
16374  |     Ecology and Evolution. 2021;11:16374–16386.www.ecolevol.org

 

Received: 18 November 2020  |  Revised: 21 July 2021  |  Accepted: 3 August 2021

DOI: 10.1002/ece3.8044  

A C A D E M I C  P R A C T I C E  I N  E C O L O G Y  A N D  E V O L U T I O N

Bioinspiration as a method of problem- based STEM education: 
A case study with a class structured around the COVID- 19 
crisis

Emilie C. Snell- Rood1  |   Dimitri Smirnoff1,2 |   Hunter Cantrell1 |   Kaila Chapman1 |   
Elizabeth Kirscht1 |   Elizabeth Stretch2

This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Department of Ecology, Evolution and 
Behavior, University of Minnesota- Twin 
Cities, Saint Paul, Minnesota, USA
2Department of Curriculum and Instruction, 
Saint Paul, Minnesota, USA

Correspondence
Emilie C. Snell- Rood, Department of 
Ecology, Evolution and Behavior, University 
of Minnesota- Twin Cities, Saint Paul, 
Minnesota, USA.
Email: emilies@umn.edu

Abstract
Bioinspiration is a promising lens for biology instruction as it allows the instructor to 
focus on current issues, such as the COVID- 19 pandemic. From social distancing to 
oxygen stress, organisms have been tackling pandemic- related problems for millions 
of years. What can we learn from such diverse adaptations in our own applications? 
This review uses a seminar course on the COVID- 19 crisis to illustrate bioinspiration 
as an approach to teaching biology content. At the start of the class, students mind- 
mapped the entire problem; this range of subproblems was used to structure the bi-
ology content throughout the entire class. Students came to individual classes with a 
brainstormed list of biological systems that could serve as inspiration for a particular 
problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). 
After exploration of relevant biology content, discussion returned to the focal prob-
lem. Students dug deeper into the literature in a group project on mask design and 
biological systems relevant to filtration and transparency. This class structure was an 
engaging way for students to learn principles from ecology, evolution, behavior, and 
physiology. Challenges with this course design revolved around the interdisciplinary 
and creative nature of the structure; for instance, the knowledge of the participants 
was often stretched by engineering details. While the present class was focused on 
the COVID- 19 crisis, a course structured through a bioinspired approach can be ap-
plied to other focal problems, or subject areas, giving instructors a powerful method 
to deliver interdisciplinary content in an integrated and inquiry- driven way.
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1  | INTRODUC TION

Over the last two decades, there have been increasing calls for 
science education to use problem-  and inquiry- based approaches 
(Hmelo- Silver, 2004; Norman & Schmidt, 1992; Schmidt et al., 2011), 
while also integrating across the many scientific disciplines that 
are often siloed (Brewer & Smith, 2011; Kelley & Knowles, 2016; 
Stohlmann et al., 2012). These interdisciplinary approaches more ef-
fectively motivate students to learn science concepts, relative to his-
torical “content- for- content sake” approaches (Mustafa et al., 2016). 
In addition, active learning approaches tend to effectively train stu-
dents in critical thinking and science process skills such as literature 
review and information synthesis (Coil et al., 2010; McConnell et al., 
2003; Setiawaty et al., 2018; Walker, 2003). However, within higher 
education, the field is still exploring a range of ways to implement 
problem- , inquiry- , and integration- based approaches, as teaching 
core content is often more straightforward, particularly in the rapid 
switch to online teaching during the COVID- 19 pandemic. In this 
manuscript, we illustrate how “bioinspiration” can be used as a gen-
eral approach to accomplish all of these goals by structuring a class 
around topical problems.

Bioinspiration (or biomimetics) is a problem- solving approach that 
looks to diverse biological traits for inspiration in human applications; 
organisms have been “solving” problems analogous to ours over evo-
lutionary time (Bar- Cohen, 2005; Bhushan, 2009). Examples such as 
mini- drones inspired by insect flight (Floreano & Wood, 2015; Phan 
& Park, 2020), natural product discovery (Dias et al., 2012; Ratcliffe 
et al., 2011), and the naked mole rat as a model in cancer biology 
(Buffenstein, 2008; Zhao et al., 2019) show that we have much to 
learn from the diverse adaptations of the >10 million species on 
earth. Bioinspired approaches are increasingly common in engineer-
ing, chemistry, and architecture and are potentially applicable to any 
field or problem (Snell- Rood, 2016; Wanieck et al., 2017). Biomimetic 
approaches greatly expand the space of potential solutions explored 
when problem- solving (Graeff et al., 2018, 2019; Vincent et al., 
2006), and design solutions are often improved by taking inspiration 
from biological traits (Jacobs et al., 2014; Kennedy & Marting, 2016). 
The nature of biomimetics also makes it a useful way to frame biol-
ogy courses, as it is a problem- based approach to biology content 
(Gardner, 2012; Stevens et al., 2019). Educators can use a biomimetic 
approach to structure inquiry and content around the most pressing 
issue of the day. Problems are abstracted into functional concerns, 
and students explore biological traits and systems that have explored 
similar functional space over evolutionary time (Fayemi et al., 2017).

Here, we detail a case study of using a bioinspired approach to 
structure an undergraduate biology course. Specifically, this case 
study focuses on a summer 2020 class centered on one of the most 
pressing issues at the time— the COVID- 19/SARS- CoV- 2 pandemic. 
Our class “Biomimetic approaches to pandemics” explored how 
bioinspired approaches could broaden the solution space explored 
when solving problems related to COVID- 19. The basic format of the 
class worked well in an online format and was engaging for students. 
This review presents highlights of our process, to demonstrate the 

utility of a biomimetics approach to structuring a biology class, re-
sulting in an integrated, interdisciplinary, and problem- based STEM 
course. We first give an overview of our initial exploration of the 
COVID- 19 crisis through a problem- mapping exercise that we used 
to structure the entire course. Second, we walk through two focal 
problems— respiratory distress and cooperation with public health 
measures— to illustrate how different problems can be matched to 
the biology content one wishes to deliver. Third, we go deeper into 
the problem we chose to explore for our class project (mask design). 
In this review, we hope to not only illustrate our educational pro-
cess but also provide some detail in problem areas where we feel we 
made promising insights. While we are not virologists or epidemiolo-
gists, we hope that some of these ideas could serve as inspiration for 
creative approaches to solving pandemic- related problems during 
this or future outbreaks. We conclude this review by discussing 
some of the broader lessons and challenges in a bioinspired teaching 
format and areas for future work.

2  | ENGAGING STUDENTS AND 
STRUC TURING THE CL A SS:  MAPPING THE 
PANDEMIC PROBLEM SPACE

We started our class by “mind mapping” the COVID- 19 pandemic 
(Davies, 2011; Edwards & Cooper, 2010), with each student tak-
ing a visual approach to exploring how the central problem of the 
class connects to dozens of other problems (Figure 1). The stu-
dents recognized that while the COVID- 19 pandemic stems from 
a single- stranded RNA virus (SARS- CoV- 2), it extends into almost 
every space of science, technology, and society. The COVID- 19 pan-
demic encompasses problems related to addressing the disease in 
patients, including ventilators and antiviral medicines, and those re-
lated to disease spread, such as disinfectants, and social distancing. 
There are problems related to supply chain disruptions in the face 
of lock- down, economic collapse in response to job loss and future 
unknowns, and problems related to childcare, mental health, and 
anxiety (Figure 1). This problem space is vast, which represents an 
opportunity for students to choose problems of individual interest, 
and for instructors to choose motivating problems matched to rel-
evant course content (Table 1).

Mind mapping the pandemic problem space revealed individual 
biases in how people explore problems. Each individual in the class 
mapped the COVID- 19 problem space separately and then com-
pared notes (see Appendices S1). Individual mind maps look very 
different depending on each person's experience with the problem: 
People with small children in their immediate social network high-
lighted many of the challenges of childcare and working from home, 
while those who had to continue in- person work highlighted prob-
lems with enforcing mask mandates in public spaces.

Iterative mind mapping proved useful for further exploring in-
dividual problems. Each individual problem could be broken down 
to individual components that might be more amenable to problem- 
solving. For instance, “toilet paper shortages” was mapped further 
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to liquid absorption, supply chain issues, hoarding and reselling, al-
ternate materials, and questions about why we use toilet paper in 
the first place. Sequential mind mapping illustrates the broader im-
portance of problem analysis in bioinspired approaches, both to de-
termine possible intervention points and to find a range of possible 
biological analogs (Fayemi et al., 2017; Wanieck et al., 2017).

In subsequent classes, we used our overall exploration of the 
COVID- 19 crisis as a lens to explore a range of subfields in biology 
(Table 1). Each class explored both the pandemic and relevant bio-
logical concepts through a bioinspired approach. Individual classes 
focused on a problem related to COVID- 19, as inspired by our mind 
maps. Before class, students start by brainstorming around a biology 

F I G U R E  1   Sample mind mapping of 
the COVID- 19 problem. Sample “mind 
map” of the COVID- 19 problem. Individual 
lines connect ideas in a free- flowing 
brainstorming session (e.g., “X makes me 
think of Y”), rather than any particular 
causal structure. This mind mapping helps 
to identify the many subproblems within a 
larger problem. In comparing the problem 
maps from different students, we also 
see how individual experiences shape the 
perception of high priority problems

Focal COVID problem
Biological functions 
explored

Biological Concepts and disciplines 
studied

Making effective masks Filtration and 
transparency

Adaptation by natural selection, 
tradeoffs, nonadaptive traits, nature of 
biological traits

Toilet paper Liquid absorption Selection in ecological context, biomes, 
abiotic and biotic variables, habitat 
selection, scale, and function

Respiratory distress Oxygen stress/anoxia Macroevolution and convergence, 
independent origins, evolutionary 
constraints, and contingencies

Inflammation Immune responses Diversity of physiological adaptations, 
arms races, and host- parasite 
coevolution

Antiviral medications Viral defenses Gene and protein function, 
understanding molecular variation, 
exploring chemical space

Mental health, anxiety Risk assessment Behavior, cue response systems, 
information, and assessment of 
environment in animal behavior

Following public health 
measures

Cooperation and 
altruism

Frequency dependence, game theory, 
payoff matrices, evolution of behavior

Economic collapse Ecosystem stability Ecosystems, networks of interactions, 
robustness, and resilience in systems 
biology

Note: We used our problem mind mapping exercise (Figure 1) to generate a list of problems related 
to COVID- 19. Aspects of these problems were distilled to biological “functions” that allowed 
analogies with biological traits and systems. Some problems were better matches to relevant 
biological content, which determined the presentation order of problems throughout the course. 
For example, thinking about trait form, function, and morphology is particularly suited to concepts 
related to natural selection and ecology, so related problems (e.g., building a mask or a filter) were 
placed at the start of the course.

TA B L E  1   Overview of course structure
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“function” that allows analogies with the focal problem, for instance, 
using the AskNature database to find systems that filter particles 
or resist infection (Deldin & Schuknecht, 2014, Appendices S1, S2). 
Class time is spent exploring these systems, and the relevant biology 
(Figure 2, Appendices S1, S2), moving through major subdisciplines 
of biology, from evolution and ecology to physiology and behavior 
(see Table 1). We next walk through some of the material from the 
course to illustrate this process.

3  | USING DIFFERENT COVID - 19 
PROBLEMS TO E XPLORE DIFFERENT ARE A S 
OF BIOLOGY

When using a bioinspired approach to a course, the instructor can 
choose the focal problems that best illustrate the biological con-
cepts they wish to deliver (Table 1). To illustrate this idea, we walk 
through the types of content matched to two of the focal problems 
covered in the class— respiratory distress and encouraging the public 
to conform to public health measures. These examples illustrate the 
overall approach to each individual class: analyze the focal problem, 
articulate associated functions that translate to biological analo-
gies, explore relevant biology, and finally reconsider the problem 
(Figure 2).

3.1 | Dealing with low oxygen and inflammation— 
exploring physiology

To use a bioinspired approach, one first needs to explore the focal 
problem in enough detail to match the problem to biological analo-
gies. The idea of “function” provides a bridge between biology and 
design fields such as engineering (Cohen et al., 2014; Lepora et al., 
2013; Norberg, 2002; Thielen et al., 2013; Vincent et al., 2006). 
What “function” are you trying to tackle in a given application and 
what biological systems have evolved, over millions of years, to cope 
with a similar functional challenge? One problem may be associ-
ated with several different functional concerns, each of which may 
suggest different biological systems for study (see Appendices S1, 
S2 for examples). For example, SARS- CoV- 2 infection comes with 
a range of multiple medical challenges, one of the primary being 
low blood oxygen, sometimes presenting without behavioral indi-
cators of oxygen stress (“silent hypoxemia” or hypoxia, Tobin et al., 
2020; Wilkerson et al., 2020). This observation suggests consider-
ing diverse organismal adaptations to cope with low oxygen condi-
tions, whether due to variation in elevation, water temperature, or 
physiological changes such as hibernation. Students came to class 
with their own ideas, often by using the online database AskNature 
(Deldin & Schuknecht, 2014), and we used class time to explore con-
cepts around evolutionary physiology. For example, with respect to 
low oxygen environments, many animals cope through evolutionary 
and physiological changes that affect how hemoglobin in red blood 
cells captures oxygen. For example, some fish survive low oxygen 

conditions with increased hemoglobin binding efficiency (Nilsson & 
Renshaw, 2004), with a greater diversity of hemoglobins in species 
in more variable environments (Baalsrud et al., 2017). There is a huge 
diversity of hemoglobins in birds as well, representing independ-
ent adaptation to high elevation through increased oxygen binding 
(Storz, 2016). Interestingly, human populations at high elevations also 
exhibit diverse adaptations to low oxygen conditions (Beall, 2007; 
Storz, 2010) and have decreased susceptibility to SARS- CoV- 2 
(Arias- Reyes et al., 2020). After considering the diversity of physi-
ological mechanisms to deal with low oxygen, we considered how 
some examples might be more promising than other with respect 
to the focal problem. For instance, some companies are in the early 
stages of blood transfusion treatments using unusual hemoglobins 
to treat COVID- 19 (e.g., from a marine worm, Garraud, 2020; Le Gall 
et al., 2014), similar to related treatments that pack red blood cells 
or saturate cells with oxygen (Geier & Geier, 2020). However, use of 
hemoglobins adapted to low oxygen environments may be limited 
by the ability of these hemoglobins to release oxygen to stressed tis-
sues. Adaptations in human populations seemed to give more imme-
diately feasible ideas for COVID- 19 treatments, such as encouraging 
physiological acclimation to low oxygen conditions (e.g., altitude 
training, Mairbaurl et al., 1986; Saunders et al., 2009; Subudhi 
et al., 2014) or possible use of phytochemical drugs (Biondich & 
Joslin, 2015; Chiang et al., 2015).

If an instructor wishes to highlight more molecular concepts in 
physiology, rather than evolutionary concepts, the relevant exam-
ples and content exploration can be adjusted. For instance, in one 
class, we delved into concepts around molecular signaling pathways 
by talking about naked mole rats. Some subterranean rodents such 
as naked and blind mole rats can survive in 5% oxygen conditions for 
hours, through a number of adaptations, from reductions in metabo-
lism and shifts to anaerobic glycolysis, to induction of unconscious-
ness (Park et al., 2017). A key adaptation in these species involves 
changes to the Nrf2 signaling pathway, which is a key regulator of 
stress responses in mammals. Naked mole rats and other relatively 
longer- lived species have higher Nrf2 signaling, generally achieved 
through reduced degradation of Nrf2 (Lewis et al., 2015; Schmidt 
et al., 2016). After working to understand the details of the signal-
ing pathways and physiology, we returned to the problem— what, if 
anything, do such observations suggest for SARS- CoV- 2 interven-
tions? Targeting the upregulation of this pathway could be feasible 
and, indeed, has already been suggested as a potential therapeutic 
target (McCord et al., 2020). A number of plant chemicals are known 
stimulators of Nrf2 signaling, with beneficial effects when taken 
at low doses (Hybertson et al., 2019; Juge et al., 2007; Mattson & 
Cheng, 2006); interestingly, some act through reduced degrada-
tion of Nrf2, analogous to adaptations in naked mole rats (Zhang 
et al., 2019).

Giving students a degree of agency and choice in structuring a 
course increases engagement (Holmes et al., 2020; Luo et al., 2019; 
Schmidt et al., 2018). In the present course, student– instructor dis-
cussions generated lists of possible biological systems to explore for 
a given problem. For subsequent discussions, students gave input 
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on which ideas they found the most feasible or exciting for future 
exploration and development, which determined the direction of the 
class and the content. For example, in discussing the physiological 
stress of inflammation, the idea of bat immunity came up as a possi-
ble system. The next class was designated as a deeper dive into bat 
immune adaptations, as bats harbor many coronaviruses (Banerjee 
et al., 2019) but rarely show external symptoms in response to these 
diseases (Baker et al., 2013; Hayman, 2019; Mandl et al., 2018). The 
bat immune system has a constitutively expressed innate immune 
response (the interferon pathway, Banerjee et al., 2020; Brook 
et al., 2020), but suppresses inflammation, which can be costly (Ahn 
et al., 2019). This exploration into bat immunity was student- driven, 
as it was not included in the original syllabus, and ended up high-
lighting the importance of depressing the inflammation response in 
treating COVID- 19 (Tay et al., 2020), similar to how bats repress pro- 
inflammatory cytokines (Banerjee et al., 2020; Leyfman et al., 2020; 
Schett et al., 2020).

3.2 | Encouraging cooperation with public health 
policies— exploring behavior

In some cases, the mapping between a focal problem, the associated 
function, and a biological analogy is straightforward, for instance 
in considering physiological adaptations to low oxygen. However, 
the links to biological analogies may be less obvious for other prob-
lems— in such cases, we need to more thoroughly dissect the prob-
lem, as illustrated by our class on cooperation with public health 
recommendations. Many public health measures during pandemics 
require some degree of self- sacrifice for the greater social good. For 
instance, wearing masks comes with some personal discomfort, but 
we need a critical mass of the public to be wearing them (e.g., cloth 
masks with 60% efficacy require 60% of the public to wear masks 
to contain the virus, Tian et al., 2020). How do we encourage co-
operation with these policies? Here, we can turn the problem into 
a cooperation “game” that allows analogies to behavioral ecology. 
Classic game theory highlights the evolutionary challenges of altru-
istic strategies: The temptation to be selfish or “defect” results in 

“cheaters” that benefit when they are rare, but the entire system be-
gins to suffer as they increase in frequency (Doebeli & Hauert, 2005; 
Fehr & Rockenbach, 2004; Perc & Szolnoki, 2010; Smith, 1979). The 
“payoff matrix” affects the relative costs and benefits of coopera-
tion versus more selfish strategies (Doebeli & Hauert, 2005), but 
dynamics change as players in a game meet multiple times and 
make choices about where to hang out (Archetti et al., 2011; Perc 
& Szolnoki, 2010). We used this broad approach to explore whether 
studies of the ecology and evolution of cooperation and mutualism 
(West et al., 2007) could offer novel insights for human cooperation 
with public health measures.

We turned our attention to exploring examples of cooperation 
and mutualism where unrelated individuals cooperate; such exam-
ples are more analogous to the focal problem of cooperating with 
mask mandates than eusocial ants rallying around their maternal 
queen. We explored in more detail one particular example, the mu-
tualistic relationship between cleaner fish and its reef fish clients. 
Cleaner fish pick ectoparasites off client fish, but actually prefer 
to eat client scales or mucous, which is costly to clients (Grutter & 
Bshary, 2003). Clients encourage cooperative behavior by altering 
both the associated benefits and costs, for instance, ending interac-
tions early with uncooperative cleaners, often aggressively chasing 
them away (a cost or punishment, Bshary & Grutter, 2002). Clients 
will also stay longer for more cooperative cleaner fish (a reward or 
benefit, Gingins & Bshary, 2015). The cleaner fish system also high-
lights another mechanism of cooperation: reciprocal altruism, which 
emerges when identifiable individuals have repeated interactions. 
Reciprocal altruism has strong support across theory and many plant 
and animal systems (Kiers et al., 2011; Raihani & Bshary, 2011; West 
et al., 2007). In client fish, this plays out both directly and indirectly. 
Client fish are more likely to return to a cleaning location with co-
operative cleaner fish, but are more likely to change cleaners if they 
had previously been cheated or ignored (Bshary & Schaffer, 2002). 
This cleaner fish system also shows evidence of “indirect” reciproc-
ity, where individuals are more likely to cooperate with individuals 
with a cooperative reputation, and individuals are thus sensitive to 
how a current action affects their reputation: Cleaner fish are more 
likely to cooperate when there is an audience (Pinto et al., 2011) 
and adjust cheating depending on social context, “managing” their 
reputation.

After an exploration of examples of cooperation in unrelated 
individuals, we turned to discussing how such biology could offer 
insights or creative ideas for the focal problem— can we get people to 
wear masks in stores? We first considered how we might encourage 
cooperation by altering the costs and benefits of the payoff matrix 
for one interaction between participants. Here, we noted how some 
theory suggests that rewards for cooperation may have been more 
important in the evolution of cooperation than often appreciated 
(Gingins & Bshary, 2015; Weyl et al., 2010), suggesting that a focus 
on punishing cheaters (Douglas, 2008; Raihani et al., 2012) may be 
less effective in applications to promote cooperation. These studies 
led to discussions how we might increase rewards for mask- wearing, 
such as government incentives to reward masks in stores (e.g., game 

F I G U R E  2   Overview of structure of each individual class. In 
each class, we spent some time discussing the relevant problem 
and extracting relevant “functions” (see Table 1) before exploring 
relevant biology and then reconsidering the problem at the end 
of the class. Did the basic biology offer a new perspective on 
the problem? This framework was developed through ideas from 
both the biomimetic process (Fayemi et al., 2017) and creative 
exploration (Stretch & Roehrig, 2021)
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theory and incentives in vaccinations, Chapman et al., 2012), or pro-
moting masks as fashionable self- expressions (e.g., fitness benefits 
of “trends,” Kokko et al., 2007). We then turned to thinking about in-
terventions that might encourage cooperation related to reciprocity. 
Here we considered what kinds of social behavior manipulation are 
truly ethical: If individuals are more likely to be cooperative if their 
identity is known, do we start requiring individual identification to be 
displayed in public spaces? The students responded: “probably not!” 
Do we build on studies showing increased cooperation when individ-
uals feel they are being watched, by affixing staring eyes to grocery 
store walls (Bateson et al., 2006)? Again, the students responded 
“probably not!” However, this discussion brings up complex debates 
about the ethics of subtle behavioral manipulations through cogni-
tive biases which often seem ethical in the health realm (“nudges,” 
Marteau et al., 2012) but less so in the advertising realm, even if they 
are frequently used in marketing (Jolls et al., 1998; Kahneman, 2003; 
Wilkinson, 2013). Although these latter examples may be less ethical 
or feasible, this line of questioning highlights how exploring a human 
challenge through a biological lens can prompt novel thinking.

4  | CL A SS PROJEC T: DIGGING DEEPER 
INTO MA SKS,  AIR FILTR ATION, AND 
MORPHOLOGIC AL ADAPTATIONS

A major goal of this course was to give students an opportunity to dig 
deeper into biological material, finding relevant literature, critically 
evaluating research findings, and integrating and applying knowl-
edge to new situations. We accomplished this goal through a class 
project, the structure of which we worked out through group discus-
sions. Students had agency in not only the format of the project, but 
also the focal problem— two weeks into the course, they voted on 
the topic they were most interested in exploring in- depth, choosing 
mask design and air filtration. Airborne transmission is a key com-
ponent of the rapid spread of SARS- CoV- 2 (Prather et al., 2020). 
Viral particles suspended in respiratory droplets result in increased 
rates of transmission in indoor spaces (Allen & Marr, 2020). Thus, 
wearing masks and increasing ventilation are often highly effec-
tive control measures (Cheng et al., 2020; Wang, Tian, et al., 2020). 
Coronaviruses are very small (on the order of 0.1 µm in diameter), 
and many materials that effectively block individual viral particles 
also reduce airflow, limiting their utility in masks (Davies et al., 2013; 
Zangmeister et al., 2020). However, many materials can block larger 
respiratory droplets (5– 10 µm), which can reduce disease spread 
(Bourouiba, 2020; Stadnytskyi et al., 2020). Thus, cloth masks are 
recommended for broad use when more effective N95 masks are 
not available. Filtration systems that purify indoor air (e.g., stand- 
alone or HVAC HEPA filters) can filter out viral particles using a 
wider range of materials that are not necessarily breathable (Zhao 
et al., 2020). For instance, the use of HEPA filtration in hospitals can 
cleanse the air of SARS- CoV- 2 particles (McDonald, 2020; Phu et al., 
2020). For our course- long project, we explored whether bioinspi-
ration could offer ideas for the design of more effective, efficient, 

or easy- to- use masks or air filtration systems. We focused on two 
functions— filtration and transparency.

4.1 | Filtration systems

We first explored a range of ways in which “filtration” applies to bio-
logical systems and traits. Many animals use filter- feeding to sepa-
rate food particles from the surrounding air or water. In other cases, 
biological materials that have evolved in one context (e.g., plant fib-
ers) can be used as filters in human applications— in other words, fil-
tration is a function in human applications rather than the evolved 
function of that trait (“bioutilization,” Montana Hoyos & Fiorentino, 
2016). Throughout the project, we went through an iterated series 
of exploration of the biology, starting the first week with an over-
view of filtration systems, and then progressively diving deeper 
as students researched specific systems or traits (see examples in 
Appendices S1). During the last week of class, we invited an engineer 
and fluid mechanic to the course to give feedback on the ideas (rec-
ognized in acknowledgements). Here, we walk through some of the 
filter- feeding systems we explored, and how this deeper research 
gave insights into the design of masks or air purifiers.

While we initially brainstormed a long list of filter feeders, reading 
papers on flamingos, and even considering black fly larvae, we soon 
focused on marine filter feeders due to their incredible diversity, in-
cluding filtration systems matched to very small particles. Marine or-
ganisms show a wide range of filter- feeding mechanisms that span all 
of the primary mechanisms of filtration shown in human- engineered 
filters (and more). Filter- feeding organisms vary in size from micro-
scopic to the largest animals on earth (baleen whales). Animal fil-
tration systems selectively exclude or include particles down to the 
micron level, meaning there are potential applications for blocking 
the aerosol particles relevant in COVID- 19 transmission, in addition 
to potentially the viral particles themselves. How are they filtering 
particles? Students divided their research efforts across species 
that used different filtration mechanisms. Many marine species that 
have been assumed to use sieve- based filtration actually rely on a 
combination of filtration mechanisms, including crossflow filtration 
(i.e., fluid flow parallel to the filter, Conley et al., 2018). Some ma-
rine tunicates (appendicularians) have a two- stage filtration system 
that relies on morphological shape, behavior, and properties of the 
mucous mesh to filter and concentrate particles as small as viruses, 
that are important components of their diet (Conley, Gemmell, 
et al., 2018; Lawrence et al., 2018). Tunicates vary tremendously in 
the structure and morphology of their filtration systems and mu-
cous nets with functional implications for filtration rate, and the size 
and shape of filtered particles size (Sutherland et al, 2010; Conley & 
Sutherland, 2017). While some of the filtration mechanisms overlap 
with those used in industrial filters, in many cases, aspects of the 
biological filters are unique; for instance, filter movements can result 
in selective removal of some particles, a form of filter self- cleaning 
(Conley, Gemmell, et al., 2018). Outside of tunicates, other marine 
organisms also filter in unexpected ways. Manta rays exhibit a novel 
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mechanism termed “ricochet separation” that separates particles 
based on size and prevents filter clogging (Divi et al., 2018), a discov-
ery which has inspired novel industrial filters capable of separating 
nanoparticles (Wang, Xu, et al., 2020). The diversity of marine filtra-
tion systems could potentially inspire creative new directions in the 
design of more effective or longer lasting facemasks or air purifiers; 
we were particularly intrigued by the systems that used combina-
tions of mechanisms, including behavioral manipulations of the filter.

4.2 | Mask transparency

In addition to exploring the primary function of masks (filtration), 
we also identified other challenges associated with masks, such as 
transparency (see examples in Appendices S1). People with hearing 
loss and social communication disorders can have difficulties com-
municating when they cannot see the mouth movements of the oth-
ers in the conversation (Chodosh et al., 2020; Corey et al., 2020), 
an issue advocated by a student in the course from the Speech- 
Language- Hearing Sciences MA program. Creating transparent 
marks is challenging because most existing transparent materials, 
such as glass and plastic, are not breathable and often fog. We con-
sidered whether bioinspired approaches could be used to develop 
novel transparent textiles, specifically a breathable, transparent ma-
terial that is also an effective filter.

Butterflies, and insects more generally, have evolved transpar-
ent wings independently multiple times, often with diverse under-
lying mechanisms (Dushkina et al., 2017; Watson et al., 2017). The 
wings of most butterflies and moths are semi- translucent when wing 
scales are removed, but in some cases, there has been selection on 

transparency to facilitate effective camouflage (Figure 3a, Gomez 
et al., 2021; Johnsen, 2001; McClure et al., 2019). Many of these 
wing structures are additionally hydrophobic, another desired 
characteristic in mask design (El- Atab et al., 2020; Wanasekara & 
Chalivendra, 2011). Our research honed in on one butterfly species 
in particular. The wings of the glasswing butterfly are both antire-
flective and translucent because of randomly dispersed pillar- shaped 
nanostructures (about 4 µm in width) on the wing surface (Figure 3c, 
Pomerantz et al., 2021; Siddique et al., 2015). Creating similarly sized 
and shaped structures on glass reduces reflectivity and increases 
transparency (Diao et al., 2016; Sourakov & Al- Obeidi, 2019), but 
is it possible to use an analogous design to make a breathable fab-
ric more opaque? “Electrospinning” can be used to create fibers as 
small as 2 μm in width and has been applied to breathable fibrous 
materials (Frey, 2008; Xue et al., 2019). Indeed, electrospinning has 
been used to create translucent air filtering materials (Figure 3d; He 
et al., 2020; Xu et al., 2016), suggesting inspiration from butterflies 
could improve on existing designs to create bioinspired transparent 
face masks (Eadie & Ghosh, 2011). These ideas, some of our most 
promising in the end, emerged out of six successive class discussions, 
literature research in preclass assignments, and input from engineers 
who visited the class (and suggested the electrospinning approach).

5  | MOVING FORWARD: APPLYING 
PEDAGOGIC AL SUCCESSES AND 
ADDRESSING CHALLENGES

Over the last several decades, there have been increasing calls 
to revise undergraduate science education to be integrated 

F I G U R E  3   The glasswing butterfly 
as inspiration for transparent face 
masks. (a) The glasswing butterfly (Greta 
oto) relies on transparent wings for 
camouflage in rainforests of Central and 
South America. This transparency stems 
from antireflective surfaces on their 
wing cuticle characterized by small hairs 
(b) interspersed with densely packed 
nanopillars (c). Electrospinning, which has 
already been used to synthesize semi- 
transparent filters (d), could potentially be 
used to develop transparent face masks. 
Image credits: (a) Image courtesy of 
Andrei Sourakov; (b, c) SEMs courtesy of 
Radwan Siddique; (d) reprinted (adapted) 
with permission from (Xu et al. 2016 
Nano Lett). Copyright (2016) American 
Chemical SOCIETY
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across disciplines and focused on inquiry and problem- solving 
(Aikens, 2020; Brewer & Smith, 2011; Norman & Schmidt, 1992; 
Suwono et al., 2018). In this paper, we illustrate one such approach— 
using biomimetics to tackle whatever problem is currently the most 
pressing to students. This approach is engaging because everyone 
(including the instructor) is often consumed with this problem. At 
the same time, this approach makes content from diverse fields, from 
fluid dynamics to molecular biology, immediately relevant. Students 
generally responded positively to the course, but several challenges 
were raised in this pilot iteration of the course (Table 2). We close by 
exploring several general challenges raised by the course and pos-
sible ways forward.

This course highlighted challenges around promoting creative 
exploration of ideas and biological systems. Individual classes were 
structured first around a problem discussion, then an exploration of 
ideas students brainstormed before class, followed by a deeper dive 
into some relevant biology content, and finally a return to the prob-
lem and evaluation of the biological ideas (Figure 2), guided by the 
creativity framework of Stretch and Roehrig (2021). Students were 
encouraged to consider and explore any and all ideas, even ones that 
might initially seem unfeasible or bizarre. This structure was suc-
cessful because students were engaged— they came to class a cre-
ative list of biological systems they had brainstormed (see examples 
in Appendices S1), they were excited to share their ideas, and they 
had an immediate connection to the biology that followed. While 
this biology exploration engaged students’ creativity, it had two as-
sociated primary challenges. First, opening the full creative potential 
of our students stretched the content expertise of the instructors. 
Each week we explored a wide range of biological systems that came 
to mind, and while we could navigate much of the biology ourselves, 
we quickly learned that the primary limitation in moving these ideas 
into applications was relevant expertise. We needed input from bi-
ologists that were intimately familiar with the systems we were dis-
cussing, and designers, engineers, and doctors that could guide the 
next steps of moving an idea to an application. Future iterations of 
such a course would be improved by building teams of biologists and 
engineers (Graeff et al., 2018, 2019; Vincent et al., 2006), although 
guest appearances and email consultation by relevant experts suf-
ficed for our 8- week course.

Second, the assessment of the brainstorming exercises, which 
formed a major basis of the class grade, was challenging. To en-
courage a broad exploration, one needs to make mistakes, embrace 
failure, and not expect every idea to be perfect (the “exploration- 
exploitation tradeoff, Cohen et al., 2007; Gopnik et al., 2017; Jansen 
et al., 2006; Stretch & Roehrig, 2021), so grades were assigned based 
only on assignment completion, not the quality of the ideas. However, 
it is possible that adding more detail to assignment prompts (specif-
ically adding creativity) and developing rubrics for scoring certain 
aspects of creativity (e.g., number of taxonomic groups listed) could 
further promote creative biodiversity exploration. For instance, how 
do we push students beyond their initial biases in creative brain-
storming as they often tend toward biological systems with which 
they are familiar? Further engagement with the STEM creativity field 
would be beneficial and is in progress for future iterations of the 
course (Forthmann et al., 2016; Silvia et al., 2008).

In summary, bioinspired approaches represent a promising 
method of structuring biology courses in a problem- based way 
where disparate biology topics are integrated and immediately rel-
evant. While there are a number of curricula designed around bio-
mimetics (Stevens et al., 2019; Urmann, 2016; Wanieck et al. 2020), 
this case study illustrates how a bioinspired lens on a focal problem 
can be used to deliver biology content (Table 1). For instance, think-
ing about function of morphological traits maps onto discussions 
of adaptation and evolution, while medical applications mapped 
onto aspects of physiology and developmental genetics (Table 1). In 
navigating these topics, we also discussed designing biological ex-
periments, reading primary literature, interpreting phylogenetic re-
lationships, and a number of other topics. An instructor can structure 
content depending on the interests of students in the course and 
the specific focal problem tackled by the class. Several aspects of 
this course design were particularly effective in engaging students, 
including the problem- based approach, giving students agency, and 
ample time for discussion and digging deeper into a project. In clos-
ing, we note that this small summer seminar of four participants pro-
vided a relatively low- stakes way for the instructor to completely 
“flip” a class around bioinspired design, laying the groundwork for 
revision of other, larger enrollment courses, in a similar way and the 
collection of quantitative data to assess impact on students. Our 

TA B L E  2   A sampling of student reactions to the course, both immediately following the course (August 2020) and a year later (June 2021). 
Reactions were paraphrased from course evaluations and postcourse email follow- ups

Strengths Challenges

Engaging content, taught with relevance Grading for brainstorming unclear

Environment for collaboration Recruiting students to interdisciplinary classes

Encourages growth, exploration Teaching engineering to nonmajors

Student agency, choice Lack of laboratory or hands- on experience

Prepared students to approach public health issues through 
bioinspiration

Interdisciplinary nature: what background is required versus reviewed

Small class size (4) optimal for discussion; space for free conversation Larger class would have allowed for broader discussion, more 
perspectives
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current research focuses on a more thorough analysis of a large en-
rollment animal behavior course (180 students) restructured around 
bioinspired design, building on the methods and assignments devel-
oped in this COVID- 19- focused course. Future research questions 
may consider how the bioinspired lens to class design may apply 
to undergraduate versus graduate student audiences, classes with 
and without a hands- on laboratory component, and how building of 
teams with complementary expertise in biology and design may fa-
cilitate learning and problem- solving.
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