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Abstract

The ergot diseases of agricultural and nonagricultural grasses are caused by the in-
fection of Claviceps spp. (Hypocreales, Ascomycota) on florets, producing dark spur-
like sclerotia on spikes that are toxic to humans and animals, leading to detrimental
impacts on agriculture and economy due to the downgrading of cereal grains, im-
port-export barriers, reduced yield, and ecological concerns. At least seven phyloge-
netic lineages (phylogenetic species) were identified within the premolecular concept
of C. purpurea s.l. (sensu lato) in agricultural areas and vicinities in Canada and the
Western United States. Claviceps purpurea s.s (sensu stricto) remained as the most
prevalent species with a wide host range, including cereal crops, native, invasive,
and weedy grasses. The knowledge on genetic diversity and distribution of C. purpu-
rea s.s. in North America is lacking. The objective of the present study was to shed
light on genetic differentiation and evolution of the natural populations of C. purpu-
rea s.s. Multilocus DNA sequences of samples from Canada and the Western USA
were analyzed using a phylogenetic network approach, and population demographic
parameters were investigated. Results showed that three distinct genetically subdi-
vided populations exist, and the subdivision is not correlated with geographic or host
differentiations. Potential intrinsic mechanisms that might play roles in leading to the
cessation of gene flows among the subpopulations, that is, mating and/or vegetative
incompatibility, genomic adaptation, were discussed. The neutrality of two house-
keeping genes that are widely used for DNA barcoding, that is, translation elongation
factor 1-a (TEF1-a) and RNA polymerase Il second largest subunit (RPB2), was chal-

lenged and discussed.
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1 | INTRODUCTION

Elucidating the genetic structure of plant pathogen populations that
infect both agricultural and nonagricultural host populations can
provide insight into the evolutionary history of the pathogen popu-
lations, and can be useful for predicting the potential development
of new races, effective population size, dispersal potential, and the
probability for host range expansion or the emergence of more viru-
lent races of the pathogen. The ergot diseases of cereal crops, forage
grasses, native, and invasive grasses are caused by the infection of
Claviceps spp. (Hypocreales, Ascomycota) on florets, producing dark
spur-like sclerotia (Figure 1) on spikes that are toxic to humans and
animals. During the last ten years, the incidence and severity of ergot
in agricultural crops (barley, rye, wheat) as well as forage, native, and
weedy grasses has increased in the eastern and prairies provinces of
Canada (Menzies & Turkington, 2015; Xue et al., 2017) as well as re-
gions of the western United States including barley growing regions
in Colorado, Montana, and Wyoming (Wyka, 2020).

The broad host range of the premolecular C. purpurea s.l. (sensu
lato), including more than 400 species of Poaceae (Alderman et al.,
2004; Campbell 1957; Pichova et al. 2018), and cosmopolitan distri-
bution suggested a potential species complex that was later proven
with evidence pointing toward adaptation to ecological niches
(Douhan et al. 2008; Liu et al., 2020; Pazoutova et al. 2000, 2002,
PaZoutova et al., 2015; Shoukouhi et al., 2019). At least seven phylo-
genetic lineages (phylogenetic species) were identified within C. pur-
purea s.l. across Canada and the United States, including C. purpurea
s.s. (sensu stricto), C. humidiphila, C. occidentalis, C. perihumidiph-
ila, C. quebecensis, C. ripicola, and C. spartinae (Liu et al., 2020;
Shoukoubhi et al., 2019). Claviceps purpurea s.s. was the predominant
species recovered, with a wide host range including cereal crops
and forage grasses, comprising 90% of samples collected (data not

shown). Host specificity studies under controlled conditions showed

FIGURE 1 Claviceps purpurea sclerotia on grasses Elymus repens
in the field heads (background), the asexual stage in honeydew
after inoculating a barley plant in greenhouse (upper inset), and the
sexual stage produced from a germinating sclerotium in a controlled
environment (bottom inset)

virulence variations between the C. purpurea s.l. isolates (Cagas &
Machéa¢, 2002; Menzies et al., 2017), suggesting genetic variation
between isolates. Previous pathogenicity and population studies of
C. purpurea likely included multiple species within C. purpurea s.l. and
therefore may not accurately represent the population dynamics of
this fungus (C. purpurea s.s., Cagas & Machac, 2002; Campbell, 1957;
Gilmore et al., 2016).

During an annual life cycle of C. purpurea s.l, both sexual and asex-
ual propagules are produced and cause infections. The primary infec-
tion occursin spring or early summer by windborne ascospores (sexual)
released from ascostromata developed from overwintered sclerotia.
While the infection of late flowering plants is primarily caused by sec-
ondary inocula in the form of asexual conidia, which is immersed in
honeydew that oozes from florets and is transmitted by insect vec-
tors, rain splash, or direct head-to-head contacts (Figure 1; Campbell &
Freisen, 1959; Tenberge, 2006). Global commercialization of the seeds
contaminated with ergots (sclerotia) can lead to human-mediated
long-distance dispersal (Munkvold, 2009). The annual sexual repro-
duction within the population likely results in genetic recombination
among the strains in the field, increasing genotypic diversity. However,
this would also homogenize populations preventing population differ-
entiation. Meanwhile, the abundance and polycyclic nature of asexual
secondary propagules may contribute to shaping clonal population
structures (Milgroom, 2015c). The observed fluctuation of disease
incidence in western Canada and the United States may reflect a pop-
ulation bottleneck and expansion causing genetic drift that could have
also impacted the population structure (Menzies et al., 2017). To elu-
cidate which forces have impacted on the evolution of this fungus in
nature, an insight to the population structure is imperative.

Multilocus genotyping data combined with population network
analyses can be used to explore genetic differentiation and evolution
of natural populations. Phylogenetic network analyses are suitable
for reticulate relationships caused by various population processes,
that is, recombination, gene conversion, lineage sorting, and deep co-
alescence (Posada & Crandall, 2001). This provides a better inference
of the relationships among populations than strict phylogenetic anal-
yses assuming a bifurcate evolutionary pattern (Bapteste et al., 2013;
Morrison, 2005). Population demographic parameters reflect the sig-
natures of the natural forces that have shaped the population's struc-
ture (as reviewed by Charlesworth & Charlesworth, 2017). The main
objective of this study was to investigate the population structure of
the ergot fungus, C. purpurea s.s in Canada and Western USA to de-
termine whether the population represents a single panmixia or sub-
divide to several populations, and whether or not these subdivisions

are influenced by geography and/or host association.

2 | MATERIALS AND METHODS
2.1 | Fungalisolates and DNA sequences

Floret samples infected by Claviceps purpurea were collected from

agricultural areas and vicinities in Canadian provinces and Western
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United States: Alberta (AB), Manitoba (MB), Ontario (ON), Quebec
(QC), Saskatchewan (SK), and Colorado (CO), supplemented
with occasional samples from British Columbia (BC), Montana
(MT), Newfoundland (NL), Nova Scotia (NS), and Wyoming (WY).
Sclerotia from the same host and location (<100 m?) were pooled
as one sample, as such a total of 303 samples were obtained.
Axenic fungal cultures were isolated and purified for 252 samples;
other 51 samples were as sclerotia without pure culture (collected
from ON and QC in 2016, also see the Table S1). For genomic DNA
(gDNA) extraction, a small portion of mycelia from axenic cultures
(252 samples) was plucked or a fraction of the sclerotia (51 sam-
ples) was taken after surface sterilization. A high-throughput pro-
tocol was used on a KingFisher Flex magnetic particle processor
(Thermo Fisher Scientific Oy) with Macherey-Nagel NucleoMag®
96 Trace kit (Machery Nagel GmbH & Co. KG) following the manu-
facturer's manual. All fungal isolates, sources (culture or sclero-
tium), hosts, and locations were provided in Table S1. All gDNA
samples were subjected to PCR for four gene regions: RNA
polymerase Il second largest subunit (RPB2) using Claviceps spe-
cific forward primer TTTCGTGGTATTGTTCGCAGA (Pazoutova
et al., 2015) and fRPB2-7cR (Liu et al., 1999), translation elonga-
tion factor 1-o (TEF1-a) using EF1-983F and EF1-2218R (Pazoutova
et al,, 2015; Rehner & Buckley, 2005), ergot alkaloid chanoclavine
| synthase oxidoreductase (easE) using easE996f and easE1895r,
and ergot alkaloid chanoclavine | aldehyde oxidoreductase (easA)
using easA547f and easA867r (Shoukouhi et al., 2019). PCR and
sequencing followed the protocols developed by Shoukouhi
et al. (2019). Twenty-four reference sequences of 14 related spe-
cies were downloaded from GenBank to be used for confirming
the identities of all 303 samples (Table S1).

2.2 | Data analysis

The DNA sequences for each gene were aligned using online version
MAFFT (Katoh et al., 2017), accessed on 02-02-2020 with auto strat-
egy (FFT-NS-1, FFT-NS-2, FFT-NS-i or L-INS-i; depends on data size).
The resulting alignments were eye-adjusted: Big gaps at both ends
due to unequal length of sequences were removed by shortening
alignments; short indels (1-2 nts) in the middle due to polymers were
adjusted so that the coding regions can be properly assigned (all the
gene regions amplified are exons). The alignments of four genes were
concatenated using Geneious Prime v.2020.1.2 (https://www.genei
ous.com), and missing loci were treated as gaps. To confirm the iden-
tities of all samples, the concatenated alignment was appended with
the 24 reference sequences of 14 related species, and subjected to
a phylogenetic analysis using PAUP* 4.0b10 (Swofford, 2002). The
most parsimonious trees were searched for using heuristic branch-
swapping algorithm, tree-bisection-reconnection (TBR), 100 rep-
licates, number of rearrangements per replicate limit 5,000, and
bootstrap replicates 2000.

A subset of samples that have been sequenced for all four genes

was submitted to population demographic analyses and network

analyses as follows. The analyses of DNA polymorphism, nucleotide
diversity, haplotype diversity, and neutrality were performed using
dnaSP v6.10.04 (Rozas et al., 2017) for the individual genes and
concatenated matrices. Testing for neutrality was evaluated using
Tajima's D with total number of mutation (Tajima, 1989), Fu, and Li's
D* and F*(Fu & Li, 1993). Haplotypes were generated and analyzed
for each gene and concatenated alignment.

Phylogenetic network analyses were conducted for the haplo-
types of concatenated DNA sequences using SplitsTree4 V4.14.8
(Huson & Bryant, 2006). A neighbor-net method with four differ-
ent variance calculations was tested, that is, ordinary least square,
FitchMargoliash1,
The clustering patterns were further tested using BEAST2 v2.5

FitchMargoliash2, and Estimated variance.

(Bayesian evolutionary analysis sampling trees) with a multilocus
coalescent model (Bouckaert et al., 2019), which estimates rooted,
time-measured phylogenies. The best-fit models for each partition
genes were selected by Akaike information criterion (AIC) or hierar-
chical likelihood ratio tests (hLRTs) through Modeltest 3.7 (Posada &
Crandall, 1998), that is, GTR or TrN for TEF1-a, K81 + 14+G for RPB2,
TVMef + 1+G or K80 + I+G for eask, and SYM + | or K80 + G for
easA. Only four substitute model options (JC69, HKY, TN93, and
GTR) were available in BEASTv2.5, and therefore, we set GTR for
TEF1-a, and HKY for the other three genes (HKY was considered
as an extension of K80, and K81 models). Other priors were set as
default, 10,000,000 generations, sampling frequency 1,000, burn-in
10%, and link trees. Resulting phylogenies were visualized using
DensiTree v 2.0.0 (Bouckaert & Heled, 2014). To further test the
evolutionary trajectories inferred by BEAST, we performed phyloge-
netic analyses for the haplotypes aligned with closely related species
and out-groups using PAUP* 4.0b10. The heuristic search protocols
were the same as described earlier.

Genetic differentiation between subpopulations (genetic clus-
ters, abbreviated as GC in the following text, tables and figures) was
further tested by the analysis of molecular variance (AMOVA, with
9,999 permutations) and the principle coordinate analysis (PCoA)
in GenAlEx 6.5 (Peakall & Smouse, 2012). The haplotype-SNP ma-
trix from the concatenated alignment was used to generate a pair-
wise individual-by-individual (N x N) genetic distance matrix, which
was used for subsequent calculation of @ (analogous of FST) via
AMOVA between subpopulations (genetic clusters), PCoA, Mantel,
and spacial autocorrelation analyses.

The sequence-based statistics, S, measuring the frequency in
which the “nearest-neighbor” sequences or haplotypes belong to
the same subpopulation, were considered suitable for both high
haplotype diversity and low haplotype diversity (Hudson, 2000). S |
and gene flow parameter, N, the migration number per generation
(Nei, 1982) was estimated in DnaSp vé.

Next, we investigated whether the genetic differentiation re-
vealed by phylogenetic networks and statistic tests were correlated
with geographic separation, or host ranges as follows. Based on geo-
graphic location, 156 samples were separated into three geographi-
cally separated populations: 1. Western Canada (AB, BC, MB, SK); 2.
Eastern Canada (ON, QC, NL, NS); and 3. Western US (CO, MT, WY)
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FIGURE 2 Geographic locations of studied samples, and designation of geographic regions: western Canada (CAW), eastern Canada
(CAE) and western USA (USW). Larger sizes of rhombus marks indicate more samples

(Table 1, Figure 2). We examined the differentiation among three clusters with three major host groups were examined: (a) Bromeae

geographic regions by genotypic components, AMOVA, PCoA, and (Bromus, 32 haplotypes); (b) Noncrop Triticeae (Elymus, Pascopyrum,

pairwise genetic differentiation, @, statistics, and compared with Thinopyrum, 56 haplotypes), and (c) Crop Triticeae (Hordeum, Secale,
the estimates for genetic clusters. To test for isolation by distance, Triticum, Trirticale, 36 haplotypes). The two haplotypes on Avena
we conducted Mantel tests to understand the correlation between (Aveneae) and other. Other 22 haplotypes were not included in the
genetic distances and geographic distances. For calculating geo- analyses because their host species belonged to distant taxa and
graphic distance, the approximate XY coordinates were obtained small sample size. Genetic differentiation among these three host
from converting the center of the named locations (town/city/agri- groups was examined through AMOVA, PCoA, and pairwise genetic
cultural district, Table 1). For a few haplotypes shared by multiple lo- differentiation, @, statistics, and compared with the estimates from
cations, the medians of coordinates were used. All these tests were genetic clusters.
performed in GenAlEx 6.5. To understand the characteristics of each subpopulations,
Besides geographic isolation, host specialization is considered the allelic pattern was examined in GenAlEx through the param-
another major force driving population subdivision in plant pathogen eters: N, (number of different alleles), N, (humber of effective al-

populations (Milgroom, 2015a). The correlations between genetic leles = 1/(ZP‘.2), I (Shannon's information index = -=1* 3 (P, * Ln (P)))),

TABLE 2 DNA polymorphism and neutrality of each loci

DNA polymorphism

Number of Variable  Ratio of Number of  Haplotype
sequences Site? sites variable sites haplotypes diversity Nucleotide diversity
Parsimony

Loci N TS S S/TS Singleton informative h Hd + SD Pi+ SD
TEF1 227 648 37 0.0571 23 14 31 0.74 + 0.027 0.0024 + 0.00021
RPB2 204 693 43 0.062 26 17 44 0.82 + 0.019 0.0030 + 0.00018
easE 264 756 96 0.127 39 57 94 0.95 +0.008 0.0144 + 0.00023
easA 274 246 19 0.0772 2 17 28 0.91 + 0.007 0.0119 + 0.00042

Q¥

significant at indicated level, i.e. .01, or .02.
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h (haploid genetic diversity =1-3 P,?), where P, is the frequency of
the ith allele for the population; Y, P,? is the sum of the squared pop-
ulation allele frequencies. Nucleotide diversity (z), mutation rate (6),
recombination parameter (R), linkage disequilibrium, and neutrality
were tested in DnaSP vé. The recombination parameters include R
per gene (ng recombination rate per generation between the most
distant sites), R per adjacent sites (R,), and minimum recombination
events (R ). The parameter for linkage disequilibrium was the Kelly's
Z ¢ statistic measuring the overall association between polymorphic
sites (Kelly, 1997), the average r? of all pairwise comparison (Hill &
Robertson, 1968), Rozas' Z,, (association between adjacent polymor-
phic sites), and ZZ (= Z ¢ - Z,) (Rozas et al., 2001). We compared the
estimated recombination and linkage disequilibrium from each GCs
with the combined populations. The rationale is that a higher level of
recombination and lower level of LD is expected in subpopulations
(genetic clusters) than in the combined population if the population
was subdivided. Neutrality tests were conducted using Tajima's D,

Fu, and Li's D* and F* to find any evidence of selection in each GC.

3 | RESULTS
3.1 | DNA sequences for each locus

Varied number of sequences was obtained from each locus: 227 for
TEF1,204 for RPB2, 264 for easE, and 274 for easA, among which 156
samples were successfully amplified for all four genes. All sequences
were submitted to GenBank (see Data Accessibility, Table S1). The
alignment of each gene resulted in matrices: TEF1-a 648 sites with
227 sequences, RPB2 693 sites with 204 sequences, easE 756 sites
with 264 sequences, and easA 246 sites with 274 sequences. The
matrix of concatenated sequences of four genes along with refer-
ence sequences composed of 327 sequences and 2,345 characters.
The most parsimonious trees showed that 303 samples grouped
with ex-neotype of C. purpurea s.s. (DAOMC 251723 = CCC771) as
a clade with a 94% bootstrapping support (Figure S1) with predomi-
nant internal branches having supports lower than 70%, indicating
the 303 samples belonged to a single species C. purpurea s.s.
Analyses of DNA polymorphism showed that easE had a much
higher proportion of variable sites (0.127), haplotype, and nucleotide

TABLE 2 (Continued)
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diversities (0.950 + 0.008, 0.0144 + 0.00023), than three other
genes. TEF1-a was the least variable (Table 2). For neutrality tests,
easA showed nonsignificant deviation from neutrality based on
all parameters (Tajima's D, Fu & Li's D*, Fu & Li's F*); easE showed
nonsignificant deviation based on Tajima's D, however, significant
at 0.02 critical level based on Fu & Li' D and F; TEF1-a and RPB2
showed significant departure from neutral based on all parameters
at various critical levels (p-value < .01, .02, .05). Overall, Fu & Li's sta-
tistics based on coalescence simulation, as expected, showed more
sensitive than Tajima's D (Table 2). In general, easA appeared neutral,
easE under slight selection which can only be detected by Fu & Li's
statistics, but TEF1-a and RPB2 were likely under selection, which
could be a result of highly structured population or selective sweep
(see more results for tests in subpopulations and in Section 4).

3.2 | Haplotype analyses

Haplotype diversity varied between genes with the TEF1-a having
31 haplotypes from 227 isolates, RPB2 44 haplotypes from 204
isolates, easE 94 haplotypes from 264 isolates, and easA 28 haplo-
types from 274 isolates. A greater percentage of private haplotypes
were identified in the first three genes, that is, 58% (18/31), 66%
(29/44), and 62% (58/94), while relatively fewer private haplotypes
32% (9/28) were observed for easA (Table S2). For the concatenated
alignment of 156 isolates, 146 haplotypes were identified, among
which one was shared by three isolates, eight haplotypes consisted
of 2 isolates, and all other haplotypes (94%) were unique. Of the nine
shared haplotypes, only three (hap 50, hap 102, hap 115) were found
in more than one region (Western Canada, Eastern Canada; Table 1).

3.3 | Population structure analyses

Three genetically distinct clusters, GC1-3, were recovered on the
network generated by SplitsTree4 V4.14.8, with GC1 being more
distantly related to the other two clusters, GC2 and 3 (Figure 3a).
DensiTree view of the 9,001 resulting trees from BEAST confirmed
the network pattern in that GC1 was clearly separated from oth-

ers, while GC3 was nested inside of GC2. The branching pattern

Neutrality
Theta (per Theta (per Average number of Fu & Li's Fu & Li's
site)from S sequence) from S nucleotide differences Tajima's D p-value D* p-value F* p-value
0-W 0-W k TiD P FulLi D* P FuLi F* P
0.010 6.17 1.54 -2.146 <.01 % -5.835 <027 -5.122 <027
0.011 7.30 2.04 -2.179 Ol = -6.142 <02 -5.311 <02
0.021 15.61 10.92 -1.112 >.10 n.s. -5.015 <02 -3.750 <02
0.012 3.07 292 -0.251 >.10 n.s. 0.131 >.10 n.s. -0.027 >.10n.s.
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FIGURE 3 Network analyses

based on 146 haplotypes of four-locus
concatenated sequences using SplitsTree4
V4.14.8 (a) and BEAST v2.5 (b)

GC3

(b)

also suggested that the divergence between GC1 and the other two
clusters was more ancestral, while GC3 from GC2 was more recent
(Figure 3b). The rooted phylogeny of haplotypes supported this tra-
jectory in that GC1 appeared as a paraphyletic group in relationship
to GC2 and GC3, while majority GC2 samples formed a group para-
phyletic to GC3 except three haplotypes located inside of GC3 clade
(Figure S2). The nonreciprocal and incomplete separations of GCs
indicate either recent divergence (intraspecific), or/and the lower in-
ference power of the strict phylogenetic approach compared with
networking analyses at intraspecies level. The separation of three
genetic clusters was also observed in the PCoA analyses showing
GC1 clearly separated from other samples, while the separation be-
tween GC2 and GC3 was not clear-cut (Figure 4a).

Genetic differentiation among the genetic clusters was statisti-
cally significant (®p,, = 0.445, S = 0.991), with very limited gene

GC2

flow (N, = 0.46; Table 3). Populations of C. purpurea s.s. were also
significantly differentiated based on geographic regions using the
permutation tests; however, S, (0.5808) was close to 0.5 and the
PCoA did not ascertain geographic separation, indicating subpopu-
lations were not strongly differentiated and likely belong to the same
population (Hudson, 2000). In addition, molecular variance within
geographic regions (96%) was much higher than that among the re-
gions (4%). The measure of population subdivision (®,,), was much
lower (0.036 versus 0.445), and gene flow level (N = 6.27) was
much higher than among three genetic clusters. The differentiation
among three host groups was not statistically significant and had a
higher level of gene flow (N, = 9.31; Table 3). PCoA analyses did not
separate geographic regions or host groups (Figure 4b,c).

The pairwise comparison of genetic differentiation between

genetic clusters, geographic regions, and host groups showed that
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FIGURE 4 Principal coordinate analyses (PcoA) of 146
haplotypes using GenAlex 6.5. Populations were assigned based on
genetic cluster (a), geographical regions (b), and host groups (c)

three genetic clusters were significantly differentiated from each
other, and the values of @, and Nei's D between GC1 and GC3

were the greatest (0.51, 0.088). Pairwise comparisons between

TABLE 3 Analysis of molecular
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Western U.S. and Canadian regions (CAE, CAW) were also statis-
tically significant; however, the level of the differentiation as esti-
mated by @, values and Nei's D was an order of magnitude lower
than those between genetic clusters (Table 4). The differentiation
between populations associated with host groups Bromeae and
Triticeae was close to being significant (@, = 0.023, p-value .056)
and was not significant between crops and each grass tribe (Table 4).
These patterns can also be observed by examining the percentage
of GCs in each geographic region and host group. In western US re-
gion, which is comprised of intermountain regions in Colorado and
Wyoming, isolates belong to the genetic cluster GC3 were the most
abundant, composing 70% of the C. purpurea isolates recovered. The
GC3 genetic cluster was also the most frequently observed popu-
lation in western Canada (41%) (Figure 5a). However, GC1 was the
most abundant population in eastern Canada, comprising 47% of the
isolates recovered (Figure 5a). In all region, GC2 was the least abun-
dant genetic cluster observed, never representing more than 22% of
C. purpurea isolates recovered (Figure 5a). Mantel test on isolation
by distance revealed a low correlation between genetic distances
(among the haplotypes) and the logarithm of geographic distances,
with very low value of r (0.052), however, p-value = .010, indicating
significant nonrandom distribution of haplotypes (Figure 6). For host
groups, the Crops (Triticeae) and Bromeae groups had higher GC3
(47%, 44% respectively) than GC1 (36%, 22%), while Triticeae (non-
crops) groups had a higher percentage of GC1 genotype (46%) than
GC3 (38%) (Figure 5b). Bromeae group had a higher percentage of
GC2 (34%) genotype than the other two groups.

3.4 | Demographics of genetic clusters

Allelic analyses of haplotypes showed that GC1 had a slightly higher
number of effective alleles N, = 1.13 than GC2 (1.11) and GC3 (1.09),

. L G hi
variance and sequences-based statistics . A e?grahp ¢ C
R R Genetic clusters regions Host groups
for genetic clusters, geographic
populations, and host groups Parameters p-value p-value p-value
Molecular variance among  45% 4% 1%
populations
Molecular variance within 55% 96% 99%
populations
Dpr 0.445 .001*** 0.036 .003** 0.011 .106ns.
Son 0.99145 .0000***  0.5808 .000*** 0.376 .251n.s.
N 0.46 6.27 9.31

m

Abbreviation: ns, not significant.

Clusters inferred by SplitsTree and BEAST analyses.

bPopulations defined by geographic regions, that is, Eastern Canada, Western Canada, Western US.

“Three populations compared: Bromeae, Triticeae (noncrops), and crops in Triticeae.

dMolecular variance among and within populations, @, (analog of F¢;), were estimated using
GenAlEx; S, (Hudson, 2000) and N, (Nei, 1982) estimates of gene flow (migration number per
generation) were from dnaSP.

*.01 < p<.05; **.001 < p<.01; ***p < .001.
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TABLE 4 Pairwise genetic differentiation measured as @ (analogous of F¢), and N,; genetic distance between genetic clusters,
geographic populations, and host groups
Genetic clusters Geographic regions Host groups
GC1 GC2 GC3 CAE CAW usw Crops Triticeae Bromeae
GC1 0.057 0.088 CAE 0.003 0.012 Crops 0.003 0.004
GC2 0.38*** 0.040 CAW 0.007™ 0.008 Triticeae 0.001™ 0.006
GC3 0.51*** 0.34*** Usw 0.07*** 0.044*** Bromeae 0.008"™ 0.023*

Note: Upper diagonal listed N ; genetic distances, below diagonal @, Values, p-value by 9,999 permutation test ***<.01, **<.05, *<.1, ns > .1

(a)

1.20
1.00

0.80

CAE CAW usw

(b)
1.2

-

0.8
0.6

0.4

mGC3
0.2
=GC2

mGC1

Crops Triticeae Bromeae

FIGURE 5 Percentages of three genetic clusters in three
geographic regions (a), and three host groups (b)

highest allelic diversity measured as Shannon's information index
| = 0.144, and haploid genetic diversity h = 0.083. GC3 had highest
total allele number (N, = 1.66), rare (frequency < 5%), and private
allele frequencies (0.48, 0.34; Figure 7). Analyses of DNA sequences
of 156 samples in DnaSP v6 showed that GC1 had slightly higher
nucleotide diversity (= = 0.00555), while GC3 had higher mutation
rates per site and per sequence (9 - w = 0.0083, ® - W = 19.450).
Neutrality tests based on Tajima's D, Fu, and Li's D* and F* all sug-
gested GC3 was under significant selective pressure. GC1 was under
detectable pressure based on Fu and Li's D* (p-value < .1), but not
based on Tajima's D and Fu and Li's F*. GC2 was not under selection
based on all parameters (Table 5). Two of the recombination param-
eters of the combined population of all three populations (Rg =61.5,
R, = 0.0262) were lower than the three genetic clusters indepen-
dently. These parameters were the highest in GC2 (176, 0.0751),
further supporting population subdivision. Combination of GC1 and
GC2 resulted in lower values of Rg (109) and R, (0.0465) compared
with each individual genetic clusters (GC1: Rg =112, R, = 0.0478;
GC2: Rg =176,R,=0.0751). The same pattern was shown when GC1
and GC3 were combined (Table 6). This pattern can be interpreted as
the result of the reduced random mating between GC1 and GC2, and
between GC1 and GC3. However, when GC2 and GC3 were com-
bined, intermediate values of Rg (82) and R, (0.035) were resulted,
which is consistent with the result of PCoA analyses showing the
incomplete separation between GC2 and GC3 (Figure 4a). The esti-

mated minimum recombination events in the combined populations
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(R, = 13-18) were higher than the individual GCs (9-14). A likely
explanation could be that R was affected by the sample sizes in that
the combined population had a larger sample size (N = 85-156 sam-
ples) than three GCs (N = 55, 30, 71 samples, respectively). The es-

timates of LD parameters, Z , Z_, ZZ, Wall's B, and Q, were very low

ns?
(<0.1, or = 0) suggesting frequent recombination in GCs and among
GCs in general. In comparison with individual GCs, the lower values
of combined populations, that is, GC1 with GC2, and GC1 with GC3,
could suggest the lower recombination during selective sweeping

between GC1 and GC2 and between GC1 and GC3 (Kelly, 1997).

4 | DISCUSSION

Our study is the first in-depth investigation of the population struc-
ture of C. purpurea s.s (excluding previously identified phylogenetic
species) in Canada and western USA using multilocus genotyping.
The results from the network analyses (Figure 3), AMOVA (Table 3),
PCoA (Figure 4), and demographic parameters (Hudson's S, Nei's
genetic distance and N, ; Tables 3 and 4) clearly demonstrated the
existence of three genetic clusters (GC1-3; Figure 3) that co-exist
throughout Canada and western U.S. on agricultural and nonagricul-
tural grass species.

Coalescence analyses suggested a relatively recent divergence
of GC3 from GC2, whereas the divergence between GC1 and GC2
was more ancestral (Figure 3b). This evolutionary trajectory was
supported by the rooted phylogeny (Figure S2) and by demographic
parameters; that is, GC1 and GC2 had higher estimates of effec-
tive allele number, allele richness (Shannon's information index),
haploid diversity, and nucleotide diversity than GC3 (Figure 7,
Table 5). Moreover, GC3 had higher mutation rates (9 - w = 0.0084,
® - w = 19.35), higher rare, and private alleles and showed the de-
viation from neutrality, indicating GC3 is likely experiencing recent
fast adaptation under selective pressure. The separation of three
genetic clusters seems consistent with what was found in Oregon
and Washington using simple sequence repeat markers (Gilmore
et al.,, 2016). In that study, four groups were recovered: Group 1 was
distantly related to other three groups, and later determined to be
a different species, C. humidiphila (Pazoutova et al., 2015). Groups 2

and 3 were more closely related to each other than to group 4. It is

likely that group 4 identified by Gilmore et al. (2016) corresponds to
GC1 in this study, and the other two groups correspond with GC 2
and GC3 in our study.

High levels of genetic variation and a high proportion of private
and rare haplotypes in each genetic cluster suggest a rapid expan-
sion and disruptive selection after introduction or genetic drift
(bottleneck) and limited gene flow between the genetic clusters
(Milgroom, 2015b). Since neither geographic location nor host range
seem to be creating barriers among the three GCs, some other evo-
lutionary force must be maintaining the separate populations. Sexual
or vegetative incompatibility, another potential mechanism, might
be maintaining this division. Reduced recombination between GC1
with either GC2 or GC3 was demonstrated by the comparison of
Z,and ZZ7)

within and between the GCs (Table 6). In addition, during a sclero-

estimates for recombination rates (Rg andR)and LD (Z
tium germination experiment for a companion study, Liu et al. (2020)
observed an interesting phenomenon that raised several questions
regarding sexual reproduction in Claviceps species. Several sclerotia
of C. ripicola (a close relative of C. purpurea), after chill treatment
and incubation for 8-10 weeks, produced tiny buds on sclerotia,
and then, these buds stopped growing up to normal stromata (Liu
et al., 2020). The authors speculate that the abortion might be due to
the absence of a compatible partner. Although Esser and Tudzynski
(1978) demonstrated that heterokaryosis is not required for the
completion of the life cycle in C. purpurea, other studies reported
heterokaryosis occurred frequently on sclerotia and occasionally in
artificial media (Amici et al., 1967; Tudzynski, 2006). Mating between
different strains can be obtained by inoculating rye florets with
mixed conidial suspensions (Tudzynski et al., 1982). If homothallism
is the most common state for C. purpurea s.s., this would also help
to maintain the three distinct genetic clusters. The occasional out-
crossing may result in novel lineages, perhaps even GC3. However,
an in-depth understanding of genetic mechanisms in Claviceps is
lacking. Vegetative compatibility has been applied for intraspecific
classification of many sexual and asexual fungal species, including
species closely related to ergot fungi, that is, Epichloé spp. (Chung &
Schardl, 1997; Leslie, 1993), but has been understudied in Claviceps.
The modest progress in genetic studies in Claviceps has been at-
tributed to the technical challenges (Tudzynski, 2006), including long

generation time, complex conditions for obtaining sexual progeny,
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TABLE 5 Genetic diversity and neutrality of genetic clusters based on four genes concatenated alignment

Neutrality

Genetic diversity

Fu & Li's

F*

Fu & Li's
D*

Theta (per

Theta (per site)

from S?

Number of Nucleotide
diversity

Number of
sequences

p-value p-value

p-value

Tajima's D

sequence) from S

haplotypes

p

Fu & Li F*

p

Fu & Li D*

p

Tim D

7w+ SD

N

Subpopulation

>.1ns

-1.9198
-0.9825
-3.7277
-3.8362

*

<1

-1.8955
-0.9500
-4.0161
-4.8238

>.10 ns

-1.1285
-0.5919
-1.7398
-1.326

18.577
13.126
19.45

27.205

0.0079 + 0.0009
0.0056 +0.0008
0.0084 + 0.0009

0.0056 +0.0003
0.0048 + 0.0002

53
29
64
146

55
30
71
156

GC1

>0.1ns
<.02%**

>.1ns

>.10ns
<.1*

GC2
GC3

<.02***

0.0041 + 0.0002
0.0072 + 0.0124
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<.02***

<.02***

>.10 ns

0.0116 + 0.0009

Combined

unstable asexual proliferation, and frequent degeneration of vege-
tative growth. However, PCR-based assays could be optimized for
testing large sample sizes (Yokoyama et al., 2004), and high-through-
put techniques in recognizing vegetative compatible groups could
also help overcome some of these obstacles and improve our
understanding of genetic recombination in Claviceps purpurea
(Papaioannou & Typas, 2015; Salman et al., 2015). Understanding
the mating systems and vegetative compatibility in C. purpuea pop-
ulations would help to identify reproduction barriers and shed light
on the mechanisms of population subdivision in Claviceps purpurea.
The genomes of the members in three GCs may also be evolving
and adapting to other environmental pressures, resulting in subpop-
ulations remaining separated. A recent comparative genomic analy-
sis of the genus Claviceps found that species in the section Claviceps,
such as C. purpurea, have adaptive genomes through colocalization
of transposable elements around predicted effectors and a putative
loss of repeat-induced point mutation (Wyka, Mondo, Liu, Dettman,
et al., 2020). This has resulted in unconstrained tandem gene du-
plication coinciding with increased host range potential and specia-
tion (Wyka, Mondo, Liu, Dettman, et al., 2020). These alterations
in genomic architecture and plasticity can influence and shape the
evolutionary trajectory of fungal pathogens and their adaptability.
Members of the genus Claviceps are renowned for their production
of secondary metabolites, which may serve to improve overall fit-
ness of the organism. A pangenome analysis of 24 genomes found
that C. purpurea has a relatively large accessory genome (~38%)
that is likely maintained by high recombination rates and trans-
poson-mediated gene duplication, but the high recombination rate is
also likely influencing the overall trend of purifying selection across
the genome (Wyka et al., 2020). This purifying or stabilizing selec-
tion may be purging deleterious genetic polymorphisms that arise
from random mutations and transposon-mediated gene duplication.
However, Wyka, Mondo, Liu, Dettman, et al., 2020 did observed evi-
dence of strong positive selection pressure on secondary metabolite
genes and that the IpsA1 and IpsA2 (genes in the ergotamine synthe-
sis pathway) were the results of a recombination event. It is possible
that the combination of positive selection on secondary metabolite
genes with purifying selection across the rest of the genome has
resulted in a more specific, as yet undetected, niche adaptation fol-
lowed by population stabilization that has resulted in the observed
patterns in geographic and host overlap of the three GCs found in

North America.

4.1 | The neutrality of two house-keeping genes
(EF1-o and RPB2)

The initial neutrality tests for each individual gene indicated only
easA was not significantly deviating from neutral, while the other
three genes all showed significant deviation at varied critical levels
(Table 1). This is unexpected as it was generally accepted that house-
keeping genes; that is, TEF1-a and RPB2 are neutral. Structured

population could account for biased estimates of neutrality
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TABLE 6 Recombination and linkage disequilibrium between genetic clusters based on four genes concatenated alignment

Recombination

Linkage disequilibrium

GCs N R, R, R,
GC1 55 112 0.0478 14
GC2 30 176 0.0751 11
GC3 71 65.8 0.0281 9
GC1 +GC2 85 109 0.0465 16
GC1+GC3 126 35.8 0.0153 17
GC2 + GC3 101 82 0.035 13
All 156 61.5 0.0262 18

parameters; therefore, we conducted the tests for separate GCs.
There was no significant deviation in TEF1-a and easE in GC1 and
GC2, but significant deviation from neutrality in GC3 for all three
parameters. RPB2 was neutral in all three GCs with Tajima'D, but
deviated significantly at 0.05 critical level with Fu and Li's D* and
F*, which are more sensitive tests based on coalescence approach.
Overall, it appears that RPB2 is under moderate selection pressure
in all populations, while TEF1-a and easE are under strong selection
only in GC3, which might be associated with the divergence of GC3.
Understandably, easE is experiencing positive selection (as inferred
by a negative value of Tajima'D) because it is common that genes in-
volving secondary metabolite production are under selective pres-
sure (Wyka, Mondo, Liu, Dettman, et al., 2020). The observed high
level of genetic variation (polymorphisms, nucleotide, and haplo-
type diversity) is consistent with the scenario of positive selection.
Compared with easE, TEF1-a and RPB2 are much more conserved.
A likely explanation is that TEF1-a and RPB2 are linked with genes
or regions under positive selection and have undergone “genetic
hitchhiking,” or what is referred to as “selective sweeping.” In this
case, the selective pressure on the region linked with TEF1-a is
higher than on the regions linked with RPB2. Both TEF1-a and RPB2
genes have been widely used in phylogenetics and species barcod-
ing of various fungal groups because of many advantageous fea-
tures including that they are selectively neutral (Brandon Matheny
et al.,, 2007; Geiser et al., 2004; O'Donnell et al., 2009). Our re-
sults challenge this assumption. The situation may vary in different
fungal groups and may or may not always have a significant impact
on the species level studied. In Claviceps, some cryptic species no-
ticeably separated based on RPB2 sequence data but showed very
little variation in TEF1, and vice versa (Liu et al., 2020; Shoukouhi
et al., 2019). A holistic approach is recommended to overcome the
bias caused by either one of these genes. As these two genes are
being considered as a universal secondary fungal barcoding region,

perhaps both genes should be considered.
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