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Abstract

Background: Myocardial fibrosis is a common pathophysiological change in cardiovascular disease, which can
cause cardiac dysfunction and even sudden death. Excessively activated fibroblasts proliferate and secret excessive
extracellular matrix (ECM) components, resulting in normal cardiac structural damage and cardiac fibrosis. We
previously found that human endothelial progenitor cell (EPC)-derived exosomes, after hypoxia/reoxygenation (H/R)
induction, could significantly increase the mesenchymal-endothelial transition (MEndoT) compared to normal
culture EPC-derived exosomes. Exosomes have been shown to carry different nucleic acids, including microRNAs.
However, the effects of microRNAs in EPC-derived exosomes on MEndoT and myocardial fibrosis remain unknown.

Methods: EPCs were isolated from human peripheral blood, and fibroblasts were isolated from rat hearts, then
transfected with miR-133 inhibitor, si-YBX-1, and ov-YBX-1 into EPCs. After H/R induction for 48 h, isolation and
characterization of exosomes derived from human EPCs were performed. Finally, fibroblasts were treated by
exosome at 48 h. The expression of miR-133 was measured by qRT-PCR; YBX-1 expression was measured by
gRT-PCR and western blot. Angiopoiesis was measured by tube formation assay. Endothelial markers and fibrosis
markers were measured by western blot.

Results: H/R treatment promoted miR-133 expression in EPCs and EPC-derived exosomes. miR-133 could be
incorporated into exosomes and transmitted to cardiac fibroblasts, increasing the angiogenesis and MEndoT of
cardiac fibroblasts. miR-133 silencing in H/R-induced EPCs could inhibit miR-133 expression in EPCs and EPCs-
derived exosomes. miR-133 silencing in H/R-induced EPCs could inhibit the angiogenesis and MEndoT of cardiac
fibroblasts and reverse the effect of H/R treatment. Additionally, miR-133 was specially sorted into H/R-induced EPC-
derived exosomes via YBX-1. YBX-1 silencing inhibited miR-133 transfer and reduced fibroblast angiogenesis and
MEndoT.

Conclusion: miR-133 was specially sorted into H/R-induced EPC-derived exosomes via YBX-1 to increase fibroblast
angiogenesis and MEndoT.
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Background
Myocardial fibrosis is a common pathophysiological
change in cardiovascular disease, which can cause
cardiac dysfunction and even sudden death [1]. It is one
of the important causes of death in patients with cardio-
vascular disease. Therefore, reversing myocardial fibrosis
is an important goal in the treatment of cardiovascular
disease. Fibroblasts are key effector molecules of cardiac
fibrosis [2]. Cardiac fibroblasts play an important role in
maintaining cardiac structure and function by synthesiz-
ing collagen I, collagen III, fibronectin, and other
extracellular matrix components. Under pathological
conditions, fibroblasts proliferate and activate excessive
secretion of extracellular matrix components, resulting
in normal cardiac structural damage and cardiac fibrosis.
Cardiac fibroblasts were once thought to be terminally
differentiated cells. However, recent studies have shown
that chromatin-modifying agents could activate Wnt sig-
naling to transform human adult dermal fibroblast cells
to OCT4+ and VEGFR-2+ capillary tube-forming cells
[3]. When pathological damage occurs in the heart, fi-
broblasts undergo a mesenchymal-endothelial transition
(MEndoT) to obtain endothelial cell-like functions and
participate in angiogenesis in the cardiac injury area,
which is a novel antifibrotic strategy to alleviate myocar-
dial fibrosis [4]. However, the mechanism underlying the
transformation of cardiac fibroblasts into endothelial
cells during pathological heart damage remains unclear.

Previously, we found that hypoxia/reoxygenation
(H/R)-induced human endothelial progenitor cell
(EPC)-derived exosomes increased proliferation and
angiogenesis of cardiac fibroblasts by promoting MEn-
doT [5]. Exosomes are small membrane vesicles that
mediate intercellular signal transduction [6]. Previous
studies have shown that EPC-derived exosomes can
promote angiogenesis and reduce cardiomyocyte
hypertrophy and apoptosis [7-9]. Furthermore, exo-
somes had been shown to carry different nucleic
acids, including microRNAs (miRNAs), which are
acquired by recipient cells to regulate their own fate
[10, 11]. Previous studies found that miRNAs in
exosomes from endothelial progenitor cells improved
outcomes of patients with cardiovascular disease [12]
and lipopolysaccharide-induced acute lung injury [13]
and also of a murine model of sepsis [12].

miRNAs significantly regulate cell growth and metab-
olism through post-transcriptional inhibition of gene ex-
pression and play important roles in myocardial fibrosis
[14-16]. miR-181la and miRNA-221/222 regulated
cardiac fibroblast activation to increase deposition of
extracellular matrix components and promote myocar-
dial fibrosis [17, 18]. miR-378 in exosomes, which is
secreted from cardiomyocytes, inhibited excessive car-
diac fibrosis [19]. Further, miR-217 in exosomes, which
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is secreted from cardiomyocytes, promoted cardiac
fibrosis processes, cardiac hypertrophy, and cardiac
fibrosis processes [20]. However, the effects of miRNA
in EPC-derived exosomes on MEndoT and myocardial
fibrosis remain unknown.

In our previous study, we found that EPC-derived exo-
somes, after H/R induction, could significantly increase
MEndoT compared with normal culture EPC-derived
exosomes [5]. In this study, we collected exosomes
derived from normal and H/R-cultured EPCs and
measured miRNA expression using a miRNA array.
Additionally, we investigated the effect of miRNAs in
EPC-derived exosomes on angiogenesis and MEndoT.
Finally, we examined the mechanism of miRNA assem-
bly into exosomes.

Materials and methods

Isolation, identification, and culture of EPCs and fibroblasts
EPCs were isolated from human peripheral blood, and
fibroblasts were isolated from rat hearts which are
identified by immunofluorescence and flow cytometry as
previously described [5]. Isolated EPC cells were placed
into a 25-cm? culture bottle and cultured in Dulbecco’s
modified Eagle’s medium (DMEM; Gibco) containing
10% fetal bovine serum, which was centrifuged in
advance by density gradient centrifugation to remove
existing exosomes (Gibco), in a 5% CO, humidified
environment at 37 °C. The medium was changed every
3 days. Late passage cells (p3) were used in subsequent
experiments. Isolated fibroblasts were suspended in
DMEM (Gibco) with 10% FBS (Gibco). After 30 min,
cells that were weakly attached or unattached were
discarded. Cells were seeded onto 35-mm plates (1 x 10°
cells/plate) for 3 days.

H/R treatment

EPCs were grown to 80% confluence and quiesced for
12 h. Plated cells were subjected to normoxic or hypoxic
conditions for 12h. To generate hypoxic conditions,
cells were transferred to an incubation chamber
(Billups-Rothenberg MIC-101) and flushed with hypoxic
gas mixture (95% N, 5% CO,). Subsequently, the cells
were cultured in normoxic conditions for 48 h.

Isolation and characterization of exosomes derived from
human EPCs

Exosomes derived from H/R-treated EPCs were isolated
and identified as previously described [5]. Following H/R
treatment of EPCs, the original medium was replaced
with fresh exosomal-free serum medium, and the cells
were cultured for 24 h. Culture media of EPCs were col-
lected and centrifuged at 3000 g for 30 min and 100,000
g for 90 min at 4°C to remove dead cells and cellular
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debris by Optima Ultracentrifuge (Beckman Coulter).
The medium was mixed with 0.5 mL of Total Exosome
Isolation reagent (GENESEED, Guangzhou, China), cen-
trifuged at 10,000g for 1h at 4°C to obtain exosomes.
Exosome morphology was visualized using a transmis-
sion electron microscope (Hitachi H-7650; Japan), and
images were taken with a digital camera (Olympus).
Surface proteins (CD63, TSG101, and HSP70) on the
exosomes were detected by western blotting. Finally,
EPC-derived exosomes were added to the fibroblast
culture medium.

Apoptosis and senescence assay

The apoptosis of H/R-treated EPCs was measured by
the Annexin V-fluorescein isothiocyanate (FITC)
Apoptosis Detection Kit (Keygentec, Nangjing, China).
The senescence of H/R-treated EPCs was measured by
Senescence [-galactosidase staining kit (Beyotime,
Shanghai, China).
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miRNA profiling

Exosomal RNA was extracted using the TRIzol reagent
(Life Technologies, Carlsbad, CA, USA). miRNA expres-
sion profile in exosomes was investigated by miRNA
microarray analysis. Exosomal miRNAs were extended
and hybridized with fluorescent-labeled biotin dyes on a
Gene Chip miRNA 4.0 Array (Affymetrix, Cleveland,
OH, USA). Following hybridization, the images were
digitized and analyzed using a laser scanner interfaced
with ArrayPro image analysis software (Media Cybernet-
ics, Silver Spring, MD, USA). Data were analyzed by first
subtracting the background, followed by normalizing the
signals using a LOWESS filter (locally weighted regres-
sion) [21]. The differentially expressed miRNAs were
defined using the ratio of detected signals log2-fold
changes [log2(mTLE-HS/control)], and the Student’s ¢
test was used to calculate P values. Those with a log2
ratio > 1.0 or < - 1.0 and P values < 0.05 were considered
as differentially expressed miRNAs. Cluster analysis
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Fig. 2 Upregulation of miR-133, miR-218, and miR-9 expression in H/R-induced EPC-derived exosomes. Expression levels of miR-133, miR-218, and
miR-9 were measured by qRT-PCR in H/R-induced and normal cultured EPC-derived exosomes. Data are shown as mean £ SD. ***P < 0.001

based on the relative expression levels of miRNAs was
also conducted.

Quantitative real-time reverse transcription-polymerase
chain reaction

Total RNA was isolated using the TRIzol reagent
(Invitrogen, Carlsbad, CA, USA) and reverse transcribed.
qRT-PCR was performed using the SYBR® Premix
ExTaqTM II Kit (Takara, Dalian, China) to detect YBX-
1 expression and the Mir-X miRNA qRT-PCR SYBR Kit
(Clontech Laboratories, Inc., USA) to detect miR-133 on
a 7500 Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). The relative expression levels of
mRNA and miRNA were calculated using the 2-AACT
method. GAPDH and U6 served as reference genes, re-
spectively. The primer sequences were as follows: YBX-1

forward, 5'-GATAAATTTAAACCTGAAAA-3" and re-
verse, 5-ATCTTGTTTCTATCTTCCAA-3’; miR-133
forward, 5'- ACACTCCAGCTGGGCAAAGTGCTTAC
AGTGC-3" and reverse, 5-CTCAACTGGTGTCG
TGGA-3'; U6 forward, 5'-CTCGCTTCGGCAGCACA-
3’ and reverse, 5'-AACGCTTCACGAATTTGCGT-3';
GAPDH forward, 5'-GCTCATTTGCAGGGGGGAG-3’
and reverse, 5'-GTTGGTGGTGCAGGAG GCA-3'. All
reactions were performed in triplicate.

Transfection

YBX-1 expression interference (si-YBX-1), si-negative
control (si-NC), miR-133 inhibitor, negative control in-
hibitor (NC inhibitor), miR-133 mimic, and NC mimic
were purchased from RiboBio (Guangzhou, China). The
open reading frame of YBX was synthesized and linked

1.2

*k*

Relative miR-133 expression

mean + SD. ***P < 0.001
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Fig. 3 Significant inhibition of miR-133 expression by miR-133 inhibitor transfection in H/R-induced EPCs and H/R-induced EPC-derived exosomes.
miR-133 expression was measured by gRT-PCR after transfection with an NC inhibitor and miR-133 inhibitor at 48 h. Data are shown as
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into pcDNA 3.1 (ov-YBX-1), and pcDNA 3.1 served as
a negative control (ov-NC). EPCs (2 x 10° cells/well)
were transfected with 50 nM miR-133 inhibitor, 50 nM
NC inhibitor, 50 nM si-YBX-1, 50 nM si-NC, 1 pg/pL
ov-YBX-1, and 1pg/uL ov-NC using Lipofectamine™
2000 (Invitrogen) according to the manufacturer’s
instructions.

Tube formation assay

Matrigel (300 mL per well) was plated onto the bot-
tom of six-well plates and incubated at 37°C for 30
min. Fibroblasts (1 x10° cells per well) were seeded
on Matrigel and induced by EPC-derived exosomes.
After a 48-h culture, tube formation was assessed
using an inverted microscope (Olympus, Tokyo,
Japan).
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Western blotting assay

Western blotting was performed to analyze the expres-
sion of CD31, a-SMA, VE-cadherin, vWF, N-cadherin,
vimentin, collagen I, YBX-1, SYNCRIP, and hnRNPA2B1
[5]. Specific primary antibodies against CD31 (MAI-
81051, 1:100), a-SMA (14-9760-82, 1:500), VE-cadherin
(MA5-17050, 1:500), vWF (PA5-80223, 1:1000), N-cad-
herin (33-3900, 1:1000), vimentin (MA3-745, 1:1000), col-
lagen I (PA1-26204, 1:5000), YBX-1 (PA5-83493, 1:100),
SYNCRIP (PA5-50986, 1:500), and hnRNPA2B1 (PA5-
34939, 1:5000) were purchased from eBioscience (San
Diego, CA, USA), and an HRP-conjugated goat anti-rabbit
IgG H&L secondary antibody (1:10000; Southern Biotech,
Birmingham, AL, USA) was used. Protein bands were
visualized using ECL (Thermo Fisher Scientific). Protein
expression was normalized relative to GAPDH expression.
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Fig. 4 Silencing of miR-133 in H/R-induced EPCs inhibits fibroblast angiogenesis. a miR-133 expression was measured by gRT-PCR in fibroblasts
treated with EPC-derived exosomes for 48 h. b The bar graph represents quantification of the number of meshes per group. ¢ Representative
image of tube formation analysis. Data are shown as mean = SD. ***P < 0,001, **¢P < 0,001
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Results

miR-133 expression is upregulated in H/R-induced EPC
(H/R-EPC)-derived exosomes (H/R-EPC-exosomes)

First, we found that the senescence and apoptosis in H/
R-induced EPC were obviously enhanced compared to
normal cultured EPCs (Fig. 1a, b). Then, exosomes were
purified from culture medium and confirmed by trans-
mission electron microscopy and exosome markers
CD63, TSG101, and HSP70 (Fig. 1c). Additionally,
miRNA profiles of exosomes from H/R-induced and
normal cultured EPCs were investigated using Affymetrix
miRNA 4.0 Arrays. The microarray results showed
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differential expression of 64 miRNAs (7 downregu-
lated miRNAs and 57 upregulated miRNAs, log-fold
change >1; P<0.05) in H/R-EPC-exosomes compared
to normal cultured EPC-derived exosomes (Normal-
EPC-exosomes) (Fig. 1d). Among 64 miRNAs, only
three miRNAs, including miR-133, miR-218, and miR-
9, were expressed at greater than five times log-fold
change (log-fold change >5; P<0.05). To validate the
accuracy of the microarray assay, expression levels of
miR-133, miR-218, and miR-9 were measured by
qRT-PCR in H/R-EPC-exosomes and Normal-EPC-
exosomes. The results showed that the expression
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levels of miR-218, miR-9, and especially miR-133 were
significantly upregulated in H/R-EPC-exosomes compared
to Normal-EPC-exosomes (Fig. 2). Therefore, we focused
on miR-133 for further experiments because miR-133
expression had more significant change than miR-218 and
miR-9 expression in H/R-EPC-exosomes.

Intercellular transfer of miR-133 by H/R-EPC-exosomes
inhibits fibroblast angiogenesis and MEndoT

In an attempt to identify miR-133 required for fibro-
blast angiogenesis and MEndoT, the miR-133 inhibi-
tor was transfected into H/R-EPC (H/R- miR-133
inhibitor/EPC). The qRT-PCR results showed that
miR-133 expression was significantly inhibited after
transfection of the miR-133 inhibitor at 48 h in H/R-
EPC and H/R-EPC-exosomes compared to NC inhibi-
tor transfection (Fig. 3). Additionally, fibroblasts were
treated with H/R-miR-133 inhibitor/EPC-exosomes for
48 h. In the following, angiogenesis and MEndoT of
fibroblasts were measured. First, miR-133 expression
in fibroblasts treated with Normal-EPC-exosomes was
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significantly lower than that in fibroblasts treated with
H/R-EPC-exosomes and H/R-NC inhibitor/EPC-exo-
somes. Further, miR-133 expression in fibroblasts
treated with H/R-NC inhibitor/EPC-exosomes was
significantly higher than that in fibroblasts treated
with H/R-miR-133 inhibitor/EPC-exosomes (Fig. 4a).
Second, the number of meshes had a similar trend of
miR-133 expression in each group, which showed up-
regulation and downregulation of the number of
meshes by miR-133 overexpression and miR-133
knockdown, respectively (Fig. 4b, c). Finally, expres-
sion of endothelial markers CD31, VE-cadherin, and
vWE in fibroblasts treated with H/R-EPC-exosomes
and H/R-NC inhibitor/EPC-exosomes was significantly
higher than that in fibroblasts treated with Normal-
EPC-exosomes and H/R-miR-133 inhibitor/EPC-exo-
somes. Conversely, fibrosis markers a-SMA, N-cadherin,
vimentin, and collagen I were significantly lower
(Fig. 5). The results showed that intercellular transfer
of miR-133 by H/R-EPC-exosomes promoted fibroblast
angiogenesis and MEndoT.
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YBX-1 expression is upregulated in H/R-EPC

We next examined the specific packaging of miR-133
into EPC-derived exosomes, and three reported
sorting protein of exosomes, including YBX-1, SYNC
RIP, and hnRNPA2BI1, in EPCs were measured by
qRT-PCR and western blotting. The results showed
that YBX-1, SYNCRIP, and hnRNPA2B1 expression
levels, especially YBX-1, were significantly upregulated
in H/R-EPC compared to Normal-EPC (Fig. 6).
Therefore, we focused on YBX-1 for further
experiments.

Packaging of miR-133 into EPC-derived exosomes is
mediated by YBP1

Additionally, we silenced YBX-1 by si-YBX1 transfection
to study whether miR-133 was specifically packaged into
exosomes by YBP1. YBX1 expression was successfully
reduced by si-YBX1 transfection in H/R-EPC (Fig. 7a).
As expected, knockdown of YBX1 in H/R-EPC signifi-
cantly decreased miR-133 expression in H/R-EPC-
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exosomes; however, it did not change miR-133 expres-
sion in H/R-EPC (Fig. 7b). Co-transfected si-YBX1 and
miR-133 mimic significantly increased miR-133 expres-
sion in H/R-EPC with no effect on miR-133 expression
in H/R-EPC-exosomes (Fig. 7c). Next, we upregulated
YBX-1 expression by ov-YBX1 transfection to further
study whether miR-133 was specifically packaged into
exosomes by YBP1. YBX1 expression was successfully
enhanced by ov-YBX1 transfection in H/R-EPC (Fig. 8a).
As expected, YBX1 overexpression in H/R-EPC had no
significant changes in miR-133 expression in H/R-EPC
and H/R-EPC-exosomes (Fig. 8b). Co-transfected ov-
YBX1 and miR-133 mimic significantly increased miR-
133 expression in H/R-EPC and H/R-EPC-exosomes
(Fig. 8c). Additionally, ov-YBX-1 transfected had no
significant change in the miR-133 expression in the H/
R-miR-133 inhibitor-treated EPC cells and exosomes
compared to ov-NC transfected (Fig. 8d). These results
showed that YBP1 mediated miR-133 packaging into
EPC-derived exosomes.
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Fig. 8 Promotion of specifically packaged miR-133 into EPC-derived exosomes by YBP1 overexpression. a gRT-PCR and western blot analysis of
YBX1 expression in H/R-induced EPCs at 48 h following ov-YBX1 transfection. b gRT-PCR analysis of miR-133 expression in H/R-induced EPCs and
exosomes at 48 h following ov-YBX1 transfection. ¢ gRT-PCR analysis of miR-133 expression in H/R-induced EPCs and exosomes at 48 h after
co-transfection with ov-YBX1 and miR-133 mimic. d gRT-PCR analysis of miR-133 expression in H/R-induced EPCs and exosomes at 48 h after
co-transfection with ov-NC and miR-133 inhibitor or ov-YBX1 and miR-133 inhibitor

YBX-1 regulates fibroblast angiogenesis and MEndoT
through exosome-transferred miR-133 regulation

We further examined whether YBX-1 could regulate
miR-133 transfer to reduce fibroblast angiogenesis and
MEndoT. First, miR-133 expression in fibroblasts treated
with  H/R-si-YBX1+miR-133 inhibitor/EPC-exosomes
and H/R-ov-YBX1+miR-133 inhibitor/EPC-exosomes
was significantly lower than that in fibroblasts treated
with H/R-ov-YBX1/EPC-exosomes and H/R+ov-NC/
EPC-exosomes (Fig. 9a). The number of meshes had a
similar trend of miR-133 expression in each group
(Fig. 9b, c). Finally, endothelial markers CD31, VE-cad-
herin, and vWF expression levels in fibroblasts treated
with  H/R-si-YBX1+miR-133 inhibitor/EPC-exosomes
and H/R-ov-YBX1+miR-133 inhibitor/EPC-exosomes
were significantly lower than fibroblasts treated with H/
R-ov-YBX1/EPC-exosomes and H/R+ov-NC/EPC-exo-
somes. In contrast, fibrosis markers a-SMA, N-cadherin,
vimentin, and collagen I were significantly higher
(Fig. 10). The results showed that fibroblasts treated with
H/R-ov-YBX1/EPC-exosomes and H/R+ov-NC/EPC-

exosomes had no significant effects on fibroblast
angiogenesis and MEndoT. Fibroblast angiogenesis
and MEndoT were significantly inhibited in fibroblasts
treated with H/R-si-YBX1+miR-133 inhibitor/EPC-
exosomes and H/R-ov-YBX1+miR-133 inhibitor/
EPC-exosomes compared to fibroblasts treated with
H/R-ov-YBX1/EPC-exosomes due to miR-133 silencing.
The results suggested that YBX-1 knockdown inhibited
miR-133 exosome transfer to reduce fibroblast angio-
genesis and MEndoT.

Discussion

Cardiovascular disease induces fibroblast proliferation
and excessive activation, resulting in cardiac fibrosis.
Fibroblasts undergo MEndoT to obtain endothelial
cell-like functions and participate in angiogenesis in
the cardiac injury area, which can reverse myocardial
fibrosis [4]. In a previous study, we found that H/R-
EPC-exosomes increase angiogenesis in cardiac fibro-
blasts by promoting MEndoT. Hence, it is necessary
to study the mechanism of H/R-EPC-exosomes to
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promote conversion of cardiac fibroblasts into endo-
thelial cells and identify novel targets for cardiac
fibrosis therapy. In this study, we found that H/R-
EPC-exosomes increased angiogenesis in cardiac fibro-
blasts by promoting MEndoT. Additionally, miR-133
was overexpressed in H/R-EPC-exosomes and func-
tionally required for MEndoT of cardiac fibroblasts.
EPCs, a type of hematopoietic stem cell, promote vas-
cular repair, including vascular proliferation and remod-
eling, when organs suffer from ischemic injury or
endothelial damage [22, 23]. EPCs have been identified
to participate in the alleviation of cardiac fibrosis in sev-
eral cardiovascular diseases [24, 25]. Several studies have
described effective EPC-mediated attenuation of renal/fi-
brosis via exosomes [5, 26]. EPC-derived exosomes are
complex particles formed by exocytosis of the EPC cell
membrane, which can act as effective messengers for
transmission of cell signaling and biological function
between cells [5, 27]. Importantly, we found that H/R-in-
duced EPC-derived exosomes increased angiogenesis in
cardiac fibroblasts by promoting MEndoT [5]. Here, we

studied the contribution of exosomal miRNAs in regu-
lating the MEndoT of cardiac fibroblasts. Our results
found that H/R treatment promoted the senescence and
apoptosis of EPCs. Wang et al. found that serum
deprivation plus TNFa stimulation promoted EPC
apoptosis and exosome release to improve H/R-induced
endothelial dysfunction [28]. These results suggested
that the onset of senescence or apoptosis may greatly
affect the release of exosomes. Additionally, miR-133
was overexpressed in H/R-EPC-exosomes by a miRNA
microarray assay and qRT-PCR verification. H/R-EPC-
exosome treatment inhibited promoted fibroblast angio-
genesis and MEndoT. We also found that silencing of
miR-133 expression in EPCs inhibited miR-133 expres-
sion in EPC-derived exosomes, which inhibited the
intercellular transfer of miR-133 into fibroblasts and
inhibited fibroblast angiogenesis and MEndoT. The
results suggested that EPC-derived exosomes promoted
fibroblast angiogenesis and MEndoT through the
intercellular transfer of miR-133 thereby attenuating
myocardial fibrosis.
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Studies have shown that the mechanism by which
miRNAs are specifically loaded into exosomes is associ-
ated with specific RNA-binding proteins, such as YBX-1
[29], SYNCRIP [30, 31], and hnRNPA2B1 [32]. Here, we
uncovered that YBX-1 expression was significantly
enhanced in H/R-EPC as compared to SYNCRIP and
hnRNPA2B1 expression. YBX1, which is localized to
cytoplasmic granules, is an RNA-/DNA-binding multi-
functional protein. The YBX1 protein is one of the most

important transcriptional regulator proteins in exosomes
[33]. Recently, some studies have found that Y box pro-
tein 1 is required to sort mRNAs, miRNAs, and IncRNA
into exosomes [29, 34-36]. In this study, we found that
YBX-1 upregulation in H/R-EPC did not affect miR-133
expression in H/R-EPC and H/R-EPC-exosomes.
Additionally, YBX-1 upregulation did not affect fibro-
blast angiogenesis and MEndoT. Furthermore, we found
that YBX-1 silencing did not affect miR-133 expression
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in H/R-EPC; however, it inhibited miR-133 expression in
H/R-EPC-exosomes and prevented fibroblast angio-
genesis and MEndoT. These results suggested that miR-
133 was specially sorted into H/R-EPC-exosomes via
YBX-1. Further, YBX-1 silencing inhibited miR-133 trans-
fer and reduced fibroblast angiogenesis and MEndoT.

Conclusion

miR-133 was specially sorted into H/R-EPC-exosomes
via YBX-1 to increase fibroblast angiogenesis and
MEndoT. Our findings suggest that miR-133 and
YBX-1 are potential therapeutic targets to improve
myocardial fibrosis.
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