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ABSTRACT: Replica exchange (REX) is a powerful computa-
tional tool for overcoming the quasi-ergodic sampling problem
of complex molecular systems. Recently, several multidimen-
sional extensions of this method have been developed to realize
exchanges in both temperature and biasing potential space or
the use of multiple biasing potentials to improve sampling
efficiency. However, increased computational cost due to the
multidimensionality of exchanges becomes challenging for use
on complex systems under explicit solvent conditions. In this
study, we develop a one-dimensional (1D) REX algorithm to
concurrently combine the advantages of overall enhanced
sampling from Hamiltonian solute scaling and the specific
enhancement of collective variables using Hamiltonian biasing
potentials. In the present Hamiltonian replica exchange
method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the
environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables
associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom.
The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6
to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to
conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the
general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of
complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a
wide range of macromolecular systems.

■ INTRODUCTION
The nitrogen-linked glycans (N-glycans) consist of an oligo- or
polysaccharide that is linked through a glycosidic bond to the
side chain of protein Asn residues. These molecules are
ubiquitous as posttranslational modification of proteins and
serve both structural and functional roles in a broad range of
biological processes as well as being developed for
biopharmaceutical applications.1−4 In N-glycans, the intersac-
charide O-glycosidic linkages are usually formed between the
hemiacetal or hemiketal group and one hydroxyl group of two
contiguous sugar units. The structural diversity of saccharide
molecules associated with various functional groups, stereo-
isomers, glycosidic linkage types, branching patterns, sugar
composition, and sequence makes studies of their conforma-
tional properties challenging. The conformational sampling of
N-glycans includes localized motions around the glycosidic
linkages and long-distance interactions between monosacchar-
ides that are remote with respect to primary sequence, for
example the distance between terminal monosaccharides in
different branches of a polysaccharide. As both types of
conformational properties play key roles in biological

functions,5,6 understanding these properties is motivating
both experimental and computational studies.7−16

Computer simulations have become a powerful tool to
investigate the conformational preference of N-glycans, as well
as other classes of macromolecules, allowing 3-dimensional
(3D) conformational properties to be investigated at an atomic
level.17−24 To gain accurate insights into the conformational
properties, sufficient sampling of the system is required to get
the relative populations of both localized linkages and long-
distance degrees of freedom (DOFs). However, standard MD
simulations are often inefficient in the sampling of the coupled
multilevel motions because of the rugged energy landscape that
is comprised of a variety of structural transitions with different
energy barrier heights. To overcome this, enhanced sampling
methods have been introduced to deal with the quasi-ergodic
sampling problem present in standard MD simulations, among
which replica exchange (REX) is one of the most widely
adopted approaches.25−36
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Building upon the initial development of the REX method,
several extensions have been developed to treat specific
problems, including REX in temperature space (T-REX) or
in Hamiltonian space (H-REX).36−39 In T-REX, the entire
simulation system is propagated at a different temperature in
each replica, and exchange attempts between neighboring
replicas are carried out at a given frequency and accepted
according to the Metropolis criteria. In systems with large
energy barriers involved in the conformational transitions being
targeted, a wide temperature range needs to be used to
efficiently overcome the barriers since the enhanced sampling is
dispersed into all available DOFs in the system no matter
whether they are related to the targeted conformational
transition or not, resulting in an increased number of replicas.
Moreover, the number of replicas increases proportional to the
square root of the system size, and, thus, the sampling efficiency
is reduced for solvated systems where the solvent motion is
often not of direct interest. To date, the largest N-glycan system
studied with T-REX is a solvated biantennary carbohydrate
with 11 sugar units.40,41

To improve the sampling efficiency in solvated systems, REX
with solute tempering (REST42 and subsequently REST243)
was proposed to mainly enhance the sampling of the solute
subsystem with only minimal perturbation of the solvent. The
REST2 method is a Hamiltonian REX (H-REX) method in that
the potential energy function (i.e. the Hamiltonian) of the
solute and of the solute−solvent interactions is scaled as
specified by a temperature-scaling factor such that the potential
energy barriers are lowered at higher replicas by a factor
proportional to the temperature-scaling factors, such that the
approach may be described as solute scaling. This REST2
method overcomes the need for the large number of replicas in
T-REX by omitting the solvent−solvent energies in the
Metropolis criteria. In another H-REX implementation, certain
selected interactions were scaled in different replicas, and thus
the replica number is decreased in comparison to T-REX.39

Although the number of replicas is decreased in REST2 and the
above-described H-REX, for systems in which specific DOFs
(or collective variables) with high energy barriers are targeted,
they do not sample efficiently since the sampling enhancement
is dispersed into all the available DOFs of the subsystem
whether or not they are relevant to the targeted DOFs. To
overcome this the H-REX method was implemented to
enhance sampling of selected collective variables by the
addition of biasing potentials to specifically enhance the
sampling and further reduce the required number of replicas.37

In this way, the sampling enhancement can be concentrated on
a small subset of DOFs with higher energy barriers.44 The
problem with biasing potential H-REX methods is that the
sampling of DOFs other than the defined collective variables
along which the biasing potentials are applied is rarely
enhanced. This is especially problematic in systems for which
the additional DOFs significantly impact sampling of the
targeted collective variable as well as in systems where collective
variables are hard to identify or define.25,45,46 In summary, both
T-REX and H-REX methods show respective advantages and
drawbacks in studies of specific systems. Below we refer to
Hamiltonian replica exchange with biasing potentials about a
set of specific collective variables as H-REX.
Multidimensional replica exchange methods have been

developed to improve sampling efficiency by using more than
one system perturbation in the exchanges. Examples include
constant pH MD with replica exchange in both temperature

and pH space,47 combined Hamiltonian and temperature
replica exchange (HT-REX),48−50 two-dimensional (2D)
replica exchange with solute tempering and umbrella
sampling,51 and 2D window exchange umbrella sampling MD
(2D WEUSMD) methods.52 These methods show improved
sampling efficiency compared to REX in only 1D. However, the
number of replicas increases greatly in these simulations from
N1 or N2 to N1 × N2 where N1 and N2 are the number of
replicas using in the individual 1D REX methods combined to
yield the 2D method. This increase in the number of replicas
limits the application of 2D REX methods to smaller systems
with explicit solvent. In addition to these multidimensional
extensions, one HT-REX method is realized in N1+N2 replicas
to reduce the computational demands, where the first N1
replicas are simulated in normal T-REX within a temperature
range, T1 to TN1, together with the additional N2 replicas
performed at temperature TN1 with different scaled Hamil-
tonians.53 In another multiscale enhanced sampling (MSES)
method, an extended Hamiltonian is adopted to couple the
atomistic model with a topology-based coarse-grained model to
accelerate sampling, for which the replica exchange was
performed in both temperature and coupling factor space in a
1D fashion.54 However, the sampling efficiency of this method
depends on how accurate the coarse-grained model can
describe different substates of the system. Recently, a method
was presented that combines sampling from well-tempered
metadynamics and REX. In this combined REX with the
collective variable tempering (RECT) method, multiple biasing
potentials are constructed for all nonground-state replicas, each
with a different temperature scaling factor as defined in the
context of the well-tempered Hamiltonian, allowing the number
of replicas to be much smaller than in multidimensional
approaches.55

In our previous study, H-REX was applied to solvated
carbohydrate systems in which 2D grid-based correction maps
as biasing potentials (bpCMAPs) were used, for example, to
enhance sampling of the φ/ψ dihedrals of 1→4 glycosidic
linkages. The method was shown to significantly improve the
conformational sampling about the local linkages7,9,11 and
minimize the required number of replicas since only a small
subset of collective variables is included in the calculation of the
Metropolis ratio. However, for complex N-glycans under
explicit solvent condition this H-REX becomes inefficient in
sampling the long-distance DOFs for which the collective
variables are difficult to identify or define. Inspired by the
above-described novel H-REX extensions, we propose a new
method that combines the complementary sampling capabilities
of Hamiltonian solute scaling REST2 and biasing potential
(BP) methods. In this approach, the DOFs that are hard to
identify or define are biased with REST2 applied on the whole
solute subsystem and to the solute−solvent interactions; while
the DOFs being specifically targeted, such as glycosidic
linkages, which often have high energy barriers and are usually
easier to identify from chemical intuition, are treated using the
biasing potentials. By integrating REST2 and H-REX, the
combined method, termed HREST-BP, can specifically
enhance the sampling about the predefined collective variables
and simultaneously improve the sampling in the remaining
DOFs with hidden energy barriers. This combined merit is
important for the conformational sampling of carbohydrates,
which have coupled localized motions along the sugar linkages
and long-distance motions between remote monosaccharides in
different branches. More importantly, HREST-BP is imple-
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mented in a 1D fashion, such that it can greatly improve the
sampling efficiency while minimizing the overall computational
cost.
The remaining paper is organized as follows. The HREST-

BP theory is first presented followed by computational details
for its application to two solvated N-glycans found on the HIV
gp120 envelope protein.56,57 The sampling efficiency is
analyzed in the Results and Discussion section, following
which a conclusion is presented that summarize the main
findings and potential applications of this method. We
anticipate the general utility of this HREST-BP for improving
conformational sampling in a wide range of macromolecular
systems as well as carbohydrates.

■ THEORETICAL CALCULATIONS
Hamiltonian Replica Exchange with Concurrent

Solute Scaling and Biasing Potentials (HREST-BP). To
follow the terminology in the original REST2 paper,43 the new
Hamiltonian replica exchange with concurrent solute scaling
and biasing potential method is named HREST-BP, using
“REST” as the abbreviation for replica exchange with solute
scaling. In HREST-BP, the conformational space of the system
R is decomposed into two subspaces represented by the central
subsystem Rs and environment Re, which results in three
interaction components of the potential energy function, the
internal energy of the central subsystem Us(Rs), the self-energy
of the environment Ue(Re), and the interaction energy between
the central subsystem and environment Use(Rs,Re). We note
that for a rigid water model, such as the TIP3P model used in
the present study, Ue(Re) is equivalent to the water−water
interaction energy. In the implementation of the method, the
m-th simulation replica is conducted with the following scaled
and biased potential function Um(R)

β
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where Vb(Ω(Rs)) is the biasing potential applied to a set of
collective variables, Ω(Rs), in the central subsystem, and λm is
the scaling factor for the biasing potential with positive values
for nonground-state (or excited-state) replicas. β0 is the inverse
temperature (β0 = 1/kBT0) at which the simulation is going to
be performed, and βm is the inverse temperature (βm = 1/kBTm)
used to scale the potential energy of the central subsystem and
interaction energy between the two subsystems at replica m.
The biasing potential Vb(Ω(Rs)) is used to reduce the intrinsic
potential energy barriers along the respective collective
variables. It is usually constructed as the negative of an
approximated free energy map along the collective variables
Ω(Rs) and thus always has a negative value in the simulations.7

At the ground-state replica where βm = β0 and λm = 0, the
potential in eq 1 recovers to the unbiased potential of the
system. In HREST-BP simulations all replicas are simulated at
the inverse temperature β0 and a configurational distribution
proportional to exp[−βm(Us(Rs) + λmVb(Ω(Rs))) −
(βmβ0)

1/2Use(Rs,Re) − β0Ue(Re)] is generated for each replica
m. It is obvious that an ensemble corresponding to the higher
temperature is produced at βm < β0 (i.e. Tm > T0), which
facilitates the transitions over energy barriers in the excited-
state replicas. This scaling scheme was previously adopted by a
new version of replica exchange with solute tempering

(REST2), which shows significantly improved sampling
efficiency over the original REST implementation.42,43 We
thus employ the REST2 solute-scaling scheme to realize our
HREST-BP method. However, other schemes can be
straightforwardly incorporated into the HREST-BP framework.
According to the Metropolis criterion, the exchange attempt

between two neighboring replicas i and j (j=i+1) are accepted
with the ratio

β β− − Δ −Δemin[1, ]R R( )( ( ) ( ))i j
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Here we use the same subscript for both β and λ at a given
replica, indicating that the replica exchange in β−λ space is in
fact a 1D problem. This is one of the most important points in
our realization of the HREST-BP method as the reduced
dimensionality from 2 to 1 can greatly enhance the sampling
efficiency and decrease the computational resource demands.
To fully take advantage of this capability it is necessary to
effectively determine the parameter distribution for both β and
λ in the current 1D HREST-BP implementation. Following a
similar procedure used to derive the scaling factors in H-REX
with bpCMAP simulations,7 the equation for parameter
determination can be derived under the condition of equal
acceptance ratio (AR) between neighboring replicas58−62 and
the assumption of a δ-function distribution of the Δ energy
term

β β

β β

= =

= − − −

= − − −

AR AR const

AR a a

AR a a

exp( ( )( ))

exp( ( )( ))

ij kl

ij i j j i

kl k l l k (4)

where ai and aj are the average values of the Δ terms in
neighboring replicas i and j, respectively; k and l (l=k+1) are
another two neighboring replicas. The mean value of the Δ
potential is composed of two terms, the temperature scaled
potential term Δ1 = Us + (√β0/(√βi + √βj))Use and the
biasing potential term Δ2 = ((βiλi − βjλj)/(βi − βj))Vb. In order
to conveniently obtain the β and λ parameters for each excited-
state replica, a two-step scheme is suggested to first determine
the distribution of β and then λ. For the β determination, we
assume that Δ1 has a linear dependence with respect to
temperature, resulting in an exponential distribution of the
temperatures

β β =+ const/ 1i i 1 (5)

Use of such a temperature distribution has been shown to be
reasonable in a number of replica exchange simulation
studies.42,43,63−65 Once the temperature distribution is known,
the λ factor can be determined according to the following
equation

βλ βλ β λ β λ− − = − − =V V V V const( )( ) ( )( ) 2i i j j b
j
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i
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(6)
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where Vb
i , Vb

j , Vb
k, and Vb

l are the average values of the biasing
potential Vb(Ω(Rs)) in replicas i, j, k, and l, respectively. To get
λ values from eq 6, trial simulations are required to get the λ
dependence of Vb at each temperature. In the above equations,
the values of const, const1, and const2 are used to tune the
acceptance ratio in the parameter determination procedure.
From the definition of the scaled and biased potential in eq 1,

HREST-BP recovers to H-REX when βm is set to β0 for all
replicas. On the other hand, if λm = 0 or Vb(Ω(Rs)) = 0 for all
replicas, the REST2 Hamiltonian is recovered from the
HREST-BP. Therefore, HREST-BP is a combination of the
Hamiltonian solute scaling of the central subsystem in REST2
and Hamiltonian biasing along a number of targeted collective
variables in H-REX. With increasing size of the central
subsystem, the sampling enhancement of REST2 is dispersed
into all available solute DOFs and is thus inefficient in high
energy barrier transitions that usually only exist in a small
number of collective DOFs. In contrast to REST2, H-REX can
specifically enhance the sampling within a set of predefined
DOFs by the addition of biasing potentials along them.
However, the DOFs other than the targeted ones included into
the biasing potentials are not significantly enhanced in H-REX,

which leads to insufficient sampling along those variables with
hidden barriers. By combining REST2 and H-REX, HREST-BP
can specifically enhance the sampling about the targeted
collective variables, which usually have higher energy barriers,
and simultaneously improve the sampling in the remaining
DOFs that may possess lower hidden barriers. This
combination is important for the conformational sampling of
complex carbohydrates, which have coupled localized motions
along the sugar glycosidic linkages that have high-energy
barriers and the long-distance motions between different
fragments that have low-energy barriers that are hard to
identify a priori.
As discussed above, the biasing potential Vb(Ω(Rs)) is

constructed as the negative of an approximated free energy map
and has a negative value in the simulations.7 The contribution
of this term to the Metropolis acceptance ratio can be written
as

βλ βλΔ = − − Ω − ΩV VR R( )( ( ( )) ( ( )))V i i j j b s
j

b s
i

b (7)

The biasing potential samples a more negative value at higher
replicas, and thus the term (Vb(Ω(Rs

j)) − Vb(Ω(Rs
i))) is a

Figure 1. Saccharides used in this study: (a) N-glycan SCT, (b) N-glycan M5, (c) disaccharide with 1→6 linkage, and (d) disaccharide with 1→4
linkage. The 2D bpCMAPs were applied to the contiguous linkage dihedrals marked in blue, and 1D biasing potentials were applied to individual
dihedrals marked in purple using the Woods-Saxon-type function as fitting basis. The dihedral definitions are φ(O5′−C1′−On−Cn)/ψ(C1′−On−Cn−
Cn+1) for 1→n (n = 2, 3, or 4) linkages, φ(O5′−C1′−O6−C6)/ψ(C1′−O6−C6−C5)/ω(O6−C6−C5−O5) for 1→6 linkages, χ1(N−CA−CB−CG)/
χ2(CA−CB−CG−ND2), ψs(CB−CG−ND2−C1)/φs(CG−ND2−C1−O5), and the exocyclic rotation ω(O6−C6−C5−O5).
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negative value for most of the sampled conformations. Thus,
whether ΔVb

is positive or negative depends on the sign of (βiλi
− βjλj) (i.e. (λiTj − λjTi)/kBTiTj), which is typically negative as
λj/λi ≥ Tj/Ti for most simulation systems. The condition λj/λi
≥ Tj/Ti reflects the fact that perturbations of specific DOFs (λi)
would allow larger replica intervals than those on all DOFs
(Ti). Therefore, ΔVb

is typically negative, which would lead to
smaller acceptance ratios in HREST-BP compared to stand-
alone REST2 or H-REX, a cost we assume needs to be paid
when reformulating REST2 and H-REX into the 1D HREST-
BP method. However, the energy barrier in HREST-BP is
reduced simultaneously from the addition of both the biasing
potentials and the Hamiltonian solute scaling, whereas only one
of the two factors contributes to the barrier reduction in either
standalone REST2 or H-REX. Thus, the temperature and λ can
be smaller in the highest excited-state replica of HREST-BP in
comparison to either standalone REST2 or H-REX to achieve
the same amount of biasing. Taken together, although the
acceptance ratio is expected to be reduced between the
neighboring replicas in HREST-BP, the number of replicas
required may be comparable to or even less than that of REST2
or H-REX alone and significantly less than 2D replica exchange
schemes due to the larger decrease in the energy barriers and
the dimensionality reduction in the current 1D HREST-BP
implementation.

■ COMPUTATIONAL DETAILS

The sampling performance of the HREST-BP method was
examined with two polysaccharides that are covalently linked to
the Asn dipeptide (Figure 1 a and b). We follow the
terminology in ref 57 to name the two molecules, SCT and
M5, which include 11 and 7 monosaccharide units, respectively,
connected via different 1→2, 1→3, 1→4, 1→6, and 2→6
glycosidic linkages. These two N-glycans are found on the HIV
gp120 protein or engineered antigenic glycopeptides and
contribute to the epitopes of selected HIV-neutralizing
antibodies.56,57 The initial SCT model was built from the
combination of two crystal structures (PDB ID 4DQO66 and
4FQC67), and the Glycan Reader module in CHARMM-
GUI68,69 was used to generate the M5 model on the basis of the
crystal structure 4NCO.56 Each molecule was solvated in a
cubic TIP3P water box with a dimension of 56 Å × 56 Å × 56
Å for SCT and 52 Å × 52 Å × 52 Å for M5.70 Besides the two
N-glycans, two disaccharides with 1→6 and 1→4 linkages were
also constructed in a water box of 36 Å × 36 Å × 36 Å to
validate our implementation (Figure 1 c and d).
Modeling and simulations were performed with the program

CHARMM with the CHARMM36 additive force field for
proteins71,72 and carbohydrates17,19,22 and the TIP3P water
model.70 For the evaluation of energy and forces, the
nonbonded terms were computed within a cutoff of 12 Å,
with a smoothing switch function over the range from 10 to 12
Å used for the Lennard-Jones interactions. The long-range
electrostatic interactions beyond 12 Å were treated by the
particle mesh Ewald method with a charge grid of 1 Å and the
6-th order spline function for mesh interpolation.73 For the
charged SCT system, no counterions were added with the net
charge corrected using the tinfoil boundary condition included
in the Ewald implementation in CHARMM.74 During the
preparation stage, each solvated system was initially heated
from 100 to 298 K under the constant volume and energy
(NVE) ensemble (100 ps) and then equilibrated with 100 ps

constant volume and temperature (NVT) followed by 100 ps
constant pressure and temperature (NPT) MD simulations at
298 K and 1 atm. In all simulations under the NVT or NPT
ensembles, including the subsequent HREST-BP, H-REX, and
REST2 simulations, the temperature was maintained at 298 K
using the Hoover algorithm with a thermal piston mass of 1000
kcal/mol·ps2.75 A constant pressure of 1 atm was realized using
the Langevin piston algorithm with a collision frequency of 20
ps−1 and mass of 1630 amu.76 The covalent bonds involving
hydrogen atoms were constrained with the SHAKE algorithm,
and a time step of 2 fs was used.77

In HREST-BP simulations, the solute disaccharide or N-
glycan was defined as the central subsystem and solvent as the
environment. Both 1D and 2D biasing potentials were adopted
in each system along the dihedrals marked in Figure 1. The 2D
biasing potential was constructed as the minus of an
approximated free energy map within the framework of the
2D grid-based correction map (bpCMAP).78,79 For bpCMAP
construction, the approximate free energy change was derived
from the 2D umbrella sampling of the gas-phase disaccharides
for every sugar linkage and the D-GlcpNAc-β-1→Asn dipeptide
for the side chain motion about χ1 and χ2, respectively. We
have previously shown that this approach for bpCMAP
construction is efficient and effective in conformational
sampling of oligosaccharides.7 For the 1D biasing potentials
along individual dihedrals, the Woods-Saxon-type function or
its linear combination was used to fit the free energy profile
from a high-temperature (500 K) gas-phase Langevin dynamics
simulation of the M5 molecule with a total length of 2 μs. The
biasing potentials were constructed using the minus of the
fitted coefficient F in eq 8

Ω = + −|Ω−Ω |
−

{ }( )V F e( ) 1b
P P/

1
ref2 1

(8)

where F, P2, and P1 are fitted parameters, and Ωref is the local
minima of the free energy change about Ω. |Ω−Ωref | represents
the absolute value of Ω−Ωref.
In replica exchange simulations, the temperatures or

Hamiltonian scaling factors of each replica should be chosen
so the acceptance ratios are similar across replicas. In practice
their values are usually determined by trial and error. In
HREST-BP simulations, the two scaling factors (λ and β) may
be determined a priori as described above. More specifically, we
assume a linear dependence of the average scaled potential Δ1
with respect to the temperature, which results in an exponential
distribution of the temperatures as expressed in eq 5. We thus
set const1 = (TN−1/T0)

1/(N−1) in eq 5 to obtain the temperature
distribution, with N being the number of replicas used. After
determination of the temperatures, the λ parameter can be
derived from the following protocol. (1) Performing trial
HREST-BP simulation at each inverse temperature βi (βi ≠ β0):
4 replicas were used with initially assigned λ values, and the
exchange was realized in those 4 replicas with different λ values
at the same βi. The range of initial λ values should cover or be
close to the λi value associated with the corresponding βi in the
production run. Each trial replica was simulated for 2 ns under
the same thermodynamic ensemble as the production runs. (2)
Fitting a function to the average biasing potential against λ
using the data from trial simulations: the average biasing
potential, {at}i with t = 0, 1, 2, and 3, at each inverse
temperature βi was computed from the trial simulations and
fitted as a function of λ using a polynomial basis to obtain the
ai(λ) function. (3) Substituting the fitted ai(λ) function into eq
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6 to compute the optimized λ parameter: with β0, β1, const2,
and λ0 = 0, the known average Vb at replica 0 (λ0 = 0 and T0 =
298 K), and the fitted a1(λ), λ1 can be calculated; then using the
resulting λ1, the average Vb value at β1 and λ1, β2, and the fitted
a2(λ) to compute λ2, and so forth. The initial const2 value can
be chosen according to eq 6, for example, using λ1 = 0.1, const2
≈ {a0(0)−a1(0.1)}*0.1/0.6. Then the const2 value is adjusted to
regulate the number of replicas and highest λ value for the
HREST-BP simulation. For example, a smaller const2 value
represents more overlap of the biasing potential distribution,
and thus more replicas are needed within a given λ range. To
facilitate performing the above protocol, which involves the
posterior computation of average values of biasing potentials
for each replica and fitting of the ai(λ) function, a collection of
3 MatLab (MathWorks) scripts to perform these operations
have been developed. These scripts are available upon request
from the authors. Alternatively, the reader can use the trial and
error scheme by using a linear distribution of λ as the initial
guess as a near linear distribution of the λ values in the HREST-
BP simulation of SCT, M5, and the 1→6 linked disaccharide
was obtained.
Besides the HREST-BP, we also performed H-REX and

REST2 simulations by setting βm = 0 or λ m = 0 in eq 1,
respectively. HREST-BP was performed with the REPDSTR,
BLOCK, MMFP, and CMAP modules in the CHARMM
package.80,81 The REST2 simulations were carried out with the
REPDSTR and BLOCK modules. H-REX was performed using
the MMFP and CMAP modules in CHARMM to add the 1D
and 2D biasing potentials, respectively. Exchange attempts were
performed every 2000 MD steps and accepted according to eq
2. The SCT production runs, including HREST-BP, REST2,
and H-REX, were performed under the NVT ensemble at 298
K with a length of 100 ns for each replica (Table 1). The other

systems, including M5 (Table S1, Supporting Information), the
D-Manp-α-(1→6)-D-Manp-β-1-OMe disaccharide (Table S2,
Supporting Information), and the D-Glcp-β-(1→4)-D-Glcp-β-
1-OMe disaccharide (Table S3, Supporting Information), were
simulated under the NPT ensemble at 1 atm and 298 K with 20
ns for each replica, with the HREST-BP simulation of M5
extended to 90 ns to check the convergence.
In the present study the scaling of the solute potential in

HREST-BP or REST2 methods included scaling of all the
intramolecular energy terms, including nonbonded interactions,
within the solute according to the effective temperature. In the
original REST2 implementation only the dihedral and non-
bonded interactions were scaled, with the bond and angle terms
not included in the scaling.43 Accordingly, we examined the

influence of the two schemes with the 1→6 linked disaccharide
model with a simulation time of 20 ns for each replica and
found a larger acceptance ratio if the original REST2 scaling is
used (46.4% vs 34.8% for REST2 and 39.1% vs 29.2% for
HREST-BP). The similar change in the acceptance ratio in
HREST-BP and REST2 is expected from eq 3 since the term
governing acceptance ratio in REST2 is the main factor in
determining the HREST-BP exchange. Future studies will
investigate the sampling performance with different scaling
schemes beyond the two approaches mentioned above.

Data Analysis. From the simulations, the potential of mean
force (PMF) or free energy change along a collective variable Ω
was computed from the conformational distribution ρ(R) in
the ground-state replica under the NVT ensemble as
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where Ns is the number of snapshots recorded in the trajectory
and Δ(Ω(Rj) − ωi) = 1 if Ω(Rj) is within the bin [wi − Δw/
2,wi + Δw/2] and otherwise Δ(Ω(Rj) − ωi) = 0. The same
expression as eq 9 is used for the Gibbs free energy change
under the NPT ensemble. The convergence of the PMFs was
characterized by the root-mean-square deviation of the PMF
(pRMSD) computed at a given simulation time t relative to the
reference profiles
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where N1 and N2 are the number of collective variables and
sampled bins in the PMF calculation of individual collective
variables at time t, respectively; Aki and Aki

ref are the free energies
for k-th variable at i-th bin, and Aki

ref is the reference PMF
computed using the entire ground-state trajectory. This
quantity indicates how fast the simulation converges along
these variables.
To measure the biasing compensation in the context of the

ability of the biasing potentials to flatten the free energy surface,
the configurational entropy associated with a given set of
collective variables was estimated as55,82

∫∑ ρ ω ρ ω ω= −
=

S k d( ) ln( ( ))b
m

M

m m m
1 (11)

withM being the number of collective variables along which the
entropy is computed. Since the entropy is maximized at a
uniform distribution of each ρ(ωm), which corresponds to a
complete compensation of the free energy landscape, a larger
value of entropy represents more effective biasing compensa-
tion on these collective variables. Two types of configurational
entropy were examined, one for localized motions along the
linkage dihedrals and the other for 3D spatial distribution of
several representative monosaccharides in SCT. The 3D
probability distribution maps of the individual monosaccharides
were constructed for the SCT system using the Asn dipeptide
as the alignment reference.83−85 A 100 Å × 100 Å × 100 Å
cubic grid was built to encompass the Asn dipeptide with a grid
spacing of 3 Å, which is approximately the distance between the
diagonal atoms in the sugar ring. The probability distribution of

Table 1. Parameter Distribution and Acceptance Ratios
(AR) in the SCT Simulation System

replica
index

T
(K) λ

AR/HREST-
BPb (%)

AR/REST2
(%)

AR/H-REXb

(%)

0 298 0.00 22.8 27.2 65.5
1 316 0.10 20.8 27.0 55.9
2 335 0.23 20.5 27.4 54.6
3 356 0.32 19.0 28.0 51.2
4 377 0.43 18.3 28.2 47.7
5 400 0.50 20.9 28.3 55.6
AARa 20.4 27.7 55.1

aAAR − the average acceptance ratio over all 6 replicas in each
simulation. bThe biasing potentials used are marked in Figure 1a.
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each monosaccharide unit was represented as the occupied
number of frames in the trajectory for every grid point
normalized such that the grid point with largest occupancy has
a value of 1. As the snapshots were aligned with respect to the
Asn dipeptide the distributions represent the relative
orientation of the sugar units with respect to the peptide that
would, for example, be present in a rigid protein.

■ RESULTS AND DISCUSSIONS
The HREST-BP simulation was carried out in CHARMM using
the replica exchange module REPDST with BLOCK to scale
the solute−solute and solute−solvent interactions, with CMAP
and MMFP to apply the 2D and 1D biasing potentials,
respectively. To validate the correctness of this implementation,
two solvated disaccharides with 1→4 and 1→6 linkages were
simulated using HREST-BP, H-REX, and REST2 with different
biasing potentials and parameter distributions (Figure 1c-d and
Tables S2 and S3 in the Supporting Information). The
assumption related to this examination is that the free energy
landscape from the ground-state replica should be independent
of the simulation setup, which suggests that the same ensemble
is sampled. To this end, the PMF profiles from H-REX
simulations were used as reference since that method has been
validated in previous simulations.7,9,13 As shown in Figure 2, all

simulations give the same free energy changes about the
dihedrals that define the conformational propensity of the
disaccharides. This indicates correctness of the scaling and
biasing implementations in the HREST-BP simulation. It is
noted that the HREST-BP method does not have an obvious
advantage over H-REX or REST2 for the disaccharide

simulations since there is no long-distance interaction in
these small systems that are not effectively biased.
The development of HREST-BP aims to improve sampling

in simulations of complex molecular systems in explicit solvent
environments. To this end, two N-glycan molecules were
employed to examine the sampling efficiency of the method;
SCT includes 11 monosaccharide units and M5 includes 7
monosaccharides (Figure 1a-b). Different simulation setups
were used for the two systems to identify suitable parameters
for N-glycan simulations in HREST-BP. For SCT, a total of 6
replicas were used with temperature and λ ranges of [298 K,
400 K] and [0, 0.50], respectively (Table 1). Ten replicas were
adopted for M5 since more 1D biasing potentials were applied
in this system (Figure 1b), and the temperature and λ ranges
were [298 K, 600 K] and [0, 0.64], respectively (Table S1,
Supporting Information). Because the main goal of this study is
to examine the usefulness of HREST-BP, we focus on the more
complicated SCT system to illustrate the utility of the method
and present the M5 results in the Supporting Information.
To examine the effectiveness of the temperature and λ

parameters from our estimation protocol, we analyzed the
dependence of the average scaled potential Δ1 = Us + (√β0/
(√βi + √βj))Use with respect to the scaling temperature. This
relationship was well fitted to a linear function (Figure 3a),
suggesting that the exponential (or geometric) distribution of

Figure 2. Examination of the PMF profiles for the disaccharides from
different simulation methods. (a) 1→6 linked disaccharide from
HREST-BP (black), H-REX (green), and REST2 (red) and (b) 1→4
linked disaccharide from two different HREST-BP simulations with
one using only the 2D bpCMAP along the linkage dihedrals φ1/ψ1
(black) and the other using both the 2D bpCMAP along the linkage
dihedrals and 1D biasing potential about the individual dihedrals ω2,
ω3, and φ2 (red).

Figure 3. Potential energy distribution in HREST-BP simulation of
SCT. (a) Linear fit of average scaled potential Δ1 = Us + (√β0/(√βi +
√βj))Use (in kcal/mol) versus the scaling temperature used in each
replica. (b) The overlap of the probability distributions of the scaled
potential Δ1 = Us + (√β0/(√βi + √βj))Use for each pair of
neighboring replicas i (dotted line) and j (j=i+1) (solid line). It is the
overlap of probability distributions of Δ1 = Us(R

i) + (√β0/(√βi +
√βj))Use(R

i) and Δ1 = Us(R
j) + (√β0/(√βi + √βj))Use(R

j) that
determines the acceptance ratio between replicas i and i+1. The
probability distribution overlap is plotted in different colors for each
pair of neighboring replicas, black for replicas 0 and 1, red for 1 and 2,
green for 2 and 3, blue for 3 and 4, and cyan for 4 and 5. (c)
Probability distribution of the biasing potential Vb in replicas 0 (black),
1 (red), 2 (green), 3 (blue), 4 (cyan), and 5 (purple). (d) The overlap
of the probability distributions of the scaled and biased potential Δ =
Us + (√β0/(√βi + √βj))Use + ((βiλi −βjλj)/(βi − βj))Vb for each pair
of neighboring replicas i (dotted line) and j (j=i+1) (solid line). The
same color scheme is used as in panel (b).
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temperature is a good choice for N-glycan molecules solvated
with the TIP3P water model in the HREST-BP simulations.
Under this temperature assignment, the probability distribution
of the temperature scaled potential Δ1 shows sufficient overlap
between the neighboring replicas, which is one of the two terms
that determine the acceptance ratio (Figure 3b). In addition to
Δ1 the other term affecting the exchange acceptance is related
to the biasing potential Vb in Δ2 = ((βiλi −βjλj)/(βi − βj))Vb. As
discussed in the methods section, the addition of Vb in HREST-
BP would reduce the acceptance ratio as more negative Vb
values were sampled at higher replicas (Figure 3c). However,
we would expect a small reduction in the acceptance ratio due
to the relatively small values of Vb in comparison to Δ1 if a
proper estimation scheme is used. As the term Δ1 is the sole
factor controlling the exchange in REST2 (λ = 0), this
reduction is illustrated in Table 1 by comparing the acceptance
ratio between HREST-BP and REST2 simulations (Tables S1−
S3, Supporting Information for the other systems). However,
while the acceptance ratios are smaller, the probability
distribution of the two acceptance determinants, Δ = Δ1 +
Δ2, shows good overlap for
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sampled in neighboring replicas i and j (j=i+1) that determines
the acceptance ratio in HREST-BP simulations (Figure 3d).
Figure 4 shows the random walk of replicas in the HREST-BP

simulation; an average of 29 round trips was observed within a
simulation time of 100 ns for each replica. These results
indicate efficient visits in parameter space and validate the
effectiveness of our parameter estimation protocol in the
HREST-BP simulations for N-glycans.
The conformational changes in SCT include both the

localized motions around the glycosidic linkages and long-
distance motions between remote monosaccharides in different
branches of the polysaccharides. The two types of change are
coupled, i.e. a certain linkage conformation will favor a specific

relative orientation of the branches, and vice versa. The free
energy barriers associated with these degrees of freedom are
higher than 6 kcal/mol for the linkage motions and <3 kcal/
mol for the long-distance changes (Figures 5 and 6). In
HREST-BP, the higher energy barriers are reduced simulta-
neously by the temperature scaling and the biasing potentials
that specifically enhance the sampling around these linkages,
while the lower energy barriers are overcome with the
Hamiltonian scaling of the whole solute, thereby providing an
overall sampling enhancement of the full range of accessible
conformation of the N-glycan. By reformulating the overall
temperature scaling and specific biasing potential into the 1D
replica exchange, sampling is well balanced for these two types
of motion. This is evident in Figure 5 showing all the PMF
profiles around the sugar linkages to converge in the
simulations of HREST-BP, H-REX, and REST2. For these
linkage motions, all three methods give reasonably good
sampling around the statistically important low-free energy
states on a simulation time of 100 ns. However, detailed
examination of these PMF profiles shows that HREST-BP
produces an overall better sampling in comparison to H-REX
and REST2. For example, more regions are sampled in
HREST-BP than REST2 around the dihedrals φ1, ω1, and
φ3, whereas only one dihedral φ2′ is sampled better in REST2.
Compared to H-REX, HREST-BP has better sampling along
dihedrals φ1, ψ1, ω1, and φ2 (Figure 5). The sampling
performance was further examined using 20 ns of simulation
time with the results from 100 ns trajectory as reference. In 20
ns HREST-BP shows more sampling about the linkage
dihedrals φ1, ψ1, ω1, φ2, φ3, ψ3, φ3′, ψ5′, φ6, and ψ6 than
REST2 and φ1, ω1, φ2, and φ3 than H-REX (Figure S1,
Supporting Information). These results suggest that the
concurrent enhancement from biasing potentials and Hamil-
tonian scaling in HREST-BP produces better sampling around
DOFs with high-energy barriers, while the relative inefficiency
of REST2 along several dihedrals arises from the dispersion of
sampling enhancement into all DOFs of the solute.
The long-distance motions were analyzed as PMF profiles

along the distances between centers of mass (DCOM) of
noncontiguous monosaccharides (Figure 6). Both HREST-BP
and REST2 simulations approximately converge to similar
surfaces within a simulation time of 50 ns. It is interesting that
some PMF profiles from H-REX do not converge to the same
surfaces even within a 100 ns simulation. The same problem is
also observed in the smaller M5 system (Figure S2, Supporting
Information). These results suggest the H-REX simulation with
only localized biasing potentials around the linkages converge
much more slowly with respect to the sampling of long-distance
motions. This emphasizes the importance of the inclusion of
the overall enhanced sampling with Hamiltonian temperature
scaling in the N-glycan simulations. Thus, while all three
methods can sample the linkage motions with a similar level of
convergence only HREST-BP and REST2 give correct
sampling of the long-distance motions within the simulation
length performed in this study.
From the results in Figure 5 and 6, a temperature range from

298 to 400 K is a reasonably good choice in HREST-BP
simulation to balance the conformational sampling of localized
linkage motions and long-distance changes. The larger
temperature range used in the M5 system is not necessary
for glycan systems with HREST-BP (Table S1, Supporting
Information). Furthermore, the presence or absence of 1D
biasing potentials acting on the exocyclic hydroxyl or N-acetyl

Figure 4. Random walk of 3 representative replicas 1 (top), 3
(middle), and 5 (bottom) in the HREST-BP simulation of SCT.
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groups does not produce obvious differences in the free energy
landscape of M5 with HREST-BP (data not shown). This
indicates that the use of high temperature (600 K for the
highest replica in M5) in HREST-BP can efficiently overcome
the energy barriers associated with these DOFs.
To understand the sampling performance in more detail, we

examined the exploration rate and convergence rate of HREST-
BP of the SCT system. To compute the local exploration rate,
the conformational space is defined according to the linkage
conformations. Each linkage dihedral was divided into three
bins, [0°, 120°], [−120°, 0°], and [−180°, −120°] and [120°,
180°], corresponding to different local minima as observed in
the PMFs shown in Figure 5. The exploration rate is calculated
as the sum of the total number of visited conformations as a

function of simulation time. The result in Figure S3 shows a
comparable exploration rate for the three methods during the
first 40 ns. It suggests the three methods visit the local minima
accessible to the glycosidic linkages with almost the same rate
as the linkage motions are well converged within a simulation
time of 20 ns (Figure S1, Supporting Information).
The convergence rate was also measured for both the local

glycosidic linkages and long-distance motions using the PMF
RMSD (pRMSD) metric for the different variables as defined in
eq 10. The result in Figure 7a shows faster convergence in
HREST-BP and H-REX than REST2 for the localized linkage
motions. For the long-distance motions, HREST-BP gives the
fastest convergence as shown in Figure 7b. It is noted that these
convergence rates are measured with respect to the PMF from

Figure 5. Free energy profiles along the linkage dihedrals of SCT in the simulation with HREST-BP (black), H-REX (green), and REST2 (red). The
total 100 ns of ground-state trajectory was used for PMF calculation.

Figure 6. Free energy profiles along the distance between the center of mass (DCOM) of different sugar rings of SCT in the simulation with
HREST-BP (black), H-REX (green), and REST2 (red). The total 100 ns (bold line) and first 50 ns (thin line) of ground-state trajectory were used
for the PMF calculation. The DCOM profiles with more than one local minima were shown in this figure.
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the 100 ns trajectory at the end of each simulation with the
different methods. Taken together, the HREST-BP has a faster
convergence rate in sampling both linkage and long-distance
motions than REST2 and a similar convergence rate with H-
REX about the localized linkage motions.
An additional measure of the ability of the REX methods to

improve sampling is the energetic “flatness” of the biased
system, as quantified by the configurational entropy associated
with a given set of collective variables (eq 11). The entropy
value represents the extent to which the original free energy
landscape is compensated in each replica. The entropy value
along the localized dihedrals in Figure 8a clearly indicates that

the most effective biasing is the HREST-BP method. This is
expected as HREST-BP benefits simultaneously from the
Hamiltonian scaling of the whole solute and solute−solvent
interactions and potential biasing along these specific dihedrals.
Moreover, it shows that the biasing potentials in H-REX are
more effective than the Hamiltonian scaling in REST2 along
these localized linkage motions. The biasing of long-distance
motions was represented using the entropy values from 3D
spatial distributions of several representative monosaccharides
in different sugar fragments (Figure 8b-f). Only HREST-BP
and REST2 include direct long-distance bias in the simulations,
leading to an increasing entropy value in the higher replicas.
Although no direct long-distance bias is present in H-REX, the
large entropy values suggest the sampling of the linkages is
coupled to the long-distance conformational changes. However,
it is noted that the lack of long-distance biasing potentials in H-
REX makes the convergence rate much slower in sampling of
these conformational changes (Figure 6 and Figure S2 in the
Supporting Information). In summary, the same amount of
biasing can be achieved in HREST-BP with a smaller number of
replicas because of the concurrent effect of the two
Hamiltonian biasing terms as compared to H-REX or REST2
for which only one type of biasing is used.
The relative orientation of an N-glycan with respect to the

peptide to which it is connected is critical, for example, to the
molecular recognition between N-glycan antigens and antibod-
ies. To provide more insights on this issue, the spatial
distribution sampled by individual sugar units in SCT was
analyzed. Three rigid fragments were identified based on small
intramolecular RMSD fluctuations (Figure S4, Supporting
Information), including -D-Manp(3)-β-(1→4)-D-GlcpNAc-
(2)-β-(1→4)-D-GlcpNAc(1)-β-1-, -D-Galp(6)-β-(1→4)-D-
GlcpNAc(5)-β-(1→2)-D-Manp(4)-α-1-, and -D-Galp(10)-β-
(1→4)-D-GlcpNAc(9)-β-(1→2)-D-Manp(8)-α-1-. These frag-
ments are connected to each other through flexible 1→6 and
2→6 linkages, in addition to the χ1/ χ2 and ψs/φs dihedrals
linking the glycan to the Asn dipeptide. To evaluate the
sampling about these flexible dihedrals, the simulated free
energy maps were compared to dihedral distributions from
crystal structures that include the respective linkages.86 Figure 9
shows that the HREST-BP simulation of SCT samples the
majority of the conformational states observed in the crystal
structures about these flexible linkages, although some regions
are not being sampled.
To identify why some conformations are not sampled along

these flexible linkages, the free energy maps along the same
dihedrals were computed in model compounds (Figure S5,
Supporting Information). The results show a good corre-
spondence between simulated local minima in the PMF 2D
maps and the crystal conformations. This suggests that the
current force field accurately describes the energetics of these
flexible linkages. Crystal conformations present in the high-free
energy regions of SCT PMFs (Figure 9) are thus either
stabilized by interactions with the environment, such as
proteins, in the crystals or cannot be sampled in the larger
N-glycan, versus the di- and trisaccharides that are predominate
in the crystal survey, due to steric clashes between the
noncontiguous monosaccharides in SCT.

■ CONCLUSIONS
The presented 1D HREST-BP method can significantly reduce
the computational cost in comparison to multidimensional
extensions of REX. It combines the advantages of overall

Figure 7. Convergence rate of different simulations as represented by
PMF RMSD (pRMSD) for (a) the marked linkage dihedrals in the
structural model of SCT with more than one local minima and (b) the
distances of centers of mass (DCOM) between different sugar rings of
SCT as shown in Figure 6.

Figure 8. Configurational entropy used to measure the biasing
compensation about the given collective variables for the replicas in
the HREST-BP (black), H-REX (green), and REST2 (red)
simulations. (a) Entropy along all the marked dihedrals in Figure 1.
(b-f) Entropy for the 3D spatial distribution of monosaccharides (b) 3,
(c) 5, (d) 7, (e) 9, and (f) 11.
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enhanced sampling from REST2 and specific enhancement of
selected collective variables using biasing potentials in H-REX.
This complementarity is especially important for systems with
hierarchical motions that are controlled by different energy
barriers, in which Hamiltonian scaling is applied to the whole
solute subsystem to enhance the sampling of long-distance
motions, and simultaneously biasing potentials are added to
accelerate the barrier transitions about the targeted collective
variables that typically have higher energy barriers. Because of
its implementation in a 1D fashion and Hamiltonian scaling is
applied to the entire subsystem of interest, the number of
replicas can be small, similar to that commonly used in H-REX
and smaller than that used in REST2 simulations, where higher
effective temperatures are required to accelerate high-energy
barrier transitions. In comparison to H-REX, the HREST-BP
does not have an obvious advantage for the study of localized
motions or small sized systems. However, while H-REX can
minimize the required number of replicas, it converges more
slowly than HREST-BP along long-distance DOFs when
biasing potentials are not applied to those collective variables,
which are typically difficult to identify and define in complex
molecular systems. In contrast, it is much easier to define the
collective variables responsible for localized DOFs from
chemical intuition or prior knowledge, as exemplified by the
glycosidic linkage dihedrals in carbohydrates. For these
localized variables, the biasing potential can be constructed
from the small gas-phase or solvated model systems (e.g.,
disaccharides), which has been shown to be efficient and
effective for the study of complex carbohydrate conformational
properties.7

The 1D HREST-BP scheme can be further generalized using
more flexible ways to construct the biasing Hamiltonian
compared to eq 1. For example, standard T-REX can be used
for the “globally” enhanced sampling part in the presence or
absence of explicit solvent instead of REST2, with Um(R) =
(βm/β0)(Us(Rs) + Use(Rs,Re) + Ue(Re) + λmVb(Ω(Rs))), as the
thermodynamic quantities of interest for a classical system with
a potential energy E at temperature T are equivalent to those
with a potential energy βm/β0*E at temperature T0. The general
principle is that different types of perturbation in the

Hamiltonian are additive so that replica exchange can be
carried out in a 1D fashion. As shown in this study, combining
different (global and localized) potential biasing leads to
reduced values of the acceptance ratios but is more effective in
lowering energy barriers, resulting in a comparable total
number of replicas to that in standalone T-REX or H-REX
simulations. We anticipate the general utility of the HREST-BP
simulation method in a variety of macromolecular systems, such
as, proteins, RNA, and DNA, which involve coupled localized
motions and long-distances changes in their functioning
processes.

■ ASSOCIATED CONTENT
*S Supporting Information
The simulation parameters for M5 and two disaccharides in
Tables S1−S3, the PMF profiles about linkage motions of SCT
in Figure S1, the long-distance PMF profiles of M5 in Figure
S2, the exploration rate of SCT in Figure S3, the RMSD
variation of SCT in Figure S4, and the comparison between
crystal survey of flexible dihedrals and 2D PMF map from
disaccharide models in Figure S5. The Supporting Information
is available free of charge on the ACS Publications website at
DOI: 10.1021/acs.jctc.5b00243.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: alex@outerbanks.umaryland.edu.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Financial support from the NIH (GM070855) and computa-
tional support from the University of Maryland Computer-
Aided Drug Design Center are acknowledged.

■ ABBREVIATIONS
1D, one-dimensional; 2D, two-dimensional; 3D, three-dimen-
sional; BP, biasing potential; bpCMAP, biasing potential using
2D grid-based correction map; DCOM, distance of centers of
mass; DOFs, degrees of freedom; HREST-BP, Hamiltonian
replica exchange with concurrent solute scaling and biasing
potential; H-REX, Hamiltonian replica exchange; HT-REX,
replica exchange in both Hamiltonian and temperature space;
MD, molecular dynamics; MSES, multiscale enhanced sam-
pling; NPT, thermodynamic ensemble of constant particle
number, pressure, and temperature; NVE, thermodynamic
ensemble of constant particle number, volume, and energy;
NVT, thermodynamic ensemble of constant particle number,
volume, and temperature; PME, particle mesh Ewald; PMF,
potential of mean force; pRMSD, the root-mean-square
deviation of PMF; RECT, replica exchange with collective
variable tempering; REST, replica exchange with solute
tempering; REST2, a new version of replica exchange with
solute tempering; REX, replica exchange; RMSD, root-mean-
square deviation; T-REX, replica exchange in temperature
space; WEUSMD, window exchange umbrella sampling
molecular dynamics

■ REFERENCES
(1) Shukla, R. K.; Tiwari, A. Crit. Rev. Ther. Drug Carrier Syst. 2011,
28 (3), 255−292.

Figure 9. Comparison between sampled free energy landscape
(contour surfaces, in kcal/mol) and conformational distributions
from crystal structures (in dot) for the 1→6, 2→6, χ1/χ2, and φs/ψs
linkages in SCT. The free energy map was computed from the ground-
state replica of HREST-BP simulation.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00243
J. Chem. Theory Comput. 2015, 11, 2855−2867

2865

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00243
mailto:alex@outerbanks.umaryland.edu
http://dx.doi.org/10.1021/acs.jctc.5b00243


(2) Huang, Y.; Wun, C. Expert Rev. Vaccines 2010, 9 (11), 1257−
1274.
(3) Astronomo, R. D.; Burton, D. R. Nat. Rev. Drug Discovery 2010, 9
(4), 308−324.
(4) Essentials of Glycobiology, 2nd ed.; Cold Spring Harbor Laboratory
Press: Cold Spring Harbor, NY, 2009.
(5) DeMarco, M. L.; Woods, R. J. Glycobiology 2008, 18 (6), 426−
440.
(6) Dwek, R. A. Biochem. Soc. Trans. 1995, 23 (1), 1−25.
(7) Yang, M.; MacKerell, A. D., Jr. J. Chem. Theory Comput. 2015, 11
(2), 788−799.
(8) Patel, D. S.; He, X.; MacKerell, A. D., Jr. J. Phys. Chem. B 2015,
119, 637−652.
(9) Patel, D. S.; Pendrill, R.; Mallajosyula, S. S.; Widmalm, G.;
MacKerell, A. D., Jr. J. Phys. Chem. B 2014, 118 (11), 2851−2871.
(10) Krishnan, S.; Liu, F.; Abrol, R.; Hodges, J.; Goddard, W. A.;
Prasadarao, N. V. J. Biol. Chem. 2014, 289 (45), 30937−30949.
(11) Mallajosyula, S. S.; Adams, K. M.; Barchi, J. J.; MacKerell, A. D.,
Jr. J. Chem. Inf. Model. 2013, 53 (5), 1127−1137.
(12) He, X.; Hatcher, E.; Eriksson, L.; Widmalm, G.; MacKerell, A.
D., Jr. J. Phys. Chem. B 2013, 117 (25), 7546−7553.
(13) Mallajosyula, S. S.; MacKerell, A. D., Jr. J. Phys. Chem. B 2011,
115 (38), 11215−11229.
(14) Hatcher, E.; Sawen, E.; Widmalm, G.; MacKerell, A. D., Jr. J.
Phys. Chem. B 2011, 115 (3), 597−608.
(15) Stanca-Kaposta, E. C.; Gamblin, D. P.; Cocinero, E. J.; Frey, J.;
Kroemer, R. T.; Fairbanks, A. J.; Davis, B. G.; Simons, J. P. J. Am.
Chem. Soc. 2008, 130 (32), 10691−10696.
(16) Andre, S.; Kozar, T.; Schuberth, R.; Unverzagt, C.; Kojima, S.;
Gabius, H.-J. Biochemistry 2007, 46 (23), 6984−6995.
(17) Guvench, O.; Greene, S. N.; Kamath, G.; Brady, J. W.; Venable,
R. M.; Pastor, R. W.; Mackerell, A. D., Jr. J. Comput. Chem. 2008, 29
(15), 2543−2564.
(18) Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; Gonzalez-
Outeirino, J.; Daniels, C. R.; Foley, B. L.; Woods, R. J. J. Comput.
Chem. 2008, 29 (4), 622−655.
(19) Guvench, O.; Hatcher, E.; Venable, R. M.; Pastor, R. W.;
MacKerell, A. D., Jr. J. Chem. Theory Comput. 2009, 5 (9), 2353−2370.
(20) Hatcher, E.; Guvench, O.; MacKerell, A. D., Jr. J. Phys. Chem. B
2009, 113 (37), 12466−12476.
(21) Raman, E. P.; Guvench, O.; MacKerell, A. D., Jr. J. Phys. Chem. B
2010, 114 (40), 12981−12994.
(22) Guvench, O.; Mallajosyula, S. S.; Raman, E. P.; Hatcher, E.;
Vanommeslaeghe, K.; Foster, T. J.; Jamison, F. W.; MacKerell, A. D.,
Jr. J. Chem. Theory Comput. 2011, 7 (10), 3162−3180.
(23) Hansen, H. S.; Huenenberger, P. H. J. Comput. Chem. 2011, 32
(6), 998−1032.
(24) Wood, N. T.; Fadda, E.; Davis, R.; Grant, O. C.; Martin, J. C.;
Woods, R. J.; Travers, S. A. PLoS One 2013, 8 (11), e80301.
(25) Yang, M.; Yang, L.; Gao, Y.; Hu, H. J. Chem. Phys. 2014, 141
(4), 044108.
(26) Maragliano, L.; Vanden-Eijnden, E. Chem. Phys. Lett. 2006, 426
(1−3), 168−175.
(27) Rosso, L.; Minary, P.; Zhu, Z. W.; Tuckerman, M. E. J. Chem.
Phys. 2002, 116 (11), 4389−4402.
(28) Hu, H.; Yang, W. Annu. Rev. Phys. Chem. 2008, 59, 573−601.
(29) Hu, Y.; Hong, W.; Shi, Y.; Liu, H. J. Chem. Theory Comput.
2012, 8 (10), 3777−3792.
(30) Kaestner, J. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1 (6),
932−942.
(31) Chipot, C.; Lelievre, T. SIAM J. Appl. Math. 2011, 71 (5),
1673−1695.
(32) Yang, L.; Gao, Y. Q. J. Chem. Phys. 2009, 131 (21), 214109.
(33) Zheng, L.; Chen, M.; Yang, W. Proc. Natl. Acad. Sci. U. S. A.
2008, 105 (51), 20227−20232.
(34) Darve, E.; Rodriguez-Gomez, D.; Pohorille, A. J. Chem. Phys.
2008, 128 (14), 144120.
(35) Micheletti, C.; Laio, A.; Parrinello, M. Phys. Rev. Lett. 2004, 92
(17), 170601.

(36) Sugita, Y.; Okamoto, Y. Chem. Phys. Lett. 1999, 314 (1−2),
141−151.
(37) Kannan, S.; Zacharias, M. Proteins: Struct., Funct., Bioinf. 2009,
76 (2), 448−460.
(38) Swendsen, R. H.; Wang, J. S. Phys. Rev. Lett. 1986, 57 (21),
2607−2609.
(39) Fukunishi, H.; Watanabe, O.; Takada, S. J. Chem. Phys. 2002,
116 (20), 9058−9067.
(40) Nishima, W.; Miyashita, N.; Yamaguchi, Y.; Sugita, Y.; Re, S. J.
Phys. Chem. B 2012, 116 (29), 8504−8512.
(41) Re, S.; Miyashita, N.; Yamaguchi, Y.; Sugita, Y. Biophys. J. 2011,
101 (10), L44−L46.
(42) Liu, P.; Kim, B.; Friesner, R. A.; Berne, B. J. Proc. Natl. Acad. Sci.
U. S. A. 2005, 102 (39), 13749−13754.
(43) Wang, L.; Friesner, R. A.; Berne, B. J. J. Phys. Chem. B 2011, 115
(30), 9431−9438.
(44) Shim, J.; Zhu, X.; Best, R. B.; MacKerell, A. D., Jr. J. Comput.
Chem. 2013, 34 (7), 593−603.
(45) Moradi, M.; Tajkhorshid, E. J. Chem. Theory Comput. 2014, 10
(7), 2866−2880.
(46) Bolhuis, P. G.; Dellago, C.; Chandler, D. Proc. Natl. Acad. Sci. U.
S. A. 2000, 97 (11), 5877−5882.
(47) Meng, Y.; Roitberg, A. E. J. Chem. Theory Comput. 2010, 6 (4),
1401−1412.
(48) Bergonzo, C.; Henriksen, N. M.; Roe, D. R.; Swails, J. M.;
Roitberg, A. E.; Cheatham, T. E. J. Chem. Theory Comput. 2013, 10
(1), 492−499.
(49) Moradi, M.; Babin, V.; Roland, C.; Sagui, C. PLoS Comput. Biol.
2012, 8 (4), e1002501.
(50) Sugita, Y.; Kitao, A.; Okamoto, Y. J. Chem. Phys. 2000, 113 (15),
6042−6051.
(51) Kokubo, H.; Tanaka, T.; Okamoto, Y. J. Comput. Chem. 2013,
34 (30), 2601−2614.
(52) Park, S.; Im, W. J. Chem. Theory Comput. 2012, 9 (1), 13−17.
(53) Laghaei, R.; Mousseau, N.; Wei, G. J. Phys. Chem. B 2010, 114
(20), 7071−7077.
(54) Zhang, W.; Chen, J. J. Chem. Theory Comput. 2014, 10 (3),
918−923.
(55) Gil-Ley, A.; Bussi, G. J. Chem. Theory Comput. 2015, 11, 1077−
1085.
(56) Julien, J.-P.; Cupo, A.; Sok, D.; Stanfield, R. L.; Lyumkis, D.;
Deller, M. C.; Klasse, P.-J.; Burton, D. R.; Sanders, R. W.; Moore, J. P.;
Ward, A. B.; Wilson, I. A. Science 2013, 342 (6165), 1477−1483.
(57) Amin, M. N.; McLellan, J. S.; Huang, W.; Orwenyo, J.; Burton,
D. R.; Koff, W. C.; Kwong, P. D.; Wang, L.-X. Nat. Chem. Biol. 2013, 9
(8), 521−526.
(58) Earl, D. J.; Deem, M. W. J. Phys. Chem. B 2004, 108 (21), 6844−
6849.
(59) Kone, A.; Kofke, D. A. J. Chem. Phys. 2005, 122 (20), 206101.
(60) Rathore, N.; Chopra, M.; de Pablo, J. J. J. Chem. Phys. 2005, 122
(2), 024111.
(61) Denschlag, R.; Lingenheil, M.; Tavan, P. Chem. Phys. Lett. 2009,
473 (1−3), 193−195.
(62) Prakash, M. K.; Barducci, A.; Parrinello, M. J. Chem. Theory
Comput. 2011, 7 (7), 2025−2027.
(63) Huang, X.; Hagen, M.; Kim, B.; Friesner, R. A.; Zhou, R.; Berne,
B. J. J. Phys. Chem. B 2007, 111 (19), 5405−5410.
(64) Nadler, W.; Hansmann, U. H. E. J. Phys. Chem. B 2008, 112
(34), 10386−10387.
(65) Nadler, W.; Hansmann, U. H. E. Phys. Rev. E 2007, 75 (2),
026109.
(66) Pancera, M.; Shahzad-ul-Hussan, S.; Doria-Rose, N. A.;
McLellan, J. S.; Bailer, R. T.; Dai, K.; Loesgen, S.; Louder, M. K.;
Staupe, R. P.; Yang, Y.; Zhang, B.; Parks, R.; Eudailey, J.; Lloyd, K. E.;
Blinn, J.; Alam, S. M.; Haynes, B. F.; Amin, M. N.; Wang, L.-X.;
Burton, D. R.; Koff, W. C.; Nabel, G. J.; Mascola, J. R.; Bewley, C. A.;
Kwong, P. D. Nat. Struct. Mol. Biol. 2013, 20 (7), 804−813.
(67) Mouquet, H.; Scharf, L.; Euler, Z.; Liu, Y.; Eden, C.; Scheid, J.
F.; Halper-Stromberg, A.; Gnanapragasam, P. N. P.; Spencer, D. I. R.;

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00243
J. Chem. Theory Comput. 2015, 11, 2855−2867

2866

http://dx.doi.org/10.1021/acs.jctc.5b00243


Seaman, M. S.; Schuitemaker, H.; Feizi, T.; Nussenzweig, M. C.;
Bjorkman, P. J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (47), E3268−
E3277.
(68) Jo, S.; Kim, T.; Iyer, V. G.; Im, W. J. Comput. Chem. 2008, 29
(11), 1859−1865.
(69) Jo, S.; Song, K. C.; Desaire, H.; MacKerell, A. D.; Im, W. J.
Comput. Chem. 2011, 32 (14), 3135−3141.
(70) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R.
W.; Klein, M. L. J. Chem. Phys. 1983, 79 (2), 926−935.
(71) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R. L.;
Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.;
Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos,
C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.;
Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe,
M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B
1998, 102 (18), 3586−3616.
(72) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig,
M.; MacKerell, A. D., Jr. J. Chem. Theory Comput. 2012, 8 (9), 3257−
3273.
(73) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98 (12),
10089−10092.
(74) Bogusz, S.; Cheatham, T. E.; Brooks, B. R. J. Chem. Phys. 1998,
108 (17), 7070−7084.
(75) Hoover, W. G. Phys. Rev. A 1985, 31 (3), 1695−1697.
(76) Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. J. Chem.
Phys. 1995, 103 (11), 4613−4621.
(77) Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys.
1977, 23 (3), 327−341.
(78) MacKerell, A. D., Jr.; Feig, M.; Brooks, C. L. J. Comput. Chem.
2004, 25 (11), 1400−1415.
(79) MacKerell, A. D., Jr.; Feig, M.; Brooks, C. L. J. Am. Chem. Soc.
2004, 126 (3), 698−699.
(80) Jiang, W.; Hodoscek, M.; Roux, B. J. Chem. Theory Comput.
2009, 5 (10), 2583−2588.
(81) Brooks, B. R.; Brooks, C. L., III; Mackerell, A. D., Jr.; Nilsson,
L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.;
Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.;
Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.;
Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.;
Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.;
Yang, W.; York, D. M.; Karplus, M. J. Comput. Chem. 2009, 30 (10),
1545−1614.
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