. There is even 

data to support the notion that vitamin D is beneficial for type 1 diabetics because it helps to 

maintain β-cell function [31].

Stearoyl-CoA Desaturase 1 (SCD1), a microsomal enzyme involved in the de novo synthesis 

of monounsaturated fatty acids, is a Δ−9 desaturase enzyme. SCD1 adds a double bond at 

the 9th carbon from the carboxylic acid (or delta) end of saturated fatty acids 16:0 

(palmitate) and 18:0 (stearate) to make 16:1n7 (palmitoleate) and 18:1n9 (oleate), 

respectively [32]. SCD1 can desaturate both de novo synthesized and diet-derived saturated 
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fatty acids [32]. It is ubiquitously expressed, but levels are especially high in metabolic 

tissues such as adipose tissue, liver, muscle, brain, and skin [32].

The SCD1 isoform is the most relevant to skin and whole-body metabolism, but other 

isoforms do exist in both mice and humans. Briefly, mice express isoforms 1 through 4 and 

humans express SCD1 and SCD5. In mice, SCD2 expression is restricted to the brain, and 

plays a role in embryonic development [32]. SCD3 is expressed in both the Harderian and 

preputial glands as well as in sebocytes [32]. And SCD4 expression is restricted to the heart 

[32]. In humans, SCD5 is expressed largely in the pancreas and brain [32]. In the mouse 

skin, SCD1 is most highly expressed in sebocytes because of its role in producing sebum-a 

lipid substance that incorporates oleate into many of its lipid species, including cholesterol 

esters, wax esters, triglycerides, diglycerides, and free fatty acids [33]. Whole-body SCD1-

deficient mice are protected from diet-induced obesity and hepatic steatosis; they are also 

insulin sensitive and glucose tolerant [33]. Importantly, skin-specific SCD1 deficient (SKO) 

mice recapitulate these phenotypes and even display additional metabolic benefits, such as 

low blood cholesterol, which might be cardioprotective [33]. Furthermore, fatty acid 

oxidative genes were increased in brown and white adipose tissues, skeletal muscle, and 

liver, whereas lipogenic genes were either decreased or unchanged [33]. There are 

conflicting findings in the current literature as to whether or not loss of SCD1 in the skin 

increases TEWL. Briefly, two different types of spontaneous whole-body deletions of the 

SCD1 gene in mice-called asebia and asebia2-demonstrated different TEWL phenotypes 

[34]; In the asebia mouse, TEWL is not compromised because of adequate compensatory 

changes in skin lipids; however, in the asebia2 mouse model, compensatory changes are 

inadequate and TEWL is significantly increased compared to asebia mice [34]. It is believed 

that the difference might be attributable to mouse background effects and/or allelic effects 

[34]. Skin-specific SCD1 knock-out mice have not yet been tested for TEWL.

Diacylglycerol O-acyltransferases (DGAT1) is a multifunctional enzyme responsible for 

catalyzing several esterification reactions to make diacylglycerols, retinyl esters, and wax 

esters [35]. However, DGAT is most famously known for catalyzing the last step in 

triglyceride synthesis: converting DAG to TAG [35]. DGATs are highly expressed in 

lipogenic tissues such as white adipose tissue depots, small intestines, liver, and mammary 

glands [35]. To date, no skin-specific DGAT1 knock-out mice have been generated. 

However, whole-body DGAT1 deficiency leads to cutaneous phenotypes similar to SKO 

mice: that is, alopecia and sebaceous gland atrophy [35]. Similar to SKO mice, pups are 

born with fur and then lose their fur with age. Curiously, these phenotypes were reversed 

when DGAT1−/−mice were crossed with leptin-deficient ob/ob mice [35]. The role of leptin 

is unclear, but it is yet another example of skin communication with systemic tissues.

Acyl-CoA-binding protein (ACBP) is a small soluble protein that mediates the transport of 

long-chain acyl-CoA esters to their respective anabolic systems [36]. It also plays an 

important role in cytosolic lipid pool formation and is believed to act as a shield that 

prevents the long acyl chains from enzymatic degradation [36]. It is ubiquitously and highly 

expressed within the pilosebaceous unit of the skin [37]. Skin-specific ACBP knock-out 

mice, similar to SKO mice, experience hair loss, and dry scaly skin; they also exhibit altered 

lipid metabolism in the liver and white adipose tissues [37]. These mice develop fatty livers 
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with increased levels of triglycerides and cholesterol esters; further, they exhibit increased 

lipolysis in white adipose tissue [37]. Interestingly, when ACBP mice are covered in 

Vaseline or an inert liquid latex solution, the liver and white adipose tissue phenotypes are 

rescued [37].

Fatty acid elongase 3 (ELOVL3) is an ER-resident protein that lengthens the acyl chain of 

long-chain fatty acids using malonyl-CoA as a substrate. ELOVL3 specifically elongates 

fatty acids ranging from C16 to C22 [38]. There are 7 ELOVL isoforms (ELOVL 1–7), each 

with different substrate specificities; however, only ELOVL3 deficiency has been shown to 

produce a skin phenotype that affects whole-body metabolism [39]. ELOVL3 is highly 

expressed in the sebaceous glands and epithelial cells of the hair follicles, where its 

elongated fatty acid products are used as substrates for ceramide synthesis. This is 

surprising, given that sebum is not known for high levels of ceramide content [25]. 

Nevertheless, without ELOVL3, mice develop alopecia and eczema and experience 

increased TEWL [39]. Similar to SKO mice, ELOVL3 mice are hypermetabolic and are 

resistant to diet-induced obesity [40]. However, these observations were made with whole-

body ELOVL3 knock-out mice, so contributions from other tissues cannot be ruled out [40].

Alkaline ceramidase 1 (ACER1) is a ceramidase that maintains the levels of ceramides in the 

skin, thereby maintaining barrier and thermoregulatory function [41]. ACER1 is highly 

expressed in the keratinocytes of the epidermis and in the sebaceous glands of the dermis, 

another curious finding since sebum does not contain detectable amounts of ceramides 

[25,41]. Similar to SKO mice, ACER1 knock-out mice are hypermetabolic, hyperphagic, 

and lean; they also exhibit increased TEWL [41]. Although ACER1 is not expressed in 

white or brown adipose tissue, ACER1-deficient mice have increased levels of UCP1 in 

brown adipose tissue and increased beiging in white adipose tissue [41]. These strongly 

suggests-again-that internal organs can communicate with and respond to changes in the 

skin in a way that leads to remarkable changes in whole-body metabolism.

Fatal Phenotypes

Since the primary function of skin is to protect bodily organs and tissues from external 

threats and dehydration, it is unsurprising that deletion of genes involved with maintaining 

the lipid barrier are either embryonically lethal or lead to premature death. For example, 

skin-specific deletion of glucosyl-ceramide synthase (UGCG) in mice leads to negligible 

levels of glucosylceramides in keratinocytes [42]. As a result, TEWL is sharply increased 

and pups die soon after birth [42]. Similarly, loss of ELOVL1 and ELOVL4 both lead to 

decreased levels of total ceramides and premature death [43]. More severely, DGAT2, which 

esterifies linoleic acid to triglycerides and acylceramides, leads to still-born pups [44]. 

Curiously, knock-out of SCD2 is 70% lethal; the remaining 30% that do not die prematurely 

display decreased skin triglycerides and ceramides and increased water loss [45]. It is worth 

noting that the lethal and more severe phenotypes disrupt lipogenesis in keratinocytes, while 

the less severe and sometimes metabolically favorable phenotypes disrupt lipogenesis in 

sebocytes. This correlation might be important should the skin ever become a potential target 

in the treatment of metabolic syndrome and obesity. Figure 1 represents lipid synthesis 

pathways in the skin.
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Subcutaneous Adipose Tissue

Because subcutaneous white adipose tissue is juxtaposed to skin, it may play a role in 

whole-body communication of skin-derived factors. Subcutaneous fat is considered the 

safest depot to store fat because the white adipocytes of subcutaneous fat have greater 

capacity to “beige” compared to visceral or epididymal adipose depots [46]. As a result, 

subcutaneous fat can contribute to increased energy expenditure and decreased risk of 

developing insulin resistance and diabetes [46]. However, if subcutaneous white adipose 

tissue is exposed to inflammatory stimuli, its capacity to beige and respond to insulin is 

decreased [47]. Consequently, patients with psoriasis are at greater risk for developing type 2 

diabetes [48]. And type 1 diabetics who also develop psoriasis have reported lowering their 

insulin dose after starting treatment for psoriasis [49]. Furthermore, there is evidence that 

miRNAs secreted from inflamed psoriatic lesions lead to impairment in cholesterol efflux of 

the subcutaneous tissue directly below [50].

A Non-traditional Role of Skin: Bile Acid Synthesis?

Recently, our lab identified a potential role for bile acids in the lean and metabolically 

healthy phenotype of skin-specific SCD1-deficient (SKO) mice [51]. Briefly, SKO mice 

have increased levels of free cholesterol on the surface of their skin [33]. Because free 

cholesterol is cytotoxic, we hypothesized that in addition to being effluxed from within cells, 

cholesterol might also be converted into a safer compound [52]. Cholesterol is a precursor 

for many molecules including vitamin D, steroids, oxysterols, and bile acids; we focused on 

bile acids because increased signaling through a bile acid-specific receptor, Takeda-G-

protein-receptor-5 (TGR5), leads to similar metabolic improvements seen in SKO mice [53]. 

We demonstrated that SKO mice do indeed have increased levels of total bile acids in 

plasma, as well as the bile acid tauro-β-muricholic acid (Tβ-MCA), which is a biomarker for 

extrahepatic bile acid synthesis and metabolic health in mice [51,54,55]. Furthermore, a rate-

limiting enzyme of extrahepatic bile acid synthesis, oxysterol 7α-hydroxylase (Cyp7b1), 

was significantly elevated in the skin of SKO mice [51,56]. Importantly, however, bile acid 

synthesis enzymes were unchanged in their livers [51]. These findings were surprising on 

two levels: 1) Bile acid synthesis can be initiated outside of the liver and contribute to 

changes in the plasma bile acid pool; 2) Skin might be a tissue capable of completely 

synthesizing bile acids or, at the very least, their oxysterol intermediates that must then 

travel to the liver for complete synthesis-a process that is not unlike vitamin D synthesis. 

Figure 2 shows an overview of tissues reported to respond to changes in lipid synthesis 

pathways of the skin.

Challenges and Future Directions

In this review, we discussed how changes in lipid metabolism specifically in skin can lead to 

a variety of favorable systemic metabolic changes in several mouse models where 

lipogenesis genes were deleted. On the flip-side, changes that lead to defects in skin’s 

barrier function can lead to death due to dehydration. However, there is the example of the 

asebia mouse where SCD1 is deleted without compromising skin barrier function. Because 

deletion of SCD1 leads to a favorable metabolic phenotype, perhaps it is time to explore 
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clinical applications where a topical application is developed and tested in a population that 

has an unmet therapeutic need.

An example that comes to mind is homozygous familial hypercholesterolemia (hFH) where 

patients demonstrate blood cholesterol up to 2000 mg/dL which is 10 times the upper limit 

of normal cholesterol levels [57,58]. Their current treatment is a combination of oral 

cholesterol-lowering drugs like statins and or bile acid resins. Some patients even have to 

undergo LDL aphresis where blood is cleaned and returned to the patient-a process that is 

similar to dialysis [59]. Skin-specific SCD1 deficient mice demonstrate low levels of blood 

cholesterol and high levels of cholesterol on the surface of their skin [33,51]. It is therefore 

an interesting idea that one might be able to modify skin cholesterol efflux to become a 

cholesterol sink to help clear blood cholesterol for persons with hFH. If this undertaking is 

successful, then we might be able to modify the SCD1 topical application to address 

metabolic syndrome and obesity.

Because disrupting lipid synthesis in skin will inevitably lead to dry skin, skin care measures 

must be taken to prevent the development of dermatological disorders. Even though, there is 

no guidance to be gleaned from current attempts to use skin to combat metabolic disorders 

in a clinical setting, there might be hints available in the treatment of skin of the elderly. 

Aged skin is notorious for developing severe dryness and as a result, skin barrier defects 

[60]. Consequently, there have been several products developed to keep aged skin healthy. 

Some of these products are humectants, emollients and occlusives [60]. Humectants such as 

urea, lactic acid and glycerin are known to decrease TEWL and skin dryness as well as 

increase stratum corneum hydration [60]. Emollients such as octyl octanoate or octyl 

stearate fill in the rough spaces of corneocytes leading to improved smoothness [60]. And 

occlusive like petrolatum trap water in the skin and prevent TEWL [60]. If a topical anti-

obesity drug were to be developed that incorporates the features of an effective moisturizer 

that can keep the skin barrier function intact, then there would be greater potential for patient 

adherence, thereby increasing the chances of being a successful topical drug.

Conclusion

The skin might be an as yet discovered resource to combat metabolic syndrome, 

dyslipidemia and obesity. There are mouse models that clearly show a causal relationship 

between cutaneous changes and systemic changes in metabolism. And there are human 

examples where a skin disease such as psoriasis is correlated with the development and or 

worsening of type 1 and 2 diabetes. Even a common adolescent skin disease, such as acne 

has implications for the development of coronary heart disease with ageing. Because of this 

wealth of information, it is my hope that we can begin to translate these findings into the 

clinic and develop alternative therapeutic interventions that can protect people from the 

diseases of metabolic syndrome and obesity.
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Figure 1: 
The skin is divided into three main layers, the epidermis, dermis and hypodermis with the 

indicated predominant cell types residing within the layers. Lipid synthesis pathways in 

skin; Ceramide, fatty acid and triglyceride synthesis pathways are present in either 

keratinocyes, sebocytes or both cell types as indicated by numbers.
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Figure 2: 
Changes in lipid synthesis pathways in skin have been linked to metabolic changes in distal 

tissues. Examples include decreased hepatic steatosis, increased oxidation of white and 

brown adipose tissue, beiging of white adipose tissue and decreased levels of blood lipids.

Dumas and Ntambi Page 13

J Cell Signal. Author manuscript; available in PMC 2018 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Obesity, Metabolic Syndrome and Skin
	Functions of Skin
	Maintaining body temperature and water homeostasis
	Communication with internal organs
	Excretion of toxic material
	The Structure of Skin
	Lipid Species and Lipogenesis of the Skin
	Skin Lipogenesis and Whole-Body Metabolic Health
	Fatal Phenotypes
	Subcutaneous Adipose Tissue
	A Non-traditional Role of Skin: Bile Acid Synthesis?
	Challenges and Future Directions
	Conclusion
	References
	Figure 1:
	Figure 2:

