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Changes are currently being made to winemaking processes to reduce chemical inputs
[particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast
growth and fungal diversity were investigated in merlot during the prefermentary stages
of a winemaking process without addition of SO2. Different factors were considered,
in a two-year study: vintage, maturity level and bioprotection by the adding yeast
as an alternative to SO2. The population of the target species was monitored by
quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S
rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration
process was highlighted. Maturity level played a significant role in yeast and fungal
abundance, which was lower at advanced maturity, while vintage had a strong impact
on Hanseniaspora spp. population level and abundance. The presence of SO2 altered
the abundance of yeast and filamentous fungi, but not their nature. The absence of
sulfiting led to an unexpected reduction in diversity compared to the presence of SO2,
which might result from the occupation of the niche by certain dominant species, namely
Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast
resulted in a decrease in the abundance of filamentous fungi generally associated with a
decline in grape must quality. Lower abundance and niche occupation by bioprotection
agents were observed at the overripened stage, thus suggesting that doses applied
should be reconsidered at advanced maturity. Our study confirmed the bioprotective
role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification
without sulfites.
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INTRODUCTION

Grape must contains a number of microorganisms: yeast, bacteria
and filamentous fungi (Barata et al., 2012). Various parameters
have been shown to impact grape must microbial diversity, such
as the farming system (Comitini and Ciani, 2008; Martins et al.,
2014; Grangeteau et al., 2017; Agarbati et al., 2019), vintage
(Grangeteau et al., 2017), geographical area (Bokulich et al.,
2014), cultivar (Fleet, 2008; Zhang et al., 2019), ripening stage
(Martins et al., 2012, 2014), sanitary status of the grape berries
(Barata et al., 2012), prefermentary operations (Epifanio et al.,
1999; Grangeteau et al., 2017), or the use of SO2 (Bokulich
et al., 2015). Filamentous fungi most often found on grape
berries and in must are generally undesirable: Cladosporium
spp. causes rot, which reduces yield and affects the quality of
wines (Briceño et al., 2009; Latorre et al., 2011), Alternaria
spp., Aspergillus spp. and Penicillium spp. produce mycotoxins
(Serra et al., 2003; Bui-Klimke and Wu, 2015; Rantsiou et al.,
2020). Additionally, the association of B. cinerea with other
molds like Penicillium spp. and Rhizopus spp. can lead to
result in production of wine defects (Barata et al., 2012). Non-
Saccharomyces yeasts, such as Hanseniaspora, Starmerella, Pichia,
Metschnikowia, Zygoascus, Issatchenkia or Rhodotorula genus,
are considered dominant in the prefermentary stages (Fleet,
2008; Zott et al., 2010; Barata et al., 2012; Albertin et al.,
2014). Some non-Saccharomyces species/strains are considered
detrimental for wine quality, others represent resources to
promote innovation in the oenological sector (Padilla et al., 2016;
Berbegal et al., 2017; Tufariello et al., 2021).

Sulfur dioxide (SO2) has been used in enology since the 1800s
(Pasteur, 1866; Ladrey, 1871) for its antimicrobial, antioxidant
(Waterhouse et al., 2016) and antioxydasic (Ough and Crowell,
1987; Son et al., 2001) properties, throughout the winemaking
process, from vatting to bottling. During the winemaking
process, free SO2 has been reported to neutralize and eliminate
spoilage microorganisms, delay growth of lactic acid bacteria,
and limit growth of non-Saccharomyces yeast (Henick-Kling
et al., 1998; Takahashi et al., 2014). A negative effect of SO2 has
been demonstrated on maximum populations of Hanseniaspora,
followed by a faster decline during fermentation (Andorrà et al.,
2008; Albertin et al., 2014; Takahashi et al., 2014). Sulfur dioxide
also facilitates implantation of the sulfite-tolerant Saccharomyces
cerevisiae species (Constantì et al., 1998; Henick-Kling et al.,
1998; Albertin et al., 2014), in particular due to the presence of
sulfite pumps (Park and Bakalinsky, 2004; Zimmer et al., 2014;
Marullo et al., 2020).

Nowadays, the use of preservatives is a source of controversy.
Use of SO2 in producing wines is pointed to as a cause of
intolerance (Warner et al., 2000; Timbo et al., 2004; Vally et al.,
2009). In addition, consumer views of the agrifood products
they ingest have changed, as they have become more aware
of preservative compounds and thus wish to eat and drink
more “healthily” (D’Amico et al., 2016; Apaolaza et al., 2017).
Consumers are willing to pay more for so-called “sustainable”
wines, which they consider more environmentally friendly, such
as sulfite-free wines (Poveda et al., 2005; Forbes et al., 2009;
Pérès et al., 2018; Galati et al., 2019). Furthermore, faced

with global warming, as wines become richer with higher pH
levels, the effectiveness of SO2 will be reduced, with significant
consequences for fermentation and the management of microbial
populations (De Orduna, 2010; Drappier et al., 2019).

Faced with these issues, winemakers have had to reduce
the use of sulfur dioxide in their wine production, as wine is
the main food source of sulfites in terms of doses. Different
alternatives are available on the market, such as adjuvants like
chitosan and dimethyl decarbonate, or physical methods such
as filtration or heat treatments (Lisanti et al., 2019). Recently,
bioprotection by adding yeasts has been proposed as a new
alternative. This involves adding antagonist cultures (or their
metabolic products) to inhibit pathogens and/or extend shelf
life, while minimizing the impact on the sensory properties of
the treated product (Lücke, 2000). Simonin et al. (2018) showed
the effectiveness of Torulaspora delbrueckii in colonizing the
medium in an aligoté must, a white Burgundy grape variety.
In a preliminary study, the use of two species as bioprotection
agents was tested in a context of Bordeaux region: Torulaspora
delbrueckii and Metschnikowia pulcherrima in merlot must
(Windholtz et al., 2021a). Their implantation was confirmed as
limiting the abundance of filamentous fungi.

Furthermore, Johnson et al. (2020) showed the impact of
different bioprotection products on growth ofHanseniaspora spp.
during a cold prefermentary maceration.

Bioprotection by adding non-Saccharomyces yeasts would
therefore seem to be a promising alternative to sulfur dioxide
during the vinification process. The impact of the absence of
sulfur dioxide and use of bioprotection yeasts on the grape juice
microbial community should be evaluated in several contexts in
terms of grape must microbial and chemical composition and of
ripening stages, particularly advanced maturity in a context of
global warming. Regardless of grape juice chemical composition,
the maturity stage has been shown to impact the size and
composition of the microbial communities on the grape-berry
surface, with significantly higher population levels and diversity
at the overripened stage (Martins et al., 2012, 2014). Through two
complementary molecular biology approaches (Q-PCR and high
throughput sequencing), this study aims to provide indications
about the impact of the harvest date, absence of SO2 and
bioprotection agents on yeast and filamentous fungi. The impact
of the harvest date, absence of SO2 and use of a bioprotection
alternative on yeast dynamics and diversity was studied in
merlot during the prefermentary stages, in comparison with the
traditional use of SO2, over two consecutive vintages. From the
results of high throughput sequences for the filamentous fungi,
intra- and inter-sample biodiversity indices were determined,
thus allowing yeast and fungal community composition to
be characterized.

MATERIALS AND METHODS

Experimental Treatments
In 2017 and 2018, merlot N. grapes (Vitis vinifera L.) were
harvested manually from a wine estate applying an organic
farming system in the “Entre-deux-Mers” area. They were picked
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at two ripening stages: technological maturity as defined by
the winemaker (maturity “I”) and advanced maturity after
which harvest was carried out one week later (maturity “II”).
Precipitation during the ripening period (August, September, and
October) was 115 and 111 mm in 2017 and 2018, respectively.
Average minimal temperatures were 11.5–16.6◦C in 2017 and
7–17.1◦C in 2018, and average maximal temperatures were 21.2–
28◦C for 2017 and 14.5–29.5◦C in 2018. The 2017 vintage was
characterized as an early vintage due to rains at the beginning of
September (72 mm) causing an early start to the harvest (Geny
et al., 2018), while 2018 had ideal conditions for the harvest
(precipitation in September: 3 mm) with higher sugar content
(Geny et al., 2019).

The same plot was harvested in 2017 and 2018, collecting
the grapes from every other row for the two maturity
stages. Three winemaking processes were followed: 50 mg/L
of bioprotection [Torulaspora delbrueckii and Metschnikowia
pulcherrima species (Zymaflore R©Egide – Laffort)] applied directly
to the grapes following the manufacturer’s indications for
rehydration and without addition of SO2 (“BP” modality),
50 mg/L of SO2 at vatting (“SO2” modality), and without any
addition (“Without SO2” modality). Grapes were distributed
evenly for each treatment and were then crushed and
destemmed. Winemaking was conducted in tanks of 35L
in triplicate (maturity I) and duplicate (maturity II) for
each modality. Prefermentary maceration was carried out at
10◦C before inoculation (200 mg/L) with commercial Active
Dry Yeast (ADY) Saccharomyces cerevisiae after 48H. During
prefermentary maceration, 10 mL of must was sampled in sterile
conditions at three times (Vatting, 24H of maceration, 48H of
maceration corresponding to “Stage” parameter) and transported
immediately on ice to the laboratory for processing (Figure 1).

DNA Extraction
Samples of 10 mL of must were centrifuged at 9,000 rpm for
10 min, and then pellets were rinsed twice with 2 mL 0.05 M
EDTA pH8 and conserved at −20◦C until subsequent DNA
extraction. A FastPrep-24 instrument (MP Biomedicals, Illkirch,
France) was used for DNA extraction: 200 µl of glass beads (acid-
washed, Ø 0.1 mm, Sigma, Lyon, France) and 1 ml of EDTA 0.05
M were added to the frozen pellet. The protocol described by Zott
et al. (2010) was followed until complete extraction. DNA was
conserved at−20◦C.

Population Level of Target
Microorganisms by Quantitative PCR
The quantitative PCR (Q-PCR) method was used to
monitor population dynamics of Torulaspora delbruecki and
Hanseniaspora spp. with primers described in Zott et al. (2010),
and Metschnikowia pulcherrima with primers described by
García et al. (2017) (Supplementary Table 1). For quantification,
standard curves were built for each yeast species in triplicate,
using 10-fold serial dilutions of fresh culture in pasteurized red
must. On must samples, quantitative PCRs to monitor Botrytis
cinerea spores were obtained using Bc3R and Bc3F primers
(Diguta et al., 2010).

Meta-Barcoding and High-Throughput
Sequencing Analysis
FR1 and FF390 primers were used to target 18S rDNA
(David et al., 2014). First, the 18S rDNA gene fragment was
amplified with an adapter for Amplicon PCR Reverse Primer
(5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA +

FR1) and for Amplicon PCR Forward (5′TCGTCGGCA
GCGTCAGATGTGTATAAGAGACAGCG + FF390). This
PCR was taken in the laboratory: reactions were cycled for
3 min at 95◦C, then for 35 cycles of 98◦C for 30 s, 52◦C for 30 s
and 72◦C for 60 s, then followed by a final extension period of
8 min at 72◦C. The mix PCR was composed of 2.5 µL dilute
template (DNAs standardized to 5 ng/µL), 5 µL each Amplicon
PCR Primer 1 µM, 12.5 µL 2X KAPA HiFi HotStart Ready Mix
(Roche, Bâle, Suisse). After the first amplification, a second PCR
was carried out by the Plateforme Genome-Transcriptome of
Bordeaux added indices and Illumina sequencing adapters with
the Nextera R©XT Index Kit. For the Illumina paired-end library,
normalized pool libraries were prepared and clusters generated,
and 2∗250 bp paired-end sequencing (MiSeq Kit NANO v2)
was performed on an Illumina MiSeq instrument. A total of 90
samples (3 modalities at 3 stages in triplicate for maturity I and
3 modalities at 3 stages in duplicate for maturity II, during two
vintages) were sequenced by Illumina Miseq.

Sequence Analysis
Sequence cleaning was carried out on the FROGS (Find Rapidly
OTUs with Galaxy Solution) pipeline (Escudié et al., 2017) with
the pre-process steps (pared end assembled with 5′ primer and 3′
primer, with expected length (<300 and >400 bps) and without
N), SWARM clustering (Mahé et al., 2015), removal of chimera
with VSEARCH (Rognes et al., 2016), and removal of singletons
and contaminants. The Silvia132 18S database (Quast et al., 2012)
was used as the database for the taxonomic assignment of OTUs
(Operational Taxonomic Units). Sequences with <97% identity
and <95% of coverage were deleted by filtration on BLAST. An
affiliation postprocess was used to resolve inclusive amplicon
ambiguities and aggregate OTUs based on alignment metrics.
Finally, OTUs corresponding to Vitis sp. were removed.

Statistical Analysis
The Phyloseq package (McMurdie and Holmes, 2013) was
used on the Rstudio software (RStudio Team, 2020) to
calculate α-diversity [Shannon index, inv-Simpson index and
the species richness estimator (chao1)]. The ANOVA test
and T-test were used to determine the impact of different
parameters on α-diversity after data was assumed to be normally
distributed (Shapiro-Wilks normality test, p > 0.05) and variance
homogeneity was verified (Leven test, p > 0.05). Then, the Tukey
post hoc test (p < 0.05) was used to find significant differences
between the modalities (represented by different letters). The
Ggplot2 package (Wickham et al., 2016, 2) was used for graphic
representations.

From normalized sequences based on the sample which
had the least sequences, β-diversity was determined with
Jaccard (qualitative approach) and Bray-Curtis distances
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FIGURE 1 | Experimental design of the study.

(quantitative approach). A principal coordinate analysis (PCoA)
was performed to visualize the matrix obtained according to
these two distances. A permutational multivariate analysis of
variance (Manova) was applied with the Adonis function from
the vegan package to determine the significant effect of the
parameters on β-diversity (Oksanen et al., 2013).

RESULTS

Merlot grapes at two grape ripening stages (technological and
advanced maturity) were processed applying three different
prefermentary treatments, Bioprotection without SO2 (“BP”
modality), 50 mg/L of SO2 at vatting (“SO2” modality), and
without any addition (“Without SO2” modality), over two
consecutive vintages. Then, different combinations in triplicate

for maturity I and in duplicate for maturity II (due to the low
harvest quantity) were considered for further analysis. Analysis
of the must and quantification of Botrytis cinerea spores are
presented in the Supplementary Table 2. Sugar content and pH
were higher for maturity II than maturity I for both vintages
(Supplementary Table 2). No significant differences were found
between the two vintages regarding the quantification of the
spores of Botrytis cinerea; however, on average, the quantity of
spores was higher at technological maturity than at advanced
maturity in both 2017 and 2018 (ANOVA, p-value = 0.003754∗∗).
In addition, the quantity of spores was significantly higher in
the presence of SO2 than in the control without SO2 for both
vintages (ANOVA, p-value = 0.03703∗). Chemical analyses of the
wines after alcoholic fermentation and total SO2 after malolactic
fermentation are given in Supplementary Table 3. As expected,
ethanol and pH were higher for advanced maturity and total
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SO2 was quantified only for the SO2 treatment; volatile acidity
(0.09–0.14 g/L of acetic acid) was low for all experiments.

Impact of Different Factors on
Population Levels of Hanseniaspora spp.
and Non-Saccharomyces Yeast Used as
Bioprotection
Sampling was carried out at vatting, 24H and 48H of maceration
at 10◦C and population levels of Hanseniaspora spp. (A),
Metschnikowia pulcherrima (B) and Torulaspora delbrueckii
(C) were evaluated by Q-PCR (Supplementary Figure 1).
Data are given in Figure 2 according to different parameters
(stage, treatment, maturity and vintage). Population levels of
Hanseniaspora spp. increased during prefermentary maceration
(Figure 2A1). A strong vintage effect (Figure 2A4) was noted,
with 25.8% of the variance explained (Supplementary Table 4).
Population level was higher in 2018 (median: above 107 cells/mL)
than 2017 (median: below 106 cells/mL). The treatment explained
8.6% of the total variance, with significantly lower population
levels for the SO2 modality compared to the others. Use of
bioprotection yeast did not limit growth of Hanseniaspora spp.
(Figure 2A2) compared to SO2 addition. It is important to
note a significant interaction for Vintage:Stage (10.5%) and
Treatment:Stage (6.8%).

The population level of Metschnikowia pulcherrima was
stable during cold maceration (Figure 2B1), unlike Torulaspora
delbrueckii, which increased significantly (Figure 2C1). The
indigenous population of Metschnikowia pulcherrima (median:
above 104 cells/L, Figure 2B2) was high compared to Torulaspora
delbrueckii (median: below 102 cells/L, Figure 2C2) and both
species were impacted negatively by SO2 addition (Figure 2B2
and Figure 2C2). As expected, population levels of both
non-Saccharomyces yeast in the bioprotection modality were
significantly higher, due to the inoculation at 50 mg/L,
except for Metschnikowia pulcherrima in 2017, maturity II
(Supplementary Figure 1).

The growth of Torulaspora delbrueckii during prefermentary
maceration and its low indigenous population level resulted
in a higher percentage of variance in population levels
explained by the treatment (77.4%) than for Metschnikowia
pulcherrima (29.7%).

Impact of the Different Parameters on
Yeast and Filamentous Fungi Diversity
To evaluate yeast and fungal microbial diversity during
prefermentary stages, the 18S rDNA gene was analyzed by
high-throughput sequencing (HTS). 1,134,820 sequences were
obtained, i.e., 12,609 sequences per sample. 1,042,017 sequences
were retained after a pre-process step containing paired-end
assembled, with 5′ and with 3′ primers, with expected length
(between 300 and 400 bps) and without ambiguous characters
(N) in their sequences. The SWARM clustering step generated
48,968 OTUs. After cleaning of chimera (−11,222 OTUs
and −118,732 sequences), singletons (−36,190 OTUs, 36,785
sequences) and the OTU affiliations, 1,554 OTUs and 886,481
sequences were retained. A filtration on BLAST with the identity

(>97%) and coverage (>95%) parameters was used and Vitis
sp. OTUs were deleted from the dataset (−1374 OTUs and
−51,377 sequences). Finally, an aggregation of OTUs based
on alignment metrics was performed to obtain 180 OTUs and
835,104 sequences, i.e., 9,279 sequences per sample.

Ascomycota phylum, the mostly widely represented in
the OTU dataset (99.46%), was made up of 4 major Classes:
Saccharomycetes at 72.28% (represented by Hanseniaspora
(58.9%), Saccharomyces (19.79%); Torulaspora (14.91%) and
Metschnikowia (5.7%) genus), Dothideomycetes at 13.70%
(represented by Aureobasidium (67%) and Cladosporium
(29.3%) genus mostly), Eurotiomycetes at 8.66% [represented
by Aspergillus genus (98.9%)] and Leotiomycetes at 4.84%
represented by Botrytis genus (95.8%).

The relative abundance obtained for each experiment
is presented in Figure 3 and Supplementary Figure 2.
Overall, filamentous fungi abundance gradually decreased during
the prefermentary stages. The diversity and abundance of
OTUs differed from one vintage to another. Alternaria and
Neophaerosphaeria were identified only in 2018, with an
unexpected high abundance for maturity I after 48H. The
relative abundance of Aureobasidium was higher in 2018 than
in 2017, and Aspergillus was identified systematically in 2018
but not in 2017 (maturity II). The relative abundance of
Botrytis cinerea spores showed a greater presence of Botrytis
cinerea at technological maturity than at advanced maturity,
according to the Q-PCR analysis and lower abundance at
maturity I at vatting and 24H for bioprotection for both
vintages. A spontaneous population of Saccharomyces colonized
the grape juice at the end of maceration in 2017, but was
absent in 2018. Hanseniaspora was the dominant OTU whatever
the modality, stage and vintage considered. Both bioprotection
species were present at the vatting stage for all the trials, with a
higher abundance of Torulaspora delbrueckii than Metschnikowia
pulcherrima during prefermentary maceration. The abundance
of OTUs related to filamentous fungi (Aspergillus, Cladosporium
and Botrytis) was lower when bioprotection yeasts was applied
(Supplementary Figure 2), as was Saccharomyces abundance
at the end of maceration in 2017. Between the two maturity
levels, both vintages combined, the relative abundance of both
non-Saccharomyces species were lower at maturity II and the
abundance of Hanseniaspora was higher at advanced maturity.

In order to characterize the interspecific biodiversity,
different indices were calculated: Observed and Chao1 providing
qualitative information only, then the Shannon and InvSimpson
indices, which take into account both the abundance and nature
of the OTUs (Figure 4). By combining all the data (Figure 4A),
significant differences were obtained only for InvSimpson.
Indeed, BP – Vatting had a significantly higher index, and the
Without SO2 – 48H modality was significantly the lowest.

Considering the Treatment parameter (Figure 4B), significant
differences could be observed for all indices: the number
of OTUs was lower with bioprotection yeasts, but due
to the significant presence of Torulaspora delbrueckii and
Metschnikowia pulcherrima, its Shannon and InvSimpson index
was significantly higher. Interestingly, the absence of sulfiting led
to a decrease in both the Shannon and InvSimpson indices.
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FIGURE 2 | Boxplot of population levels obtained by Q-PCR (cells/mL) for Hanseniaspora spp. (A), Metschnikowia pulcherrima (B), Torulaspora delbrueckii (C)
according to Stage (1) (Vatting, 24H and 48H of maceration), Treatment (2) (Bioprotection (BP), SO2 and Without SO2), Maturity (3) [technological (I) and advanced
maturities (II)] and Vintage (4) (2017 and 2018) parameters. Significance is indicated as follow: * significant at 5%, ** significant at 1%, *** significant at 0.1% (ANOVA
and T-test) and boxplot with different letters differ significantly (HSD-test).

FIGURE 3 | Relative abundances (%) of 9 major genus of Ascomycota phylum for all sample during prefermentary stages (Vatting, 24H and 48H of maceration) in
two vintages (2017 and 2018) and two maturities [technological (I) and advanced maturities (II)]. Bioprotection (BP), SO2 and Without SO2 treatments in early stages
of winemaking. Results of each sample is the mean of biological replicats (n = 3 technological maturity, n = 2 advanced maturity).
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FIGURE 4 | α – diversity by four indices (Observed, Chao1, Shannon, InvSimpson) according to Treatment∗Stage (A), Treatment (B) (Bioprotection (BP), SO2 and
Without SO2), Stage (C) (Vatting, 24H and 48H of maceration), Maturity (D) [technological (I) and advanced maturities (II)] and Vintage (E) (2017 and 2018).
Significance is indicated as follows: * significant at 5%, ** significant at 1%, *** significant at 0.1% (ANOVA and T-test), and boxplot with different letters differ
significantly (HSD-test).

The Stage parameter affected all the indices that were
calculated (Figure 4C): biodiversity of the yeast and fungal
microbial community decreased gradually during the maceration
process. Concerning maturity (Figure 4C), the Shannon and
InvSimpson indices were significantly lower with advanced
maturity (II), as were the observed α-diversity and Chao index,
but to a lesser extent (p-value = 0.05). Finally, the Vintage
parameter did not have a significant impact on α-diversity,
except for the Shannon index, which was lower for the 2017
vintage (Figure 4E).

The proportion of variance explained by each parameter
and their interactions is presented in Table 1. The Stage
parameter explained the largest part of variance for the four
indices, followed by Treatment. Maturity accounted for variance
of the quantitative indices (Shannon: 11.9% and InvSimpson:
13.6%). The Vintage∗Stage interaction was significant and
had an impact on the qualitative biodiversity indices, and
to a lesser extent, on the Shannon index. The proportion
of variance not explained by the parameters considered here
(Residuals) was relatively low, except for the Chao1 index for
which it was 21%.

In order to study intra sample biodiversity (β-diversity),
only the “SO2” and “Without SO2” treatments were taken into

account, and 48H of maceration in the 2017 vintage was not taken
into consideration as the ubiquity of Saccharomyces cerevisiae
biased the data set for covariance analysis.

Figure 5 presents the PCoA according to different parameters,
with their significance obtained by MANOVA test (999
permutations). As for α-diversity, the use of the Jaccard matrix
is qualitative, in that it considers only the nature of the
OTUs, whereas the Bray-Curtis matrix takes their abundance
into account. Concerning the Treatment parameter, the Jaccard
matrix explained 13% of the variance on axis 1 and 7.9% on
axis 2, whereas the Bray-Curtis matrix explained 71.3% on axis
1 and 14.9% on axis 2. The use of SO2 did not modify the relative
composition of the OTUs (Figure 5A1), but did change their
abundance (Figure 5B1). Conversely, Stage parameter affected
the nature of the OTUs (Figure 5A2) but not their abundance
(Figure 5B2). The fungal community structure, in terms of
abundance, differed strongly between Maturity I and Maturity II
(Figure 5B3) and between 2017 and 2018 (Figure 5B4), and to a
lesser extent in terms of relative composition (Figure 5B4).

The percentage of variance explained by each parameter for
β-diversity (Jaccard and Bray-Curtis) is presented in Table 2.
Regarding the Jaccard matrix, each parameter impacted diversity
significantly but at low percentages, and 54.8% of the variance
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TABLE 1 | Percentage of variance explained by Treatment (Without SO2, SO2 and Bioprotection), Stage, Vintage, Maturity factors and these interactions for different α

biodiversity indices.

Observed Chao1 Shannon InvSimpson

Treatment 10.1% *** 8.5% *** 15.7% *** 25.8% ***

Vintage 1.8% ** 2.3% ** 3.7% *** 0.8% **

Stage 41.2% *** 33.3% *** 28.6% *** 24.8% ***

Maturity 2.9% *** 4.2% ** 11.9% *** 13.6% ***

Treatment:Vintage 0.4% 0.2% 1.1% * 1.0% *

Treatment:Stage 1.4% 1.5% 4% *** 7.7% ***

Treatment: Maturity 2.8% ** 3.5% * 1.1% * 2.1% ***

Vintage: Stage 17.1% *** 16.7% *** 10.4% *** 4.2% ***

Vintage: Maturity 2.4% ** 0.6% 3.3% *** 1.2% **

Stage: Maturity 3.1% ** 5.3% ** 2.4% ** 2.1% **

Treatment:Vintage:Stage 3.1% * 2.4% 4.4% *** 3.0% ***

Treatment:Vintage: Maturity 0.3% 0.1% 0.94% * 0.6%

Treatment: Stage:Maturity 0.1% 0.2% 0.5% 1.6% *

Vintage: Stage: Maturity 0.2% 0.1% 4.0% *** 4.5% ***

Residuals 13.1% 21.0% 8.0% 7.2%

Significance is indicated as follow: * significant at 5%, ** significant at 1%, *** significant at 0.1% (ANOVA/T-test).

FIGURE 5 | β – diversity by two matrix [Jaccard (A) and Bray Curtis (B)] in function of SO2 addition or not (1), Stage (Vatting, 24H and 48H of maceration,except
48 h maceration in 2017) (2), maturity (3) [technological (I) and advanced maturities (II)] and vintage (4) (2017 and 2018). Signif. codes for p-value (Manova): ∗∗∗0.001,
∗∗0.01.

remain unexplained by the parameters. For the Bray-Curtis
matrix, Maturity, Treatment and Vintage impacted diversity
significantly (22.7, 22.0, and 11.5% respectively) and 19.8% of
the variance of the Bray-Curtis matrix was not explained by our
parameters. Furthermore, the interaction of Vintage∗Maturity
was significant.

DISCUSSION

Nowadays, the use of sulfur dioxide is controversial due to
consumers’ perceptions of its harmful effect and their demand
for more “healthy food and beverages.” Moreover, with global

warming, advanced maturity is a recurrent situation for harvests,
and, as a consequence, fermentation management must take
account of drastic changes in the matrix composition: high sugar
content and pH, and elevated population levels of yeast and
bacteria when grape berries become overripe (Martins et al.,
2014). In this context, winemakers are being forced to redefine
their winemaking processes, by reducing the use of SO2 and
controlling the microbial community and alcoholic fermentation
kinetics more effectively in order to preserve the sensorial
quality of the wines. In the red winemaking process, the first
addition of SO2 comes at the moment of vatting. Changes in
the microbial yeast and fungal community during the first stages
of the red winemaking process in the absence of SO2 may
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TABLE 2 | Percentage of variance explained by Treatment (Without SO2 and
SO2), Stage, Vintage, Maturity factors and the interactions for different
β-biodiversity indices.

Jaccard Bray-Curtis

Treatment 2.7% * 22.0% ***

Vintage 6.1% *** 11.5% ***

Stage 5.9% ** 3.6%

Maturity 4.3% *** 22.7% ***

Treatment:Vintage 1.7% 0.7%

Treatment:Stage 4.3% 1.5%

Treatment:Maturity 1.7% 2.1% *

Vintage: Stage 2.2% 0.2%

Vintage: Maturity 4.1% *** 8.0% ***

Stage: Maturity 4.3% 2.1%

Treatment:Vintage:Stage 2.0% 0.5%

Treatment:Vintage: Maturity 1.8% 1.9%

Treatment: Stage:Maturity 2.9% 1.3%

Vintage: Stage: Maturity 1.2% 2.1% *

Residuals 54.8% 19.8%

Significance is indicated as follow: * significant at 5%, ** significant at 1%,
*** significant at 0.1% (Manova).

therefore have an impact on the alcoholic fermentation process
and final wine quality.

In this work, the yeast and filamentous fungi microbial
community was studied at different stages during prefermentary
maceration (Vatting, 24H and 48H) using two complementary
methodologies, Q-PCR to evaluate the population levels of
target yeasts and metabarcoding to analyze microbial diversity.
Different factors were considered: vinification practices (SO2,
without SO2, Bioprotection), maturity level [technological (I),
advanced (II)] and vintages (2017 and 2018).

The α-diversity was strongly impacted by the Stage, with
a gradual decrease during the maceration process (Conacher
et al., 2021). The yeast and filamentous fungi α-diversity
have previously been shown to decrease during alcoholic
fermentation, with the selection of dominant species (Nisiotou
et al., 2007; David et al., 2014; Conacher et al., 2021). Our
results showed that a decrease in α-diversity also occurred
during prefermentary maceration; different factors, such as
semi-anaerobiosis and low temperature (10◦C), can explain
the decrease in α-diversity, with the selection of yeast and
filamentous fungi that are better suited to this environment.

Little Impact of Vintage on α-Diversity,
Unlike β-Diversity
It is well known that the microbial community is conditioned
by the vintage, climate, and as a consequence, the sanitary
status of the grape berries (Nisiotou et al., 2007; Bisson and
Joseph, 2009; Bokulich et al., 2014; Steenwerth et al., 2021).
The climatic conditions differed between the 2017 and 2018
vintages, with rainfall during September in 2017, while the
weather was hot and dry during the harvest in 2018. This may
explain the differences between the intra-sample diversity indices
and their abundance. Hanseniaspora spp. dominated the fungal

grape must community. Q-PCR and HTS analysis showed that
Hanseniaspora spp. was strongly impacted by the vintage, with
a higher population level and abundance in 2018 than in 2017.
Previous studies showed a correlation between precipitation and
humidity and population of Hanseniaspora spp. (Jara et al.,
2016; Steenwerth et al., 2021). In the present work, precipitation
during the harvest period was higher in 2017 than in 2018,
and this climatic parameter therefore cannot explain our results.
Another difference was highlighted between the two vintages: an
indigenous population of S. cerevisiae colonized the grape juice
at the end of the prefermentary maceration in 2017, whatever
the treatment considered, but not in 2018. Since S. cerevisiae
was not detected at vatting and after 24H of maceration, we can
hypothesize that the origin of this population was the cellar, but
not the grape berries.

Yeast and Filamentous Fungi Diversity
Were Impacted by the Maturity Level and
Treatment
The nature and abundance of the OTUs differed between the
two maturity levels. The impact of the maturity level on the
abundance of the yeast and filamentous fungi community
was high, with 22.7% of variance explained (p-value 0.001,
Bray-Curtis). In the vineyard, modifications in the nutrient
composition of grape berry exudates, particularly sugar
exudation with advanced maturity, are likely to explain the
changes in grape berry microbial community. Following this
process, the grape must composition also differs both in sugar
content and in pH between the two ripening stages, which
can also have an impact on the diversity of microorganisms,
including bacteria. For instance, some yeasts are able to persist
and occupy the niche preferentially to others, resulting in a
reduction in α-diversity in the grape must (Martins et al.,
2012, 2014). Sanitary status should also be considered; in
our study, the higher number of spores of Botrytis cinerea at
technological maturity may explain why the native population
levels of Hanseniaspora spp. in the initial must were higher at
technological maturity than at advanced maturity (Rabosto et al.,
2006; Liu et al., 2010).

The indigenous population level of Metschnikowia
pulcherrima and Torulaspora delbrueckii was impacted
negatively by SO2 addition at vatting. The first is one of
the dominant species in the must, unlike the latter (Bokulich
et al., 2014; David et al., 2014; Kecskeméti et al., 2016; Conacher
et al., 2021). Non-Saccharomyces yeast is known to be sensitive to
SO2, unlike Saccharomyces cerevisiae (Divol et al., 2012; Vicente
et al., 2020). Surprisingly, the absence of sulfiting resulted in a
decrease in yeast and fungal α-diversity during prefermentary
maceration. Previous results have reported alteration of wine
microbial diversity with sulfur dioxide treatment, but for white
wine vinification, in which the antiseptic effect of SO2 is higher
than in red wines (Bokulich et al., 2015; Morgan et al., 2019).
In our study, the growth of species that are normally controlled
by sulfur dioxide, in particular Hanseniaspora spp. (Albertin
et al., 2014), could explain the decrease in α-diversity, by
becoming the dominant species in the microbial community.
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Morgan et al. (2019) reported similar results on pinot gris,
showing that the relative abundance of Hanseniaspora spp. was
significantly higher in fermentations to which little or no SO2
had been added. The same result was observed by Grangeteau
et al. (2017) in chardonnay, where the absence of SO2 led to a
preponderance of indigenous yeasts such as Hanseniaspora spp.,
even preventing the occupation of the must by Saccharomyces
cerevisiae and then leading to sluggish alcoholic fermentation.
Hanseniaspora spp., particularly H. uvarum, can produce
large amounts of ethyl acetate and acetic acid (Domizio et al.,
2011; Jolly et al., 2014) and its presence at high levels is not
desirable during prefermentary stages. However, used in mixed
fermentation with S. cerevisiae, H. uvarum was shown to reduce
volatile acidity and increase wine organoleptic quality (Tristezza
et al., 2016; Capozzi et al., 2019). It is important to highlight that
the population levels of the species were high (106–107 cells/mL)
in our different experiments.

When comparing SO2 vs without SO2, there was little
difference in β-diversity regarding the nature of the OTUs
(Jaccard), but a significant impact of the treatment was
highlighted when abundance was taken into consideration (22%
of the variance explained, p-value 0.001). Our results, therefore,
showed that SO2 altered the abundance of yeast and filamentous
fungi, but not their nature.

Bioprotection Yeasts Occupies the Niche
With Higher Yeast Diversity Than in the
Absence of SO2 Only
Until now, few studies have reported the effect of bioprotection
on the grape juice yeast and filamentous fungi community as
an alternative to sulfites (Simonin et al., 2018, 2020; Windholtz
et al., 2021a,b). In the present study, a mix of two species,
Metschnikowia pulcherrima and Torulaspora delbrueckii, was
used as an alternative to sulfites. The two species had different
behavior after inoculation throughout the prefermentary stages:
Torulaspora delbrueckii grew to a high population level (>106

cells/L), while the population of Metschnikowia pulcherrima
remained stable. Low temperature during the maceration
process (10◦C), and a negative interaction with Torulaspora
delbrueckii, through toxin killers for example (Villalba et al.,
2016) or with the indigenous population of Metschnikowia
pulcherrima, could explain the lower colonization of grape juice
by Metschnikowia pulcherrima. The two species represented
half of the relative abundance at technological maturity, but
only 20–30% at advanced maturity, irrespective of the vintage
considered. Lower abundance of bioprotection yeasts at advanced
maturity could be explained by grape berries and grape juice
microbial communities (yeast, filamentous fungi and bacteria)
that differ from those at technological maturity. The ripening
stage has been reported as impacting population level and
diversity, with the highest abundance and diversity being found
at the overripe stage (Martins et al., 2012, 2014). The greater
occupation of the niche by some yeast species (hence the
lower α-diversity at advanced maturity) through interaction
phenomena could explain the lower abundance of bioprotective
non-Saccharomyces at advanced maturity. As a consequence, it

could be necessary to reconsider the doses applied at advanced
maturity to manage bioprotection yeasts implantation and
efficiency more effectively.

In a preliminary experiment on merlot, we reported on
the occupation of the must by Torulaspora delbrueckii and
Metschnikowia pulcherrima used as bioprotection, limiting the
relative abundance of filamentous fungi, and in particular of
Aureobasidium and Botrytis (Windholtz et al., 2021a). Our
present data confirm that the use of these two species led to a
decrease in the number of OTUs (Observed and Chao1), and
especially in the numbers of OTUs of filamentous fungi that are
systematically associated with a decline in grape must quality,
such as Aspergillus spp. is likely to produce ochratoxin A in grape
must, the main mycotoxin occurring in wine (Cabañes et al.,
2002; Gil-Serna et al., 2018). On the other hand, biodiversity
increased with the presence of bioprotection yeasts in the
community, contrary to the use and the absence of SO2 (Shannon
and InvSimpson). Bioprotection treatment has been shown to
limit the colonization of Saccharomyces indigenous yeast at the
end of the prefermentary stage when the population level was
high (in 2017). This could facilitate the implantation of industrial
Active Dry Yeast when added at the end of the cold maceration.

In previous studies, Torulaspora delbrueckii and
Metschnikowia pulcherrima were recognized as species with
antimicrobial potential (Oro et al., 2014; Ramírez et al., 2015;
Villalba et al., 2016; Kántor et al., 2019). Johnson et al. (2020)
showed a 44% reduction in acetic acid and 39% in population
levels of Hanseniaspora spp. in cold maceration of grape juice
with the use of these two species. In addition, they have shown
that the impact of non-Saccharomyces yeast on the growth
of Hanseniaspora spp. could depend on the strains present
in the medium, with a high intra-specific genetic diversity
being reported for this species (Albertin et al., 2016). In our
experimental conditions, the use of bioprotection had no
impact on Hanseniaspora spp. population levels but did have
a negative effect on its abundance. One hypothesis to explain
this result is the very high initial population level of indigenous
Hanseniaspora spp. (>106 cells/ml) compared to our previous
study in the 2018 vintage with merlot grapes from the Bordeaux
area (104 cells/mL) (Windholtz et al., 2021a).

CONCLUSION

The impact of various parameters on the yeast and filamentous
fungi microbial community during the prefermentary stages of
the winemaking process without sulfites was highlighted by this
study. Intra-sample diversity of the yeast and filamentous fungi
community remained stable from one vintage to another, but its
intrinsic composition changed. A decrease in diversity could be
observed during the prefermentary stage, as the species present
on the grape berry finally gave way to those better suited to the
grape must environment. Finally, the absence of sulfiting led to
an occupation of the population niche by some dominant species,
but which were not particularly desirable (such as Hanseniaspora
spp.), leading to an unexpected reduction in diversity compared
to the presence of SO2. On the other hand, the OTUs were

Frontiers in Microbiology | www.frontiersin.org 10 December 2021 | Volume 12 | Article 748416

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-748416 December 20, 2021 Time: 15:36 # 11

Windholtz et al. Yeast and Fungal Microbial Communities

similar in both treatments, with and without sulfites, and only
their abundance varied. Niche colonization by bioprotection
yeasts was effective in all of the trials, although Torulaspora
delbrueckii showed growth, unlike Metschnikowia pulcherrima,
which remained stable. Moreover, their relative abundance was
lower at advanced maturity. The use of bioprotective non-
Saccharomyces yeast limited the abundance of filamentous fungi
that are systematically associated with a decline in grape must
quality. Study of the bacterial community should make it possible
to complete these results. It would also be interesting to further
include grapes from others varieties and with different sanitary
status in the same experiment for additional vintages to expand
our knowledge of the prefermentary microbial community in a
context of vinification without sulfites.
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