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ABSTRACT 

Type VI CRISPR enzymes cleave target RNAs and are widely used for gene regulation, RNA 

tracking, and diagnostics. However, a systematic understanding of their RNA binding specificity 

and cleavage activation is lacking. Here, we describe RNA chip-hybridized association-mapping 

platform (RNA-CHAMP), a massively parallel platform that repurposes next-generation DNA 

sequencing chips to measure the binding affinity for over 10,000 RNA targets containing 

structural perturbations, mismatches, insertions, and deletions relative to the CRISPR RNA 

(crRNA). Deep profiling of Cas13d, a compact and widely used RNA nuclease, reveals that it 

does not require a protospacer flanking sequence (PFS) but is exquisitely sensitive to secondary 

structure within the target RNA. Cas13d binding is strongly penalized by mismatches, insertions, 

and deletions in the distal crRNA-target RNA regions, while alterations in the proximal region 

inhibit nuclease activity without affecting binding. A biophysical model built from these data 

reveals that target recognition begins at the distal end of unstructured target RNAs and proceeds 

to the proximal end. Using this model, we designed a series of partially mismatched guide RNAs 

that modulate nuclease activity to detect single nucleotide polymorphisms (SNPs) in circulating 

SARS-CoV-2 variants. This work describes the key determinants of RNA targeting by a type VI 

CRISPR enzyme to improve CRISPR diagnostics and in vivo RNA editing. More broadly, RNA-

CHAMP provides a quantitative platform for systematically measuring protein-RNA 

interactions.  
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INTRODUCTION 

Class 2 CRISPR-Cas systems are useful for genetic engineering because they target DNA 

and/or RNA with a single effector protein1. Among class 2 enzymes, Cas13 subtypes exclusively 

target and cleave RNA2–9. Cas13s process their own CRISPR-RNAs (crRNAs), bind a target 

RNA that is complementary to the crRNA, and cleave the target RNA (cis-cleavage) and other 

RNA molecules via a non-specific RNase activity (trans-cleavage)10,11. These RNase activities 

are catalyzed by two Cas13-encoded higher eukaryotes and prokaryotes nucleotide-binding 

(HEPN) domains which can be mutagenically inactivated to convert Cas13 into an RNA-binding 

module10,12–14. Due to these activities, Cas13 variants are broadly used in vitro and in cells5,15–17. 

For example, Cas13d—one of the most compact and biochemically active Cas13 enzymes—can 

efficiently knockdown RNA in mammalian cells and animal models5,18–25. Moreover, Cas13d 

fusions are used for RNA tracking, editing, modification, and splicing regulation5,7,26,27. Cas13d 

has also been applied for nucleic acid detection in CRISPR diagnostics28. However, the binding 

and cleavage specificity of Cas13d on partially matched target RNAs has not been fully 

characterized, limiting our understanding and biotechnological applications of this enzyme. 

Biochemical studies have reported various targeting specificities across Cas13-family 

enzymes. Some enzymes require a protospacer flanking sequence (PFS)—a specific sequence 

adjacent to the target—for RNA cleavage. For example, LshCas13a prefers a non-G 3’-PFS, 

whereas BzCas13b favors non-G 5’-PFS and 3’PFS of NNA or NAN2,3,6. However, LwaCas13a, 

PspCas13b, and RfxCas13d (CasRx) may not require any PFS at all2,4,5,7,13,16,17. The cleavage 

activity of LwaCas13a, LshCas13a, and LbuCas13a is sensitive to mismatches in the central 

region of crRNA-target RNA duplex2,16,29,30. A large-scale Cas13d screen in mammalian cells 

also concluded that a distal spacer region (positions 15-21) is largely intolerant to mismatches31. 

These experiments primarily use Cas13 cleavage as an output, conflating binding, activation, and 

cleavage into a single reporter. Interpreting studies across different experimental conditions and 

target RNAs is especially challenging because RNA structure can change drastically even with a 

single nucleotide substitution and may also impact both binding and cleavage. A complete 

understanding of off-target activity requires the biochemical separation of binding and cleavage 

across a defined set of structural target RNA and sequence perturbations.  

Here, we describe RNA-CHAMP (chip-hybridized association-mapping platform) for 

massively parallel profiling of RNA-protein interactions on upcycled next-generation DNA 
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sequencing chips. Using RNA-CHAMP, we characterize how target RNA alterations impact the 

RNA binding by Cas13d. Contrary to other Cas13-family enzymes, Cas13d does not have a 

strong PFS preference. However, nucleotide substitutions that increase the overall target RNA 

secondary structure profoundly decrease the binding affinity. Mismatches and intramolecular 

basepairing in the distal region of the target RNA strongly decrease Cas13d binding. 

Surprisingly, mismatches in the proximal region of the target do not affect binding but inhibit 

nuclease activity. A series of biophysical models of increasing complexity shed insights into the 

mechanism of Cas13d binding. Together, our results and model suggest that Cas13d initially 

recognizes the target RNA in the solvent-exposed distal spacer region, followed by RNA duplex 

formation towards the target RNA in the proximal region. Structural elements in the distal 

segment impede Cas13d binding. Using these insights, we design a series of partially 

mismatched crRNAs to detect single nucleotide polymorphisms (SNPs) in circulating SARS-

CoV-2 variants. These results will guide future RNA editing and CRISPR diagnostics 

applications. More broadly, RNA-CHAMP will enable high-throughput mapping of protein-

RNA interactions in diverse cellular processes. 

 

RESULTS 

RNA-CHAMP measures protein-RNA interactions on sequenced Illumina chips 

RNA-CHAMP repurposes Illumina next-generation sequencing (NGS) chips to quantify 

millions of protein-RNA interactions (Fig. 1A). RNA molecules are transcribed in situ from a 

template DNA library that has been sequenced using an Illumina MiSeq instrument. We 

designed the DNA library with the T7 RNA polymerase (RNAP) promoter, a variable region of 

interest, and the RNAP-stalling terB DNA sequence32,33. This DNA sequence is recognized by 

Tus, a bacterial protein that blocks T7 RNAP translocation34,35. The identity and physical 

coordinates of each DNA cluster are determined during next-generation sequencing (NGS). After 

sequencing, the chip is regenerated to remove leftover fluorescent nucleotides and resynthesize 

the double-stranded (ds) DNA36. Tus is then added to the chip to stall T7 RNAP. In vitro 

transcription and subsequent stalling of T7 RNAP tethers the transcript to its DNA template. 

We first assayed the efficiency of RNA stalling in MiSeq chips. To confirm that Tus 

recognizes terB-encoding DNA clusters, we purified FLAG-epitope labeled Tus and 

fluorescently labeled it with ATTO488-conjugated anti-Flag antibody37 (Fig. S1A). We 
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sequenced a library that included DNAs with and without the terB sequence.  Over 90% of terB-

encoding DNA clusters co-localized with fluorescent Tus (Fig. S1A). The remaining terB-

encoding clusters could not be resolved by our image processing software, usually due to the 

spatial overlap of two or more clusters. Importantly, Tus did not bind clusters that lacked terB. 

All downstream analysis was conducted on terB-containing DNA clusters. To confirm that 

transcripts are stably retained after in vitro transcription (IVT), they were hybridized with a 

complementary ATTO647N-labeled oligonucleotide in situ (Fig. S1B). The chip also included 

DNA clusters with scrambled T7 RNAP promoters as negative controls. We observed an RNA 

signal from ~90% of promoter-containing clusters, but not from scrambled promoter clusters 

(Fig. S1B). These results demonstrate that RNA-CHAMP can generate libraries of user-defined 

RNA molecules on repurposed MiSeq chips.  

Next, we characterized the specificity and off-target RNA binding of Eubacterium 

siraeum (Es) Cas13d, a prototypical member of the CRISPR RNA-guided RNA nucleases4,5. We 

purified nuclease-dead EsCas13d with an N-terminal SNAP-tag and fluorescently labeled it with 

SNAP-Surface-488 (hereafter referred to as “dCas13d”; Fig. S1C). The ribonucleoprotein (RNP) 

complex was reconstituted to 100% homogeneity by incubating dCas13d with a 4-fold excess of 

the crRNA followed by size exclusion chromatography. Native gel electrophoresis confirmed 

complete RNP formation (Fig. S1D). This procedure was repeated for RNPs with different 

crRNAs and used in all subsequent experiments. The SNAP-tag did not alter the protein’s RNA-

binding affinity, as measured via Biolayer Interferometry (BLI) (Fig. S1E).  

Type VI CRISPR-Cas nucleases recognize a protospacer-flanking sequence (PFS) that is 

immediately adjacent to the 5’ or 3’ of the target RNA2–7. To test whether EsCas13d is sensitive 

to the PFS, we included three randomized bases on both the 5’ and 3’ of the matched target 

sequence. In addition, the target RNA library included up to two mismatches, insertions, or 

deletions relative to the crRNA (Fig. 1B & Supplemental File 1). To confirm that our findings 

are generalizable across targets, we also prepared a second library with a different target RNA 

sequence but identical design characteristics (Figs. S3 & S4). We sequenced both RNA libraries 

to ensure >10 DNA clusters for all library members (Fig. 1B, right). We also included unrelated 

DNA sequences as controls or fiducial markers for downstream image analysis and spatial 

registration. After sequencing, the MiSeq chip was regenerated and transcribed with T7 RNAP 

for downstream experiments.  
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Transcribed libraries were incubated with increasing concentrations of dCas13d (Figs. 

1C, D). Clusters with T7 promoters showed dCas13d concentration-dependent increases in 

fluorescence intensities, whereas scrambled promoters showed no dCas13d binding (Fig. 1C). 

The fluorescent intensities of clusters across all concentrations were background-subtracted and 

fit with a Hill equation without cooperativity to determine the apparent binding affinity (ABA) 

(Fig. 1D and Methods)36,38. To directly compare the relative binding affinity across the entire 

library, we calculated the change in the binding affinity (ΔABA) as the natural logarithm of the 

matched target affinity divided by partially matched RNA library members (see Methods). Two 

biological replicates showed excellent reproducibility across the entire dynamic range of binding 

affinities (Fig. 1E). In partially matched libraries, we measured the binding affinities for 3,893 

sequences from the target library out of 4,936 total members (Fig. 1F). The remaining target 

RNA sequences had binding affinities or fluorescent signals that were below our detection limit. 

Using BLI, we validated a subset of 16 RNA targets across the entire dynamic range of the 

RNA-CHAMP experiments, including sequences with mutations in the target RNA as well as the 

PFS (Fig. S2). ABAs calculated from BLI measurements were in excellent agreement with the 

sequences from our library, indicating that RNA-CHAMP accurately captures the relative 

affinities of dCas13d to its target RNA sequences (Pearson’s r = 0.89; Fig. 1G, S2). Moreover, 

the BLI analysis indicates that the ∆ABA is dominated by kon, likely because the target RNA-

crRNA duplex is extremely stable after hybridization (Table S1). We conclude that RNA-

CHAMP is a quantitative platform for massively parallel protein-RNA interaction profiling. 

 

Cas13d requires a partially unstructured target RNA 

We measured dCas13d binding affinity with a PFS library consisting of three random 

nucleotides on the 5’ and 3’ end of the 22 nt matched target sequence (target #1) (Fig. 2). We 

measured the ∆ABA for 1457 PFS combinations. The remaining sequences were below our 

detection threshold. Although dCas13d exhibited a ~3-fold difference in ∆ABAs across the 

entire PFS dataset, it did not have a strong PFS preference (Fig. 2A). We observed a similar 

result in a second target (target #2) library but with a slight preference for non-G 3’-PFS at 

position 1 (Fig. S3). Combining the top 25% highest ABA binding sequences in both targets 

confirm that Cas13d has a weak preference for the 3’-PFS (Fig. S3D). This preference, however, 

only partially explains the wide range of ∆ABAs for these datasets. 
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We reasoned that the target RNA secondary structure can regulate Cas13d binding29,31,39. 

When inspecting both high- and low-affinity target RNAs, we observed that dCas13d prefers 

target RNAs that are not predicted to be basepaired in the distal regions (positions 11-22) (Figs. 

2A-C & S3A, B)40. For example, the 5’-PFS GUA forms a stem with the 5’ constant region and 

exposed positions 19-22, which resulted in ~2-fold stronger dCas13d binding than 5’-PFS UAA 

(Fig. 2A, B). Similarly, 3’-PFS GCU forms a stem with the 5’ constant region and exposed 

position 14-20. These exposed distal nucleotides in 3’-PFS GCU led to a ~2-fold increase in 

dCas13d binding affinity relative to 3’-PFS UGG (Fig. 2A, C). BLI measurements 

independently validated these observations (Fig. 2D). This also confirms that low-affinity PFSs 

have a similar off-rate (kd), but slower on-rates (ka) than high-affinity PFSs (Fig. 2D, Table S1). 

These results highlight that RNA structure regulates Cas13d access to the matched target RNA. 

To determine how the local target RNA structure affects Cas13d binding, we computed 

the number of predicted basepairs in its proximal (positions 1-11) and distal (positions 12-22) 

regions. Basepairs can form with the RNA outside the target, or within the target itself. For 

example, the 3’-GCU PFS sequence in Figure 2C has three proximal and eight distal basepairs, 

whereas the 3’-UGG PFS has nine proximal and six distal basepairs. Increased basepairing in the 

distal region of the target RNA decreased the ∆ABA. In contrast, no statically significant trend 

was identified between the number of basepairs and the ∆ABA in the proximal region (Fig. 2E, 

S3C). Cas13d prefers to engage the distal end of the target RNA first; this region must remain 

partially unstructured for efficient binding (see Discussion). Taken together, we conclude that 

Cas13d does not have a PFS requirement but prefers to bind target RNAs with unpaired distal 

nucleotides. 

 

Cas13d is sensitive to mismatches in the distal region of the target RNA 

To determine how Cas13d binds off-target RNAs that resemble the target sequence, we 

constructed a library comprised of 66 single mismatches, 2079 double mismatches, and 2439 

insertions & deletions relative to the crRNA within the 22-nt target sequence (target #1) (see Fig. 

1B). For all experiments, the 5’- and 3’-PFS remained constant. Of the 4936 library members, 

we measured ∆ABAs for 3893 target RNAs. 1043 sequences didn’t significantly change the 

dCas13d fluorescent signal, even at the highest RNP concentrations. Figure 3A summarizes two 

biological replicates of the ∆ABA for all possible single mismatches. We also measured ∆ABAs 
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across a similarly designed library but with different target crRNA sequences (target #3) (Fig. 

S4). The binding trends were broadly the same across these two libraries. 

We first analyzed the impact of a single mismatch between the target and crRNA (Fig. 

3A). Mismatches at positions 13-22 significantly decreased the ∆ABA. In contrast, single 

mismatches at positions 1-12 had little to no effect on binding compared to the matched target 

(Fig. 3A). The identity of the mismatch at the same position led to profoundly different 

outcomes. For example, a C21U substitution has a similar ∆ABA to the matched target, but 

binding was virtually undetectable with C21G. The C21U substituted is predicted to match the 

structure of the matched target (Fig. 3D, middle). Moreover, C21U creates a G-U wobble 

basepair with the crRNA, which yields a similar binding affinity to the matched target. C21G, in 

contrast, creates additional intra-molecular basepairs at positions 19-21 (Fig. 3D, top). In a 

dataset with a different crRNA-target pair, we saw a similar but slightly broader sensitivity 

region to mismatches at positions 9-20 (Fig. S4A, B). We compared our binding results to a 

dataset of RfxCas13d RNA cleavage activity reported in mammalian cells (Fig. 3B)31. Because 

this dataset used different target RNA sequences, we compared the mean ∆ABA from all three 

mismatches across two targets to the mean cleavage activity at each position along the RNA 

target. RNA knockdown efficiency in mammalian cells is reduced when mismatches are in the 

distal position, analogously to our binding data (Fig. 3B). Overall, Cas13d can tolerate G-U 

wobble basepairs and shows a strong sensitivity to distal mismatches. 

Next, we analyzed the impact of two mismatches on Cas13d binding affinity (Fig. 3C). 

Binding was largely unaffected if both mismatches occurred in positions 1-12 (dark blue squares 

in Fig. 3C). We observed multiple instances where the RNA structure drastically changed the 

∆ABA. Such sequences appear as “stripes” of strong color in Fig. 3C. For example, C21U with 

an additional substitution (highlighted in dotted line Fig. 3C) does not affect the ∆ABA 

compared to the matched target. However, a second mismatch (A20G) in addition to C21U 

ablates dCas13d binding due to increased basepairing in the distal region of the target RNA (Fig. 

3C, D). Overall, we observed that Cas13d prefers unpaired distal RNA sequences. We also 

observed a strong dependence on RNA structure with the second RNA library (target #3). This 

target RNA is highly folded, with only bases 20-22 not participating in intramolecular 

basepairing, reducing overall Cas13d affinity (Fig. S4B, C). For this RNA structure, some 

substitutions (e.g., U2A, G4U) relax the proximal to center region of the target RNA (positions 
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1-13) structure and result in an increased binding affinity relative to the matched target (Fig. 

S4C). Cas13d binary structures suggest that positions 4-8 and 14-20 of the crRNA are solvent 

exposed and accessible to the environment13,14. We speculate that the center exposed region 

likely contributes to the increased binding affinity. In sum, local RNA structure dominates 

Cas13d binding affinity. The distal segment of the target RNA must remain partially unpaired for 

high-affinity binding. 

dCas13d retains a high affinity for targets with proximal insertions or deletions (Figs. S5, 

S6). However, insertions and deletions at the distal side of the target RNA on both targets were 

not tolerated (Fig. S5, S6). We also observed a strong effect from RNA secondary structure. For 

example, inserting a C between positions 19 and 20 reduces the predicted basepairing at bases 

13-20, which increases the ∆ABA relative to the matched target (Fig. S5B). A G-insertion at the 

same position leads to undetectably low binding due to new basepairs formed in the distal side of 

the target RNA (Fig. S5B). We observed similar effects of RNA structure on binding affinity in a 

second RNA target library (target #3) (Fig. S6A, B). A C-insertion at position 3 exposes the 

proximal region that retains similar affinity to the matched target, while a U-insertion increases 

basepairing and results in undetectable binding. Taken together, these results again show that 

Cas13d binding is sensitive to distal alterations and local secondary structure. We speculate that 

Cas13d has a distal seed region and initiates crRNA-target RNA duplexes starting primarily from 

the distal region (see Discussion). 

 

Target RNA basepairing is a quantitative predictor for Cas13d binding affinity 

We developed a series of linear regression models of increasing complexity to 

quantitatively understand how mismatches and RNA structure affect Cas13d binding (Fig. 4A). 

Unlike machine learning approaches (also considered below), these models can elucidate the 

mechanism of Cas13d binding to partially matched targets. The simplest model (Model I) assigns 

a position-specific penalty for each intramolecular basepair in the predicted target RNA structure 

(see Methods)40. This model requires a total of 22 adjustable parameters, one for each nucleotide 

along the target RNA. In Model II, we add the predicted minimum free energy (MFE) of the 

entire 73-nt transcript RNA to capture the overall secondary structure. Model III encodes 

sequence changes relative to the matched target using a relative encoding strategy (see Methods 

and Fig. S7). Model IV adds the target RNA’s MFE as another parameter to the relative 
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encoding. Model V combines the basepairing penalty and relative encoding. Finally, Model VI 

includes all three components: basepairing penalty, relative encoding, and the MFE (Figs. 4B, 

C). We trained each model on half of 4,862 partially matched target sequences across two RNA 

targets (targets #1 & #3). The resulting model was tested on the withheld half of the sequences in 

our datasets. After fitting the data, each model’s performance was evaluated by Pearson 

correlation and information loss via Akaike information criterion (AIC) (Figs. 4B, C)41. 

Model I, which only considers intramolecular target RNA basepairing within the 22 nt 

target sequence result in a Pearson’s r = 0.51. Adding the MFE—a measure of the overall 

structural stability—only weakly improved the correlation and AIC, indicating that local RNA 

structure is more important than its global stability. Relative encoding has a lower AIC and a 

Pearson’s r = 0.65, performing better than the structure-only model. Finally, combining 

structural features with relative encoding (Models V & VI) improves both the AIC and Pearson’s 

r to 0.75. Adding the MFE (model VI) slightly improved the AIC, indicating that position-

specific mismatches and intramolecular basepairing propensity are sufficient to describe most of 

the variance in the ABAs. (Figs. 4B, C). We also trained a convolutional neural network 

machine learning (ML) model on the data (Fig. S7). Despite having a much larger number of 

adjustable parameters, the ML model is only marginally better than model VI (Pearson’s r = 

0.77). Since the ML model’s parameters are not easily interpretable, it doesn’t reveal the 

mechanisms of RNA binding. Therefore, we dissect Cas13d binding affinities using Model VI 

below. 

We first compared the average penalty for mismatches and indels along the 22 nt target 

sequence (Fig. 4E, top). Cas13d binding is heavily penalized with mismatches or indels at 

positions 13-22 along the target RNA. In contrast, mismatches at positions 1-12 only minimally 

decreased the ∆ABA. Likewise, basepairing within the target RNA nucleotides 14-22 reduces the 

∆ABA and is heavily penalized by the model (Fig. 4E, bottom). Baspairing within positions 1-

13 slightly reduced the ∆ABA in the model. Based on these results, we conclude that distal 

positions 12-22 of the crRNA-target RNA duplex act as an internal “seed” where Cas13d 

initiates target RNA recognition (see Discussion).  

 

Proximal mismatches suppress Cas13d’s nuclease activity 
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Next, we tested how mismatches affect Cas13d’s cleavage activity. We measured the 

cleavage rates of nine mismatched target RNAs that have also been assayed via RNA-CHAMP 

and BLI (Fig. 1G). Time-dependent cleavage of a 6-carboxyfluorescein (6-FAM)-quencher RNA 

can be followed via an increase in the FAM signal after the fluorophore is released from the 

quencher (Fig. 5A)28. The cleavage rate is monitored via the initial slope of the time-dependent 

fluorescent signal. Cleavage rates were generally correlated with ∆ABAs, with three notable 

outliers. Proximal mismatches C2G, C4A, and C7A did not impact RNA binding but only 

weakly cleaved the reporter RNA. In contrast, distal mismatches decrease both the binding and 

cleavage rates (Fig. 5B-D). We hypothesize that mismatches at proximal positions disrupt the 

protein-RNA interface required for activation of the HEPN domain. 

Cas13d’s mismatch sensitivity can be exploited to rationally design assays that detect 

single nucleotide polymorphisms (SNPs) in a target RNA. As a proof of principle, we positioned 

the SNP in the crRNA-target RNA duplex to differentiate between two SARS-CoV-2 variants of 

concern (VOC) (Fig. 5E). Here, the matched target is from the spike gene of the original 

(“Wuhan”) SARS-CoV-2, but harbors a single G to A substituting (D950N in amino acid 

sequence) in the position 1 and 17 in the Delta VOC. We designed two crRNAs that position this 

single nucleotide polymorphism (SNP) within a sensitive region of Cas13d activity, thereby 

reducing Cas13d cleavage ~5-fold for the Delta VOC RNA (Figs. 5F, G)4,5,28. This proof-of-

principle demonstrates that Cas13d-based diagnostics can be used to distinguish between SNPs 

by precisely positioning the expected mismatched positions relative to the crRNA.  

 

DISCUSSION 

RNA-CHAMP is a massively parallel platform for probing protein-RNA interactions on 

used NGS chips. Unlike earlier approaches, CHAMP does not modify any Illumina hardware 

and is compatible with modern sequencers and chip configurations32,33,42–44. Imaging 

biomolecules on upcycled NGS chips can be adapted by any laboratory with a commercial 

fluorescence microscope that is capable of either TIR- or epi-illumination and a wide-field 

camera36,38,52. In addition to profiling protein-DNA and protein-RNA interactions, related 

methods have been adapted for peptide display and other imaging applications53–55. We envision 

that the high optical quality and surface passivation of commercial Illumina chips will extend to 

massively parallel single-molecule imaging.  
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Using RNA-CHAMP and quantitative modeling, we show that Cas13d has a “seed 

region” that prefers a relaxed structure at the distal end of the target RNA (Fig. 6). This region is 

analogous—but not functionally identical—to the PAM-adjacent seed found in Cas9 and DNA-

binding CRISPR enzymes56–60. The impact of the Cas13d seed is especially profound when the 

target RNA is perfectly matched with the crRNA. Strong intramolecular basepairing due to 

changes in the PFS reduces Cas13d binding by over 3-fold relative to a perfectly matched target. 

Our results highlight that future studies must also consider how the target RNA structure changes 

enzyme activity. Mismatches can increase the binding affinity when they coincidentally relax 

intramolecular basepairing within the target. By separating the effect of RNA structure on 

binding and cleavage, our results explain prior observations that minimal secondary structure in 

the target RNA correlates with higher cleavage activity in bacterial and mammalian cells4,29,31,39.  

We separately dissect RNA binding and cleavage to reveal that a subset of mismatched 

sequences can bind with high affinity but fail to activate the nuclease domain (Fig. 6). Cas13d 

requires basepairing in positions 1-6 to activate its nuclease activity. We leverage this sensitivity 

to develop guides that can discriminate between circulating SARS-CoV-2 variants. Similarly, 

LbuCas13a positions 5-8 are critical for cleavage but not binding30. This may act as an additional 

mechanism to suppress nuclease activation and subsequent cell death in prokaryotic hosts. 

Mismatch-dependent cleavage inactivation may be a universal feature of type VI effectors. 

We conclude that Cas13d binding and nuclease activation are governed by distinct 

spacer-target regions. Mismatches and structural elements in the distal region inhibit binding, 

whereas proximal mismatches block nuclease activation. These effects, along with the 

biophysical models developed here, can be selectively used to fine-tune knock-down efficiency 

in cells by programming mismatches along the crRNA-target RNA duplex. A similar approach 

has been used to fine-tune CRISPRi with nuclease-dead Cas9 in mammalian cells61. In addition, 

a complete understanding of Cas13d binding and activation can be used for sensitive SNP 

detection in CRISPR diagnostics (Fig. 5)15. The structural basis for type VI nuclease activation 

and the implications for gene editing and prokaryotic immunity are exciting areas for future 

research. 
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SUPPORTING INFORMATION 

This article contains Supplemental Figures S1-S7 and Supplemental Tables S1-S3, Supplemental 

Methods, and a Supplemental Data file. Source code associated with this work is available on 

GitHub: https://github.com/finkelsteinlab/RNA-CHAMP. 
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FIGURE CAPTIONS 

Figure 1. Massively parallel protein-RNA profiling via RNA-CHAMP. 

(A) RNA-CHAMP workflow. DNA is regenerated on the surface of a sequenced MiSeq chip and 

is transcribed with T7 RNA polymerase (RNAP). Tus retains T7 RNAP and the associated 

transcript on the DNA. Fluorescent Cas13d is incubated in the chip and the chip surface is 

imaged.  

(B) Top: Schematic of the RNA library. Spacer sequences (orange) include Illumina primer 

annealing sites and the T7 RNAP promoter. The 22-nucleotide target RNA (blue) is flanked on 

both ends by three random nucleotides (PFS, gray). Bottom: Summary of the unique DNA 

sequences in the synthetic library (right), and the number of clusters observed via NGS for each 

unique library member (left). 

(C) Fluorescent images of the chip surface after incubating with increasing Cas13d 

concentrations. White circles: library clusters. Red circles: scrambled promoters that cannot 

produce RNA. Orange circles: fiducial markers used for image alignment. 

(D) Quantification of fluorescent intensities for the indicated mismatch sequences. For example, 

U2A indicates a U to A substitution at the second position in the target RNA. Solid lines are fit 

to a hyperbolic function. Data are shown as median ± S.D. from all cluster intensities (n > 10). 

(E) Correlation of two independent RNA-CHAMP experiments. Dashed lines denote the limit of 

detection. Pearson's r = 0.97. 

(F) Rank-ordered graph of the ∆ABA for ~4,000 library members. The dashed line represents the 

ΔABA of the matched target (MT). Sequences below our detection limit are omitted. 

(G) Correlation of the ΔABA and biolayer interferometry (BLI)-determined binding affinities. 

Error bars are the standard deviation of ΔABA (RNA-CHAMP) and fit 95% confidence interval 

(BLI) (>10 clusters for RNA-CHAMP, three concentrations for BLI). The dashed line is the 

linear fit of data points. Pearson's r = 0.89. 

 

Figure 2. Target RNA structure is a strong determinant of Cas13d binding affinity. 

(A) Top: Schematic of the target RNA library. The target RNA is perfectly matched to the 

crRNA. Bottom: Normalized ΔABAs for the 5’ PFS and 3’ PFS. In the plot, each block in the 

heat map is the mean of all detectable sequences with that 5’ PFS (left) and 3’ PFS (right). All 

sequences were normalized to the scale of zero to 1 for easy comparison between targets.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534188
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

(B) Secondary structure predictions of two illustrative examples for 5’ PFS. Left: a low-affinity 

target RNA (5’-UAA). Right: a high-affinity target RNA (5’-GUA). The PFSs are boxed in blue 

and black in (A). 

(C) Predicted secondary structure of a low-affinity PFS (3’-UGG; left), and a high-affinity PFS 

(3’-GCU; right). The PFSs are boxed in green and red in (A). 

(D) BLI curves of the highlighted PFS sequences in (B) and (C). Grey lines are experimental 

curves. Colored lines are the global fit to a 1:1 binding model. 

(E) Normalized ΔABA of PFS sequences grouped by their base pairing count within the target 

region. Graph of the base pairing count in positions 12-22 (Left) and 1-11(Right). Error bars are 

the standard deviation of normalized ΔABA. Swarm plots are used when the number of 

sequences is less than 20. 

 

Figure 3. Cas13d binding is sensitive to mismatches in the 5’-region of the target RNA. 

(A) Summary of single mismatch-dependent changes in the ∆ABA for two biological replicates. 

Upper dashed line: matched target ∆ABA, lower dashed line: RNA-CHAMP detection limit. 

(B) Comparison of ∆ABA and in vivo cleavage of a reporter gene (data adapted from 31). For 

RNA-CHAMP, all three possible mismatches were averaged at each position along the target 

RNA. 

(C) Normalized ∆ABAs of all double mismatched sequences normalized to the matched target. 

Inset: blowup of all possible mismatches at target positions A20 & C21.  

(D) Secondary structure predictions of three illustrative examples. Top: C21G. Middle: C21U. 

Bottom: C21U, A20G. The mismatches are boxed. 

 

Figure 4. Modeling Cas13d binding. 

(A) Schematic of the three components of our quantitative Cas13d binding models. Relative 

encoding is the difference between a given sequence and the matched target sequence. The 

predicted minimum free energy (MFE) of a target RNA is generated by ViennaRNA 2.040. The 

number of basepairs the counts of the intramolecular RNA base pair in the target region. 

(B) Venn diagram of Pearson's r correlation coefficients from three main components. 

Correlation between the measured and predicted data are shown in the Venn diagram. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.27.534188doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.27.534188
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

(C) Akaike information criterion (AIC) of the six models used in this study. ΔAIC is the 

difference between model I-V and model VI. 

(D) Correlation between the measured and predicted normalized ΔABAs from model VI. 

Pearson's r = 0.77. 

(E) Weight penalty of all alterations (mismatches, insertions, and deletions) in model VI. 

 

Figure 5. Proximal mismatches limit Cas13d cleavage activity. 

(A) Schematic of the collateral cleavage assay. 

(B) Fluorescent cleavage time courses for matched target and nine mismatched target RNAs. 

Blue lines are distal mismatched sequences (positions 12-22). Red lines are proximal 

mismatched sequences (positions 1-11). 

(C) Initial slopes of the traces in (B). Slopes are calculated by the fluorescence changes during 

the first 20 minutes of the cleavage reaction. Data are shown as mean and S.D. from two 

replicates. 

(D) Correlation of the cleavage slope with binding affinity (∆ABA). A subset of target RNAs 

retain strong binding but are cleavage-inactive. Data are shown in mean ± S.D. from two 

cleavage reactions (x-axis). 

(E) Schematic of mismatch-defined differentiation between SARS-CoV-2 variants of concern 

(VOC).  

(F) Fluorescent cleavage time courses for SARS-CoV-2 Wuhan and Delta VOCs.  

(G) The initial slope of the trace in (F). Slopes are calculated by the fluorescence changes during 

the first 20 minutes of the cleavage reaction. Data are shown as mean and S.D. from three 

replicates. 

 

Figure 6. Cas13d binding and nuclease activation follow distinct rules. 

Cas13d binding is penalized by distal RNA structures and mismatches with the crRNA. After 

initial distal recognition, the RNA duplex forms outward from the distal position. A mismatch in 

the proximal region fails to activate the nuclease activity, leading to a catalytically inactive 

enzyme. Matched target sequences that form a complete RNA duplex activate the nuclease 

activity. 
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Figure 3 
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