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Abstract: In this study, a calcium-binding peptide was obtained by hydrolyzing tilapia bone and
its osteogenic activity was evaluated. Animal protease was selected from nine enzymes, and its
hydrolysate was purified through preparative and semi-preparative reverse phase high-performance
liquid chromatography. The purified peptide was identified as DGPSGPK (656.32 Da) and its calcium-
binding capacity reached 111.98 µg/mg. The peptide calcium chelate (DGPSGPK-Ca) was obtained,
and its structure was characterized through Fourier transform infrared spectroscopy (FTIR), X-ray
diffraction (XRD), scanning electron microscopy (SEM), and mass spectrometry (MS). The results
of XRD and SEM showed that DGPSGPK-Ca was formed as a new compound. The carboxyl and
amino groups of Lys and Asp residues may be the chelating sites of DGPSGPK according to the FTIR
and MS results. The molecular simulation showed the carbonyl groups of Asp, Pro, Ser, and Lys
residues involved in the binding of calcium. The interaction of DGPSGPK and different integrins was
evaluated by molecular docking simulation, and the main forces involved were electrostatic interac-
tion forces, hydrogen bonding and hydrophobic interactions. Furthermore, DGPSGPK could inhibit
the differentiation of osteoclast and promote the proliferation, differentiation and mineralization
of osteoblasts.

Keywords: tilapia bone; peptide; calcium-binding capacity; structural characteristics; mass spectrometry;
molecular docking; osteoblast

1. Introduction

Calcium is a crucial nutrient for human health and one of the most important inorganic
elements in the human body [1]. In the form of hydroxyapatite crystals, calcium plays an im-
portant function in bones [2]. As the most prevalent inorganic element in the human body,
calcium is engaged in a variety of biological activities related to whole-body metabolism,
such as skeletal support, muscle contraction, and heart function [3]. Calcium deficiency can
cause rickets, osteoporosis, osteomalacia, and other serious metabolic disorders [4]. A great
variety of calcium products have been developed in recent years, which have helped allevi-
ate health concerns caused by calcium shortage to some extent [5]. However, most calcium
supplements offer an appropriate quantity of calcium and neglect the absorption process
of calcium [6]. For this reason, effective calcium supplements have attracted considerable
interest, and many studies have focused on discovering good calcium carriers [7].

Osteoporosis is a systemic disease that is generally divided into primary and secondary
diseases [8]. Osteoporosis is generally caused by an imbalance between bone formation
by osteoblasts and bone resorption by osteoclasts [9]. Osteoblasts are the material basis of
osteogenesis and bone formation. Osteoblasts are also the most important functional cells
in the continuous bone renewal activities [10]. In bone reconstruction, osteoblasts regulate
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bone mineralization by secreting bone matrix and non-collagenous proteins, and osteoclasts
are directly involved in the bone resorption process [11]. Integrins are transmembrane
receptors that can mediate the connection between the cell and the external environment.
Integrins are heterodimeric subunits of α and β linked by non-covalent bonds [12]. A
previous study indicated that some proteins and peptides can bind to integrin α5β1 to
increase the adhesion of osteoblasts to promote osteoblast proliferation and mineraliza-
tion [13]. Meanwhile, some proteins and peptides can bind to integrin αvβ3 to inhibit the
proliferation and differentiation of osteoclasts [14].

Peptides have higher absorptivity, lower energy consumption and carrier saturation,
compared with protein and free amino acids [15]. Some food-derived peptides have
potential activities for calcium binding and improve the biological potency of calcium ions.
Chen et al. isolated and purified a peptide (Asp-Gly-Asp-Asp-Gly-Glu-Ala-Gly-Lys-Ile-
Gly) with high calcium binding capacity from tilapia scales and found that the complex
between this peptide and calcium can be used as a calcium supplement for calcium-deficient
rats [16]. Charoenphun et al. hydrolyzed a tilapia fish protein and obtained a short peptide
(WEWLHYW) with a calcium binding capacity of 65 µg/mg [17]. The calcium binding
capacity of EG reached 67.81 µg/mg. Liu et al. identified and characterized calcium-
binding peptides in tilapia skin gelatins [18]. Huang et al. purified a peptide from whey
protein hydrolysate and identified it as Glu-Gly (EG) [19]. Xu et al. isolated several peptides
from Mytilus edulis with osteogenic activity [20].

The global market demand for tilapia (Oreochromis niloticus) is gradually increasing [21].
Tilapia is an important economic fish in China, and the tilapia fish processing industry gen-
erates a variety of by-products, including bone, skeleton, skin, and head, which have high
utilization values [22]. Chuesiang and Sanguandeekul obtained a protein hydrolysate from
tilapia bone and evaluated its antioxidant and angiotensin-I-converting enzyme (ACE)-
inhibitory activities [23]. Lin et al. studied the preparation, purification, and identification
of iron-chelating peptides derived from tilapia skin collagen and characterized peptide–
iron complexes [22]. Chen et al. isolated a calcium-binding peptide, DGDDGEAGKIG,
from tilapia scale protein hydrolysate and examined its calcium bioavailability in rats [16].
Liao et al. obtained three calcium-chelating peptides from tilapia bone collagen hydrolysate
with amino acid sequences being GPAGPHGPVG, FDHIVY, and YQEPVIAPKL, respec-
tively [24]. Our previous research revealed that tilapia skin hydrolysates exhibited strong
antioxidant, anti-photoaging, and ACE inhibitory properties [25–27].

In this study, nine enzymes were used to degrade tilapia bone for the preparation
of hydrolysates with calcium binding capacities. The key peptide in the hydrolysate was
purified and identified, and the peptide calcium chelate was prepared. Then, the purified
peptide and its peptide calcium chelate were characterized through Fourier transform
infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM),
mass spectrometry (MS), and molecular simulation. Furthermore, the osteogenic activity of
the purified peptide was evaluated using osteoclasts and osteoblast culture in vitro. This
study potentially provides the theoretical groundwork for calcium supplements utilizing
tilapia bone-derived calcium binding peptides.

2. Results and Discussion
2.1. Different Degrees of Hydrolysis (DH) and Calcium Binding Capacities of
Different Hydrolysates

Enzymatic hydrolysis is an effective method for modifying proteins, particularly
improving the digestibility of proteins, reducing allergy, and producing peptides with high
functions [28]. DH reflects the percentage of cleaved peptide bonds relative to the number
of original peptide bonds in the protein [29]. For the production of a peptide with excellent
calcium binding capacity, nine proteases were used to enzymatically hydrolyze tilapia bone.
These enzymes are frequently used in preparing protein hydrolyses.

As shown in Figure 1, the hydrolysate of animal protease had a higher DH and
calcium binding capacity. The DH reached 24.01%, and the calcium chelating capacity
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reached 50.18 µg/mg. Animal protease is an endo- and exopeptidase with a wide range
of sites compared with other enzymes. Animal protease hydrolysates have high calcium
binding capacities because enzymatic hydrolysis sites provide short peptides. Increases in
short peptides lead to an increase in calcium-binding sites that improve calcium binding
capacity. Therefore, the enzymatic hydrolysate of animal protease (TBEH) was selected for
subsequent experiments.
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Figure 1. DH values and calcium binding capacities of nine hydrolysates from tilapia bone. Different
lowercase letters demonstrated a significant difference in DH values (p < 0.05), and different capital
letters indicated a significant difference in calcium binding capacities (p < 0.05).

2.2. Separation and Purification of Calcium-Chelating Peptides

Preparative HPLC has the advantages of fast separation efficiency and large prepara-
tion quantity [30]. A preparative SHIMADZU C-18 column was used for the first separation
step. As shown in Figure 2A, TBEH was divided into 11 fractions, which were named
F1–F11. The calcium binding capacities of the fractions were determined. As shown in
Figure 2B, the calcium binding capacity of F2 reached 60.18 µg/mg, which was significantly
higher than the calcium binding capacities of the other fractions. Therefore, F2 was further
separated using a semi-preparative column (ZORBAX SB-C18). Seven fractions (F2-1–F2-7)
were collected as shown in Figure 2C, and their calcium-binding capacities were evaluated.
As shown in Figure 2D, F2-7 had the strongest calcium binding capacity.
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Figure 2. Elution curves of tilapia bone hydrolysates and calcium binding capacity of each fraction.
(A) Shimadzu C−18 separated components. (B) Calcium binding capacity of Shimadzu C−18
separated components. (C) ZORBAX SB−C18 separated components. (D) Calcium binding capacity
of ZORBAX SB−C18 separated components.

2.3. Amino Acid Sequence Identification

F2-7 was further analyzed using UPLC-Q-Orbitrap-MS2, and the amino acid sequence
was confirmed with De Novo TM (Peak Studio 7.5, BioInfor-Matics Solutions, Inc. Waterloo,
ON, Canada). As shown in Figure 3A, molecular ion peak [M+H]+ and double charge
molecular ion peaks [M+2H]2+ were identified at m/z values of 657.32 and 329.16 Da.
According to the ratio of mass to charge, the molecular weight of the peptide purified
was 656.32 Da. As shown in Figure 3B, the peptide fragment was cleaved into Y-type
(N-terminal) and B-type (C-terminal) fragments. The peptide’s amino acid sequence was
DGPSGPK. Subsequently, the peptide was synthesized. The calcium binding capacity of
DGPSGPK was determined, being 111.98 µg/mg.

DGPSGPK had two “Gly-Pro-X” sequences, which were the basic characteristics
of collagen peptide. The continuous repeating “Gly-Pro-X” and “Gly-X-Y” sequences
play crucial roles in stabilizing intra- and interchain hydrogen bonding in collagen struc-
tures [31]. Collagen peptides can effectively promote calcium binding capacity, such as
GPAGPHGPVG [32], AGAAGEAGKIG [24], and GDKGESGEAGER [33]. Furthermore,
Asp and Glu provide favorable environments for calcium-binding peptides [34], such as
DGDDGEAGKIG isolated from tilapia scale protein hydrolysate and NDEELNK from
sea cucumber ovum [16,30]. In addition, the sequence of the peptide, which contained
Asp at the beginning and Lys at the end, showed high calcium-chelating capacity, such
as DEEENDQVK [7]. Owing to the hydroxyl group on the side chain, Ser residue is a
significant contributor to calcium-chelating capacity [35].
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2.4. Structural Characterization

The structures of DGPSGPK and DGPSGPK-Ca were further characterized through FTIR,
XRD, SEM, and UPLC-Q-Orbitrap-MS2, and the possible molecular mode of DGPSGPK-Ca
was predicted.

2.4.1. FTIR

The FTIR spectra of DGPSGPK and DGPSGPK-Ca are shown in Figure 4. The peak in
the typical area was attributed to the N-H stretching vibration at 3485 cm−1 [36]. Meanwhile,
the two most significant vibrational modes of amides in the fingerprint region are amide-
I (1700–1600 cm−1) and amide-II (1600–1500 cm−1). The stretching vibration of C=O
generated the amide-I vibration at 1676 cm−1 [37], and the stretching vibration of C–N
and the bending vibration of N–H caused the amide-II vibration at 1543 cm−1 [38]. The
stretching vibration of C–O generated the absorption peak at 1135 cm−1 [39]. The stretching
vibration of O=C–NH generated the absorption peak at 842 cm−1 [40]. The absorption
peak of N-H stretching vibration was shifted to 3422 cm−1 after DGPSGPK bonded with
calcium ions, suggesting that the dipole field effect or inductive effect caused the electron
cloud density of N-H in DGPSGPK to decrease [41]. The absorption peak of C=O in
amide-I changed to 1638 cm−1, whereas the absorption peak of N-H in amide-II shifted
to 1566 cm−1, suggesting that the amide carbonyl (C=O) and N–H of the amide bond
contributed to the binding process between the peptide and calcium ion. Furthermore, the
peak at 842 cm−1 in DGPSGPK shifted to 939 cm−1 in DGPSGPK-Ca because of the rise
in O=C-NH electron cloud density and reduction in N-H electron cloud density during
chelation [8]. FTIR results indicated that calcium mainly interacted with carboxylic oxygen
and amino nitrogen atoms binding to DGPSGPK, which is in accordance with previous
studies [8,38,40].
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2.4.2. XRD

XRD is always used for evaluating morphological changes in molecular crystals. As
shown in Figure 5A, DGPSGPK has a disordered arrangement and weak intensity at
approximately 20◦. The amino acids of the peptide were irregular and amorphous and
had no absorption peak. However, as shown in Figure 5B, when DGPSGPK bonded with
calcium, clear sharp peaks appeared at 22◦, 31◦, and 45.3◦, and many small and sharp peaks
formed. This result indicated that the crystal morphology of the calcium–peptide chelate
changed and a new crystal morphology formed [42].
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2.4.3. SEM

SEM can directly observe the surface structures of DGPSGPK and DGPSGPK-Ca. The
SEM results of DGPSGPK are shown in Figure 6A,C. The surface of DGPSGPK was smooth
and uniform, and some slight cracks appeared, which may have been generated during the
rapid vacuum freeze-drying of the peptide [43]. As shown in Figure 6B,D, the surface of
DGPSGPK-Ca was extremely rough and had small granular objects. The combination of
the peptide and calcium may have caused these structures to change [18].

2.4.4. UPLC-Q-Orbitrap-MS2

The mass change of calcium chelated peptides is an excellent method to research
how metal ions interact with organic ligand groups in peptides [44]. As can be seen from
Figure 7A, the m/z values corresponding to the mother ions [M+Ca]2+ and [M+Ca-H]+

of DGPSGPK-Ca were 328.56 and 695.27 Da, respectively. The parent ion fragments were
analyzed for the determination of the calcium-chelating sites.
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The precursor ion [M+Ca-H]+ was used in examining the small peptide fragments
in Figure 7B. The results indicated that DGPSGPK combined with calcium to form a new
complex. It was then decomposed into multiple fragments for MS/MS analysis. The
structural information provided by the fragmented ions contributed to the analysis of
calcium ion binding sites. Fragment ions with m/z values of 106.74, 218.37, and 266.21 Da
represented the peak of [B2+Ca]2+, [B5+Ca+H2O]2+, and [B6+Ca+H2O]2+, respectively. The
calcium binding site might be related to Asp-Gly-, Asp-Gly-Pro-Ser-Gly-, and Asp-Gly-Pro-
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Ser-Gly-Pro-. This result indicated that the N-terminal of Asp of the peptide can bind to
calcium. As is shown in Figure 7B, [Y1+Ca-H2O]2+ was the most abundant ion fragment,
and its corresponding m/z was 84.08 Da. The results showed that calcium bound to the
C-terminal of Lys of the peptide. [Y2+Ca-OH]+ and [Y5+2Ca-2H]2+ were observed at m/z
values of 267.08 and 281.62 Da, indicating that Lys-Pro- and Lys-Pro-Gly-Ser-Pro- bound
to Ca2+. According to FTIR and UPLC-Q-Orbitrap-MS2 analysis, the carboxyl and amino
groups of Asp and Lys residues are mainly involved in the chelating site of Ca2+.

2.4.5. Construction of the Possible Molecular Modes

PEP-FPLD is a method for understanding the exact conformations of protein frag-
ments [45]. The initial structure of the peptide was obtained through PEP-FPLD, and
molecular simulation was carried out using the Charmm36 force field and TIP3P model. As
shown in Figure 8, the simulation results showed that the chelating effect of peptide on Ca2+

primarily involves ionic bonding and covalent bonding formed by the carboxyl oxygen
atoms of Asp, Pro, Ser, and Lys residues to Ca2+. The bond length of Ca-O was in the range
of 2.492–2.928 Å. According to the theory of hard and soft acids and bases [5,39], Ca2+

prefers oxygen atoms as ligands to form stable complexes, such as calmodulin. Therefore,
the carboxyl oxygen atoms of amino acid residues in peptides can be coordinated to Ca2+.
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2.5. Molecule Docking

Molecular docking is mainly a method used to study the molecular forces between
ligands and receptors and to predict their affinity and binding modes [46]. In this study,
SYBYL-X 2.0 software was used to evaluate the interactions of DGPSGPK and two integrins,
including αvβ3 (PDB:1L5G) and α5β1 (PDB:3VI4). A previous study showed that some
proteins and peptides can bind to integrin αvβ3 and inhibit cytoskeleton production in os-
teoclasts, which decreased the differentiation of osteoclasts [47]. Meanwhile, some proteins
and peptides can bind to integrin α5β1, and activate the focal adhesion kinase/extracellular
signal-regulated kinase (FAK/ERK) pathway. The activation of this pathway increased
the expression of phosphorylated runt-related transcription factor-2, which could promote
the differentiation of osteoblasts [48]. Furthermore, the peptides binding to integrin α5β1
could enhance the adhesion, proliferation, and differentiation of osteoblasts [49].

In this study, the T-scores obtained for DGPSGPK docking with 1L5G and 3VI4
were 10.50 and 8.24, which indicated that DGPSGPK can strongly interact with αvβ3 and
α5β1. As shown in Figure 9, the interactions between DGPSGPK and integrins included
electrostatic interactions, hydrogen bonding, and hydrophobic interactions. Electrostatic
interactions are interactions in which positive and negative electrons attract or repel each
other [50]. As shown in Figure 9A,E, the red ones are positive electron ions and the blue
ones are negative electron ions. In the docking pocket, the positive and negative ions
are attracted to each other through electrostatic interactions to make the structure stable.
It shows that electrostatic interactions play an important role in molecular docking of
DGPSGPK with 1L5G and 3VI4. As shown in Figure 9D,H, the number of hydrogen
bonds docked between DGPSGPK and integrins were 13 and 10, respectively. Meanwhile,
hydrogen bonding interactions of DGPSGPK with 1L5G included Arg578, Ser576, Asn571,
Lys611, Cys614, Asp637, Arg636, Glu671, Tyr669, and Ser667, and DGPSGPK with 3VI4
included Gln349, Ile400, Asp 106, Arg98, Tyr32, Arg117, Asn356, and Asp353. In addition,
the length of the hydrogen bond predicts the strength of the hydrogen bond. In this
study, the bond lengths of the hydrogen bonds are short (2.56–3.35 Å), indicating that
hydrogen bonding also plays a significant role in molecular docking between DGPSGPK
and integrins. Moreover, previous studies have shown that hydrophobic interactions can
effectively improve the stability of docking [51]. As shown in Figure 9D,H, hydrophobic
interactions of DGPSGPK with 1L5G included Tyr625, Phe610, Cys635, Tyr634, and Leu573,
and with 3VI4 included Arg155, Tyr107, Tyr103, Ser31, Tyr27, Ser360, Thr28, Asn397, Ser399,
Ile352, and Ser61. The molecule docking results indicated that DGPSGPK docking with
integrins may possess an ability to inhibit osteoclast differentiation and proliferation and
promote osteoblast differentiation and proliferation. Our results are similar to the previous
study, which showed that peptide YPRKDETGAERT with good osteogenic activity had
high interactions with 1L5G and 3VI4 [52].

2.6. Effects of DGPSGPK on the RANKL-Induced Osteoclasts

An MTT assay was used to determine the effects of DGPSGPK with different concentra-
tions on RAW 264.7 cells. As shown in Figure 10A, DGPSGPK with different concentrations
(200, 400, 600, 800, 1000 µg/mL) showed no toxicity for RAW 264.7 in this study.
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blue is positive voltage; (B,F) 3D structure of DGPSGPK docked with integrin; (C,G) interaction sites
of DGPSGPK and amino acids in the integrins; (D,H) 2D diagram of the interaction sites of DGPSGPK
and amino acids in the integrins.
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TRAP activity and staining are important indicators to determine the differentiation of
RAW 264.7 cells into osteoclasts [53]. In this study, RAW 264.7 cells cultured with RANKL
were differentiated into osteoclasts, according to the results of Figure 10B,C. RANKL-
induced osteoclasts were co-cultured with DGPSGPK of different concentrations. As shown
in Figure 10B, TRAP activity of osteoclasts was dose-dependently reduced by DGPSGPK
with different concentrations. This suggests an inhibitory effect of DGPSGPK on the differ-
entiation of osteoclasts. As shown in Figure 10C, we observed a dose-dependent decrease in
TRAP enzyme by staining. The staining result was consistent with the results of the TRAP
enzyme activity assay. The results showed that DGPSGPK could inhibit the differentiation
of osteoclasts. It was accordance to the previous studies. Miyamoto et al. reported that
peptide GRGDS could inhibit the proliferation of osteoclasts [54]. Lundberg et al. presented
that vasoactive intestinal peptide can inhibit osteoclast activity by binding to receptors in
the osteoclast province [55]. Kaneda et al. isolated cyclic peptides–cyclolinopeptides from
flaxseed with the ability to inhibit osteoclast differentiation [56].

2.7. Effects of DGPSGPK on the Proliferation, Differentiation, and Mineralization of
MC3T3-E1 Cells

As shown in Figure 11A,B, after co-culture of MC3T3-E1 cells with different concentra-
tions of DGPSGPK for 24 and 48 h, DGPSGPK showed a significant proliferative effect on
MC3T3-E1 cells. The proliferative effects of DGPSGPK with a dose of 800 µg/mL at 24 and
48 h on MC3T3-E1 cells reached 142% and 166%, respectively.
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Figure 11. Effects of DGPSGPK with different concentrations on osteoblast proliferation, differ-
entiation, and mineralization. (A,B) cell viability of MC3T3-E1 cells; (C): ALP staining at 7 days;
(D): MC3T3-E1 mineralization staining at 21 days.

MC3T3-E1 cells can differentiate into mature osteoblasts with the culture ofβ-glycerophosphate
and ascorbic acid. ALP enzyme activity is an important indicator for the evaluation of
osteoblast differentiation. As shown in Figure 11C, we performed ALP enzyme activity
staining on MC3T3-E1 cells cultured for 7 days. We clearly observed that DGPSGPK with
200 and 800 µg/mL could obviously promote the increase in ALP enzyme activity. The
staining results indicated that DGPSGPK may promote the differentiation of MC3T3-E1
cells. It was accordance with previous studies. Shi et al. showed that lactoferrin is effective
in promoting the differentiation and proliferation of osteoblasts [57]. Deer tendon enzy-
matic digest protein can regulate the gene expression thus promoting the proliferation of
osteoblasts and the formation of cell matrix. Xu et al. [52] and Shi et al. [57] found that both
blue mussel and bovine lactoferrin-derived peptides have the ability to inhibit osteoclast
differentiation and promote osteoblast proliferation and differentiation.

The bone extracellular matrix matures at the end of differentiation and subsequently
mineralizes into bone tissue [58]. As shown in Figure 11D, alizarin red staining of MC3T3-
E1 cells cultured for 21 days were performed. It can be observed that DGPSGPK with
200 and 800 µg/mL could promote the production of mineralized significantly and it was
in a dose-dependent manner. This result indicated that DGPSGPK can effectively promote
the differentiation as well as mineralization of MC3T3-E1.

3. Materials and Methods
3.1. Materials and Reagents

Tilapia bone was provided from Ocean King Fisheries Co. Ltd. (Yunnan, China).
Papain, pepsin, flavoring protease, neutral protease, complex protease, basic protease,
and trypsin protease were provided by Shanghai Yuanye Biological Technology Co. Ltd.
(Shanghai, China), and animal protease was provided by Pangbo Biological Engineering
Co. Ltd. (Nanjing, China). Peptides were produced by Shanghai Synpeptide Co. Ltd.



Foods 2022, 11, 468 13 of 18

(Shanghai, China). Hydrolytic protease was obtained from Novozymes Biotechnology Co.
Ltd. (Beijing, China). Acetonitrile and trifluoroacetic acid (TFA) of mass spectroscopic
grade were obtained from Merck KGaA (Darmstadt, Germany). Raw 264.7 and MC3T3-E1
cells were obtained from the Kunming Institute of Zoology cell bank. Tartrate resistant acid
phosphatase (TRAP) kit, acid phosphatase (ALP) kit, alizarin red staining kit, and BCA
Protein Assay Kit were obtained from Beyotieme Co. Ltd. (Shanghai, China). TRAP/ALP
stain kit was obtained from Wako Co. Ltd. (Wako, Japan). All the other chemicals and
reagents were of analytical grade.

3.2. Preparation of Different Tilapia Bone Enzymatic Hydrolysates

Tilapia bone was washed for 30 min in a continuous water bath at 50 ◦C and treated
under high pressure (121 ◦C, 20 min). After cooling to room temperature, the tilapia bone
was homogenized in a ratio of 1:2 with distilled water. Nine enzymes, namely, papain,
flavoring protease, complex protease, neutral protease, pepsin, basic protease, hydrolytic
protease, animal protease, and trypsin, were utilized to hydrolyze the tilapia bone. The
hydrolysis conditions are shown in Table 1. After hydrolysis, the enzyme was deactivated
in a 100 ◦C water bath for 10 min. The hydrolysates were centrifuged (6000× g, 10 min)
after cooling to room temperature, and the supernatants were collected and frozen.

Table 1. Hydrolysis temperature, pH, and time of nine proteases.

Types E/S/% Temperature/◦C pH Time/h Source Type

Papain 2.5 55 7.0 4 Vegetal Endopeptidase

Flavoring protease 2.5 55 7.0 4 Microbial Endo and
exopeptidase

Complex protease 2.5 55 6.0 4 Microbial Endopeptidase
Neutral protease 2.5 50 7.0 4 Microbial Endopeptidase

Basic protease 2.5 55 9.0 4 Microbial Endopeptidase
Pepsin 2.5 37 2.0 4 Animal Endopeptidase

Hydrolytic protease 2.5 60 7.0 4 Microbial Endopeptidase
Trypsin 2.5 37 8.0 4 Animal Endopeptidase

Animal protease 2.5 50 7.0 4 Animal Endo and
exopeptidase

3.3. Determination of DH

Ninhydrin colorimetry was used to determine the DH in each enzymatic hydrolysate [18],
and the content of protein in the hydrolysate was determined by Kjeldahl definition
nitrogen method. DH was calculated according to Formula (1).

DH (%) = C/(N × htot) × 100% (1)

where DH is the degree of hydrolysis (%), C is the content of –NH2 within the hydrolysates
(mmol/L), N is the content of protein in the hydrolysates (mg/mL), and htot is the total
number of peptides bonds per unit weight. The htot for TBEH was 8.41 mmol per gram
of protein.

3.4. Calcium-Binding Capacity Assay

The previous method was used in assessing the calcium binding capability of different
hydrolysates [59]. Approximately 1 mg of sample was mixed in 1 mL of distilled water and
then combined with 2 mL of 5 mmol/L CaCl2 solutions. After adjusting the pH to 7.8 with
0.01 mol/L NaOH, the mixture was incubated for 30 min in 37 ◦C water. Approximately
4 mL of phosphate buffered saline (20 mmol/L, pH 7.8) was mixed, and the mixture was
bathed at 37 ◦C for 30 min. The mixture was then centrifuged for 15 min at 6000× g, and
the supernatant was obtained. The experimental condition for the blank group was the
same as above. The calcium content was determined through flame atomic absorption
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spectrometry (novAA®350, Analytikjena, Germany), and the calcium binding capacity was
computed using Formula (2):

Calcium-binding capacity (µg/mg) = (M1 − M0)/M (2)

where M1 is the content of calcium in the supernatant (µg), M0 is the content of calcium in
the blank solution (µg), and M is the content of protein in the sample (mg).

3.5. Calcium-Binding Peptides

The calcium binding capacities of nine different enzymatic hydrolysates were analyzed.
The hydrolysate with the highest calcium binding capacity was investigated, noting TBEH.
TBEH was separated utilizing an RP-HPLC system and a SHIMADZU C-18 preparation
column (20 × 250 mm, Shimadzu, Japan). The mobile phase A was 0.1% TFA in acetonitrile
and mobile phase B was 0.1% TFA in water. The elution gradient was 8–75% A for 35 min.
The flow rate was 10 mL/min and the absorbance was determined at 220 nm. Each peak
fraction was collected, and its calcium binding capacity was determined.

A semi-preparation column SB-C18 ZORBAX (9.4 × 250 mm, Agi-Lent Technologies,
Santa Clara, CA, USA) was further used in separating the fraction with the highest calcium
binding capacity. The mobile phase A was 0.1% TFA in acetonitrile and mobile phase B
was 0.1% TFA in water. The flow rate was 2 mL/min. The elution gradient was 8–35% A
for 28 min. The absorbance was determined at a wavelength of 220 nm. Each peak fraction
was collected, and calcium binding capacity was determined. The calcium-binding capacity
of the fraction with the highest potential was further analyzed.

3.6. Identification of Amino Acid Sequence

Ultra-performance liquid chromatography quadrupole orbitrap mass spectrometry
(UPLC-Q-Orbitrap-MS2, Q-ExActive, Thermo Fisher Scientific, Waltham, MA, USA) was
used in evaluating the peptide in the fraction separated with our previous method [60]. De
Novo TM Software (Peak Studio 7.5, BioInfor-Matics Solutions, Inc. Waterloo, ON, Canada)
was used in identifying the peptide’s amino acid sequence and molecular weight. The
peptide with a high average local confidence (ALC) value (>85%) was considered for
further analysis.

3.7. Preparation of Calcium–Peptide Chelate

The chelating process was used in producing the peptide–calcium chelate. In brief,
2 mL of CaCl2 (5 mM) was mixed with 1 mL of peptide (1 mg/mL), and the pH was adjusted
to 7.8 with 10 mM NaOH. The mixture was bathed at 37 ◦C for 30 min. Approximately
4 mL of phosphate buffer solution (20 mM, pH 7.8) was added into the mixture at 37 ◦C
for 30 min. The mixture was centrifuged at 6000× g for 10 min for the preparation of the
calcium–peptide chelate.

3.8. Structure Characterization of the Calcium–Peptide Chelate
3.8.1. FTIR

The purified peptide and calcium–peptide chelate (10 mg) were evenly ground with
100 mg of dry KBr. The samples were scanned using a Fourier transform infrared spectrom-
eter (Alpha, Bruker Optics, Ettlingen, Germany) at a scan range from 4000 to 400 cm−1, and
the absorption spectra were measured.

3.8.2. XRD

The purified peptide and calcium–peptide chelate (10 mg) were ground and placed
in the sample area. XRD spectra were recorded with an X-ray diffractometer (Empyrean,
Panalytical B.V. Netherlands). The scanning speed was 4◦/min and the scanning angle (2θ)
was 5◦–90◦.
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3.8.3. UPLC-Q-Orbitrap-MS2

UPLC-Q-Orbitrap-MS2 was used in evaluating the purified peptide and calcium–
peptide chelate [61]. The UPLC conditions were as follows: Hypersil Gold C18 col-
umn (2.1 × 100 mm, Thermo Fisher Scientific, USA); mobile phase A, 0.1% formic acid–
acetonitrile; mobile phase B, was 0.1% formic acid–water; elution gradient, 5–95% A for
24 min; flow rate, 0.2 mL/min; and injection volume, 2 µL. The absorbance was monitored
at 220 nm. The working conditions of the mass spectrometer were as follows: bombardment
volume, 20 eV; spray voltage, 3.6 kV; and flow rate, 5 L/min. In positive ion mode, the m/z
spectrum from 120 to 1800 was scanned.

3.8.4. Construction of the Possible Molecular Modes

The initial structure of the calcium–peptide chelate was obtained by using the online
peptide structure builder PEP-FPLD.

3.9. Molecular Docking

Molecular docking was carried out in SYBYL-X 2.0 software. The structures of the
peptides were constructed and optimized using a minimization ligand scheme in STBYL-X
2.0 software. Two integrins (PDB: 1L5G and 3VI4) were downloaded in the database.
The interaction of DGPSGPK and two integrins was analyzed, and T-score, hydrogen
bond, and bond distance were calculated using SYBYL-X 2.0 software. If the T-score
score was higher than 6.0, the rustles were accepted. The electrostatic potential energy
and secondary structure of the protein were produced using Pymol software and Ligplus
software, respectively.

3.10. RAW264.7 Cell Culture

RAW264.7 cells were cultured in Dulbecco’s modified Eagle medium (DMEM) con-
taining 10% PBS and 1% penicillin/streptomycin at 37 ◦C and 5% CO2. RAW264.7 cells
at logarithmic growth stage were seeded in 96-well plates with 1 × 105 cells/well. The
cells were incubated for 24 h to adhere to the wall. The medium was removed and the
samples with different concentrations (0, 200, 400, 600, 800, 1000 µg/mL) were added
and incubated for 24 h. The cell viability was measured using MTT assay. In brief, the
medium was aspirated, 150 µL of MTT was added and incubated for 4 h. The medium was
poured out and 150 µL of DMSO was added and shaken for 10 min. The absorbance values
were measured at 570 nm using an enzyme marker (Spectra Max M5; Molecular Devices,
Sunnyvale, CA, USA).

3.10.1. TRAP Activity Assay

RAW264.7 cells were cultured with 50 ng/mL receptor activator of NF-κB ligand
(RANKL) and the medium was replaced every 2 days. After 5 days, RAW 264.7 cells
were differentiated into osteoclasts. The cells were cultured with the sample of different
concentrations for one day. TRAP activity of the cells was measured using the relative kit.

3.10.2. TRAP Staining

The RANKL-induced osteoclasts were plated in 48-well plates at 1 × 105 cells/well and
cultured with the sample with different concentrations of sample (0, 200, 500, 1000 µg/mL)
for one day. The cells were stained using the TRAP/ALP stain kit.

3.11. MC3T3-E1 Cell Culture and Staining

MC3T3-E1 cells were cultured in α-minimum essential medium (α-MEM) containing
10% PBS and 1% penicillin/streptomycin at 37 ◦C and 5% CO2. MC3T3-E1 cells at loga-
rithmic growth stage were seeded in 96-well plates with 1 × 105 cells/well. The cells were
incubated for 24 h to adhere to the wall. The medium was removed and the samples of
different concentrations (0, 200, 400, 600, 800, 1000 µg/mL) were added and incubated for
24 and 48 h. The cell viability was measured using MTT assay.
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MC3T3-E1 cells were plated in 24-well plates at 2 × 105 cells/well. MC3T3-E1 cells
were cultured in medium containing 10 mM β-glycerophosphate, 50 µg/mL ascorbic acid,
and the samples of different concentrations (0, 200, 800 µg/mL). The medium was changed
every other day. The cells were stained using TRAP/ALP stain on day 7 and alizarin red
staining on day 21 using the relative kits.

3.12. Statistical Analysis

All examinations were performed three times, and each result was reported as
mean ± standard deviation (SD). SPSS statistics software was used in statistical analysis
(version 19.0, SPSS Inc., Chicago, IL, USA). A p value of <0.05 indicated a significant difference.

4. Conclusions

In this study, animal protease was used in obtaining tilapia bone hydrolysate with
high calcium binding capacity. The hydrolysate delivered a new calcium chelating peptide,
which was identified as DGPSGPK. The structure of DGPSGPK and DGPSGPK-Ca were
identified through FTIR, XRD, SEM, and UPLC-Q-Orbitrap-MS2. The results indicated that
Ca2+ was mainly chelated with the carbonyl and nitrogen groups of Lys and Pro residues.
Molecular simulation showed that the carbonyl groups of Asp, Pro, Ser, and Lys residues
involved the chelating of Ca2+ and peptide. Furthermore, DGPSGPK could effectively
inhibit osteoclast differentiation and increase osteoblast proliferation, differentiation, and
mineralization. This study provided a scientific basis for the preparation of bioactive
peptides and calcium-binding peptides that can be used as functional supplements for
regulating osteoporosis.
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