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Modulation of thermal noise and 
spectral sensitivity in Lake Baikal 
cottoid fish rhodopsins
Hoi Ling Luk1, Nihar Bhattacharyya2, Fabio Montisci3, James M. Morrow2, Federico Melaccio3, 
Akimori Wada4, Mudi Sheves5, Francesca Fanelli6, Belinda S. W. Chang2 & Massimo Olivucci1,3

Lake Baikal is the deepest and one of the most ancient lakes in the world. Its unique ecology has 
resulted in the colonization of a diversity of depth habitats by a unique fauna that includes a group 
of teleost fish of the sub-order Cottoidei. This relatively recent radiation of cottoid fishes shows 
a gradual blue-shift in the wavelength of the absorption maximum of their visual pigments with 
increasing habitat depth. Here we combine homology modeling and quantum chemical calculations 
with experimental in vitro measurements of rhodopsins to investigate dim-light adaptation. The 
calculations, which were able to reproduce the trend of observed absorption maxima in both A1 and 
A2 rhodopsins, reveal a Barlow-type relationship between the absorption maxima and the thermal 
isomerization rate suggesting a link between the observed blue-shift and a thermal noise decrease. 
A Nakanishi point-charge analysis of the electrostatic effects of non-conserved and conserved amino 
acid residues surrounding the rhodopsin chromophore identified both close and distant sites affecting 
simultaneously spectral tuning and visual sensitivity. We propose that natural variation at these sites 
modulate both the thermal noise and spectral shifting in Baikal cottoid visual pigments resulting in 
adaptations that enable vision in deep water light environments.

Lake Baikal is located in Eastern Siberia and it is the deepest (1600 m) lake in the world. It holds approximately 
one fifth of the world’s liquid freshwater. A unique feature of the lake is that oxygenation levels in even the deepest 
regions do not fall below 75–80% of the surface levels1. This has enabled the colonization of all depth habitats by 
fauna that includes a flock of teleost fish of the sub-order Cottoidei.

The Baikal cottoid fishes are an ideal system to study visual pigment evolution as both the rod and cone pig-
ments in these fish show a gradual blue-shift in the wavelength of the absorption maxima (λ max) in relation to 
their habitat depth. For instance, the λ max of the rod pigment (called rhodopsin) shifts from 516 nm in the species 
that colonizes the surface to the 484 nm in the deepest species. These λ max shifts reflect, exclusively, variations 
in the amino acids interacting with the chromophore (Fig. 1a and b) as all the Lake Baikal cottoid fish utilize 
the same A1 chromophore (Fig. 1c)2. This is, for instance, in contrast to many freshwater teleosts where λ max 
red-shifts are due to the A2 chromophore3,4.

Previous studies of the Lake Baikal cottoid fish rhodopsins (from now on Baikal rhodopsins) suggest that 
the ancestral cottoid species that colonized the lake likely had a rhodopsin with a λ max of around 505 nm, sim-
ilar to the sub-littoral species5. Variation in λ max values among present day Baikal fishes likely arose as a result 
of subsequent amino acid substitutions in rhodopsin, but their adaptive consequences and possible underlying 
mechanisms remain unclear. In deep sea fish, the observed 470–480 nm λ max is thought to be an adaptation to 
the blue-shifted spectral maximum of the available downwelling light6–8. However, these theories do not consider 
other aspects of rhodopsin function such as photosensitivity, which may be more important in dimly lit deepwa-
ter environments such as those found in Lake Baikal and the deep sea.
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An alternative explanation for the λ max blue-shift observed in the deeper Baikal rhodopsins may be based on the 
existence of a Barlow-like correlation9,10. This is an inverse proportionality relationship between rhodopsin λ max  
and chromophore thermal isomerization rate. By competing with the photoisomerization triggering the rho-
dopsin function, the thermal isomerization must contribute to the thermal noise11,12 decreasing visual acuity13.  
When assuming the validity of such an isomerization-noise link, the Barlow correlation implies that the λ max  
blue-shift of the abyssal rhodopsins would reflect the need to reduce the noise in habitats with low light 
intensities5,14.

Here we investigate the thermal noise hypothesis through a combination of multiconfigurational quantum 
chemistry (MCQC) calculations and experimental studies on a set of Baikal rhodopsins. More specifically, we 
demonstrate the existence of a Barlow correlation between λ max, expressed in terms of the chromophore vertical 
excitation energy (Δ E), and isomerization rate, related to the chromophore activation energy (Ea

T) and derive 
an atomistic model of the Δ E and Ea

T variation. The results show that the amino acid substitutions found in 
the sequences of the selected Baikal rhodopsin set, modulate Δ E and Ea

T simultaneously in an interdependent 
parallel fashion suggesting that a reduction in thermal noise may have evolved in Lake Baikal fish pigments as a 
dim-light adaptation for increased photosensitivity.

Results and Discussion
The sequence similarity and marked λ max variation of Baikal rhodopsins facilitate the study of the effect of single 
amino acid substitutions on Δ E and Ea

T. Accordingly, we consider four species representative of different hab-
itats (in order of depth): the littoral (1–5 m) depth (Paracottus kneri, λ max =  516 nm), the sub-littoral (1–120 m) 
depth (Paracottus jettelesi, λ max =  505 nm), the supra-abyssal (50–450 m) depth (Cottocomephorus inermis,  
λ max =  495 nm), and the abyssal (400–1500 m) depth (Abyssocottus korotneffi, λ max =  484 nm)5. For each species 

Figure 1. Rhodopsin structure and point-charge model. (a) Crystallographic structure of Rh. The amino 
acid of Rh belong either to the “cavity” or “extra-cavity” region. (b) Structure of the Rh Lys296-Chromophore 
(green-blue) and its cavity (red) comprising the conserved E113 counterion. (c) Structure of the A1 (11-cis 
retinal) and A2 (11-cis 3-dehydroretinal) chromophores. The arrows indicates the double-bond isomerization 
triggering the pigment function. (d) Effect of a negative (red) point charge located in proximity of the 
chromophore β -ionone ring. The charge would stabilize the electronically photo-excited state (S1) dominated 
by a charge-transfer electronic configuration (φ CT) with respect to the ground state (S0) dominated by a covalent 
electronic configuration (φ COV) leading to an increase in λ max (i.e. a decrease in Δ E as shown in the red energy 
level diagram on the right). A charge of the opposite sign placed in the same location would lead to the opposite 
effect (blue energy level diagram). (e) Relationship between the Δ E (proportional to 1/λ max) and the Ea

T 
controlling the chromophore thermal isomerization according to the point-charge model of ref. 8. A schematic 
representation of the chromophore charge distribution at the transition state (TS) is also given. The same 
negative/positive point charge would decrease/increase the barrier respectively.
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a MCQC-based quantum-mechanics/molecular-mechanics (QM/MM) model of the corresponding rhodopsin 
is constructed (Methods section and SI Appendix, Fig. S1) using, as a template,the crystallographic structure of 
bovine rhodopsin (Rh). The model quality is assessed by reproducing: (i) the observed λ max changes along the set 
plus the Rh template and (ii) the observed linear relationships between the λ max of A1/A2 pairs of pigments15,16. 
This second test is carried out by preparing and spectroscopically characterizing in vitro Baikal rhodopsins where 
the A1 chromophore is replaced by the A2 chromophore forming red-shifted analogs17. The validated QM/MM 
models are then used to study the effects of the amino acid substitutions differentiating the four species through 
a computational implementation18 of the point-charge model proposed by Nakanishi and coworkers19 (Fig. 1d 
and e).

Origin of the excitation energy changes. Three Lake Baikal pigments were expressed and purified  
in vitro with both the A1 and A2 chromophores. The measured λ max of the A1 rhodopsins were found to be almost 
identical to the literature values measured via microspectroscopy (MSP)2. C. inermis λ max was identical to MSP 
measurements (495 nm), while A. korotneffi was found to absorb maximally at 482 nm (− 2 nm from MSP values) 
and P. jettelesi absorbed at 501 nm (− 4 nm from MSP values) (SI Appendix, Fig. S2). As expected, the λ max of the 
A2 rhodopsins was found to be red-shifted in comparison to the corresponding A1 rhodopsin value. A. korotneffi 
A2 pigment shifted to 499 nm, a total red-shift of 17 nm. P. jettelesi rhodopsin expressed with A2 chromophore 
shifted by 19 nm to 520 nm. C. inermis was red-shifted by 21 nm to 516 nm in the A2 pigment (SI Appendix, 
Fig. S2). All A2 rhodopsins were also successfully light bleached and their MII intermediate also showed the 
characteristic observed blue-shifted λ max with respect to the dark adapted state (SI Appendix, Fig. S3) as expected 
for functional pigments.

As reported in Fig. 2a (see also SI Appendix, Table S1), the observed A1 and A2 rhodopsin λ max trends as well as 
the related A1/A2 linear relationship are reproduced by the QM/MM models. Furthermore, the computed A1/A2  
slope only modestly deviate from that established experimentally by Dartnall and Lythgoe15 showing a 5 nm error 
(i.e. < 1 kcal mol−1).

In order to investigate the origin of the λ max trend, we computed the Δ E values (Fig. 2a and SI Appendix, 
Table S1) for the isolated (in vacuo) chromophores of the four Baikal pigments. In these computations, the 
geometrical parameters of the chromophore are fixed at the values of the S0 equilibrium structure of the QM/MM  
model. The results provide information on the Δ E variations due to the changes in chromophore geometry. 
Within the A1 and A2 sets, the Δ E values show only limited ≤ 1 kcal mol−1 variations consistently with the limited 
geometrical changes displayed in Fig. 2b (i.e. with dihedral angle changes ≤ 4 degrees). Thus, the model indicates 
that the λ max variations are not due to progressive chromophore distortion (except for a fraction in the case of  
C. inermis) and must be dominated by electrostatic effects (i.e. by the variations in the point charges of cavity and 
extra-cavity amino acids).

Effect of cavity and extra-cavity amino acids. The Δ E change between the most red-shifted model  
(P. kneri) and the most blue-shifted model (A. korotneffi) is 1.9 and 3.3 kcal mol−1 for the A1 and A2 chromo-
phore respectively. This value (see Fig. 1d) reflects the stabilizing effect of the P. kneri and A. korotneffi protein 
environments on the difference in S1 and S0 charge distribution of the chromophore (the S1/S0 charge difference 
of Fig. 2c). Since the S1/S0 charge difference is similar in all pigments, we focused on the larger Δ E changes of the 
A2 rhodopsins.

The Δ E decrease (red-shift) or increase (blue-shift) associated with a specific side-chain, can be evaluated by 
setting its point charges to zero and recomputing the excitation energy (Δ Eoff). The largest Δ E-Δ Eoff differences 
computed for the cavity residues are displayed in the balloon diagrams of Fig. 3a. When comparing the effects of 
side-chain substitutions, one finds that a Δ E change may have two components. The first is a direct component 
due to the change in number, magnitude and position of the corresponding side-chain point charges. The second 
component is indirect and originates from the reorganization of the hydrogen bond network (HBN) induced by 
the same substitution. This second component/effect explains why conserved residues and water molecules may 
display large Δ E-Δ Eoff changes and contribute to the total Δ E variation significantly.

When comparing the extreme cases of P. kneri (reddest) and A. korotneffi (bluest), the sequence data shows 
that the amino acid substitutions G114A and Y261F remove two red-shifting residues in P. kneri (see Fig. 3a) 
which directly contribute to blue-shifting the A. korotneffi absorption. While the same data shows that A292S 
does not change the Δ E-Δ Eoff, below we will see that this substitution modifies the HBN which then blue-shifts 
the λ max indirectly. Thus variations in the composition of the rhodopsin cavity modulates the λ max between littoral 
and abyssal habitats through direct and indirect changes. The same analysis indicates that, due to a cancellation 
of Δ E-Δ Eoff of opposite signs (e.g. the sizable R140C red-shifting replacement is counterbalanced by the smaller 
T209I, L176S, T297S blue-shifting replacements in Fig. S6), the substitution of extra-cavity residues contributes 
only modestly to the λ max change from P. kneri to A. korotneffi.

The sub-littoral and supra-abyssal species P. jettelesi and C. inermis feature the same amino acid cavity compo-
sition and similar cavity Δ E-Δ Eoff values (SI Appendix, Fig. S6). In contrast, the extra-cavity substitutions T297S, 
D83N, T166S relating these species are associated with direct blue-shifting changes. This suggests that spectral 
tuning among species in the closer sub-littoral and supra-abyssal habitats may be controlled by extra-cavity amino 
acids. On the other hand, the Δ E variations computed between sub-littoral and littoral and between abyssal and 
supra-abyssal are modulated by both cavity and extra-cavity substitutions and by direct and indirect changes  
(SI Appendix, Table S4 and S5) as we will discuss below.

Activation energy changes. In order to find out if the blue-shift observed when passing from the litto-
ral to the abyssal habitat reflects the need to reduce the rhodopsin thermal noise, we built the QM/MM mod-
els for the S0 transition states (TS, Fig. 1e) that control thermal isomerization. The models allow to compute 
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the corresponding Ea
T, thermal activation energy. The results yield a linear relationship between Ea

T and 1/λ max 
(Fig. 2d) with the most blue-shifted A1 rhodopsin (from A. korotneffi) displaying an Ea

T 5.4 kcal mol−1 higher 
than the Ea

T of the most red-shifted rhodopsin (from P. kneri). Notice that the present work is not aimed at repro-
ducing the absolute values of the observed barriers but only their variation among different Baikal species. This is 
discussed in Section 6 of the SI Appendix which highlights a non-Arrhenius behavior as a source of discrepancy 
between computed and available observed Ea

T values. In the same section, an additional source of inaccuracy is 
associated with the fact that reactant and transition state structures are computed as single points on the rho-
dopsin potential energy surface without explicitly accounting for the protein dynamics at body temperature. 
However, this error is expected to be systematic and therefore unable to affect the computed trends.

The geometrical structures of the chromophore at the TSs of A. korotneffi and P. kneri (see Fig. 2e) at the tran-
sition state are similar and consistent with those reported for Rh18. The structures indicate that the isomerization 
occurs via an aborted bicycle-pedal reaction coordinate20,21 involving the -C9= C10-C11= C12- segment of the 
chromophore backbone. Such motion is coupled with a substantially complete charge translocation from the  

Figure 2. λmax and Ea
T values of Baikal cottoid fish rhodopsins. (a) Experimental (blue diamonds) and 

computed (purple circles) λ max of the selected rhodopsins (the computed values are scaled by applying a factor 
of 1.03 and 1.05 to the corresponding Δ E of the A1 and A2 models respectively). The straight line indicates the 
linear relationship of 18 identical-opsin pairs selected by Dartnall and Lythgoe. The Δ E values for the isolated 
chromophores of the computed set are also displayed (black triangles). (b) Superimposed S0 equilibrium 
geometries of A1 retinal chromophores in C. inermis (green), P. jettelesi (orange), A. korotneffi (blue) and  
P. kneri (red). The relevant bond lengths and backbone dihedral angle are given in Å and degrees respectively. 
(c) Balloon diagram displaying the difference between the S1 and S0 charge (S1/S0 charge difference, in electron 
units) distributions at the S0 equilibrium structure of P. jettelesi. (d) Computed thermal isomerization Ea

T 
(with a scaling factor of 1.18 applying to the A1 models, see SI for details) plotted as a function of the inverse 
of the corresponding λ max for pigments with the A1 chromophores in the protein (black circles), isolated 
(gray triangles) and in the protein with no point charges (red squares). Straight lines indicate the ideal linear 
relationship. The significant difference between the computed 35–40 kcal mol−1 Ea

T value (this work) and the ca. 
22 kcal mol−1 value measured in the 288–298 K range assuming an Arrhenius kinetics has been discussed in ref. 
An updated discussion is given in the SI Appendix Section 6. (e) Transitions state geometries of the A1 retinal 
chromophore in A. korotneffi (blue) and P. kneri (red) rhodopsins. The relevant bond lengths and backbone 
dihedral angle are given in Å and degrees respectively. (f) Difference between the charge distributions between 
the S0 transition state structure and equilibrium structure for P. jettelesi (TS/S0 charge difference).
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= C12-C13= C14-C15= NH- segment to the segment containing the β -ionone ring (compare the schematic S0 
reactant - i.e. the dark adapted state - and TS structures in Fig. 1d and e respectively).

Similar to what was found for Δ E, the Ea
T of the chromophores in vacuo, i.e. the energy difference between the 

chromophores extracted from the QM/MM models of the TS and S0 reactant, are close (see Fig. 2d and Table S6). 
It is therefore concluded that the changes in Ea

T are due to variations in the protein environment. Furthermore 
in Fig. 2d we show that electrostatic interactions prevail over steric (e.g. van der Waals) interactions. In order 
to isolate the steric effects, we zeroed all protein charges of the models and recomputed the Ea

T values. The A. 
korotneffi value is found to be lower than the corresponding P. kneri value showing that steric effects would, as 
confirmed by the P. jettelesi and C. inermis Ea

T values, result in a trend opposite to the one observed when both 
steric and electrostatic effects are considered (see also SI Appendix). It is thus concluded that the protein electro-
statics determines the Ea

T trend.
According to the point charge model, Ea

T is modulated by the residue charges which “stabilize” or “destabi-
lize” the TS/S0 charge changes (Fig. 2f). Such difference is qualitatively similar to the S1/S0 charge change (com-
pare Fig. 2c and f). Thus, we investigate the differences in Ea

T between P. kneri and A. korotneffi by applying the 
same analysis employed for Δ E. Accordingly, the effect of each residue is evaluated by computing the quantity 
Ea

T-Ea
T

off (Ea
T

off being the barrier obtained after zeroing the charges of a specific residue). When a residue is 
replaced such quantity is expected to display variations similar to the one seen for Δ E-Δ Eoff but the significance 
of which is more complex to interpret. In fact, while Δ E-Δ Eoff reflects, by definition, the effect of the residue 
charges, Ea

T-Ea
T

off also incorporates the effect of the geometrical difference between the TS and the S0 reactant. 
The Ea

T-Ea
T

off variations induced by the rhodopsin cavity substitutions relating P. kneri to A. korotneffi (Y261F, 
A292S and G114A), are given in Fig. 3b and c and Table S7. Y261F leads, through a direct change, to an increase 
of Ea

T in A. korotneffi (2.7 kcal mol−1) consistently with the effect reported above for Δ E. As shown in Fig. 3c 
A292S leads, again through a direct change, to a large increase (4.8 kcal mol−1) in Ea

T of A. korotneffi. Although 
this variation parallels the corresponding Δ E increase, the modeled Ea

T change is due to HBN modification rather 
than a direct change as for Δ E. Finally, while G114A (see Fig. S7) leads to a negligible Ea

T variation in A. korot-
neffi, it causes a limited direct Δ E increase (0.8 kcal mol−1). In conclusion, while the overall variation induced 
by the three substitutions show the same trend for both Δ E and Ea

T, their contributions may be mechanistically 
distinct as we detail below.

Mechanisms of thermal noise modulation and spectral tuning. As reported above the combined 
effects of three cavity substitutions (see Fig. 4a) play a substantial role in establishing the differences between 
the Δ E and Ea

T of P. kneri and A. korotneffi. The Y261F substitution blue-shifts the λ max of all species relative to  

Figure 3. Effects of point charges of specific cavity residues between the two extreme cases: P. kneri and  
A. korotneffi. Apolar and polar residues are reported in gray and cyan, respectively and Gly residue (hydrogen) 
is shown as small gray sphere. The chromophore and the E113 counterion are shown in tube representation. 
The labels indicate residues that are not conserved in at least one of the four pigments of the cottoid fish set. 
(a) Retinal-binding pockets of the pigments with the A2 chromophore. Δ E-Δ Eoff > 0.5 kcal mol−1 in absolute 
value are labelled in red (negative shift) and blue (positive shift). The corresponding values are given in 
parenthesis in kcal mol−1 and represented by balloons. (b) Retinal-binding pockets of transition state with the 
A1 chromophores viewed with substitution (reported in yellow) at residue 261. Ea

T-Ea
T

off > 0.5 kcal mol−1 in 
absolute value are labelled in red (negative shift) and blue (positive shift) and given in parenthesis in kcal mol−1. 
The dashed lines indicate hydrogen bonds. (c) The same data for the substitution of residue 292.
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P. kneri by effectively changing the side-chain point charges. In fact, Y261F loses a dipole (the OH group of 
tyrosine) pointing its negative pole towards the β -ionone ring (see Fig. 4a top). This destabilizes the S1/S0 charge 
difference of Fig. 2c increasing the Δ E and leading to a blue-shift. As shown in Fig. 4b the same mechanism is 
seen when comparing P. kneri and P. jettelesi.

A parallel mechanism explains the increase of Ea
T in A. korotneffi. with respect to P. kneri. In fact, similar to 

the Δ E effect, the Y261F substitution in A. korotneffi destabilizes the TS/S0 charge shift laid out in Fig. 2f and 
thus increases the Ea

T. However, in contrast to Δ E, Ea
T is also modulated via an indirect effect of the same Y261F 

substitution. In fact, the loss of OH in position 261 in A. korotneffi, which used to form a hydrogen bond with the 
backbone oxygen of the conserved G121 residue in P. kneri (compare bottom and top in Fig. 3b), induces an HBN 
change. This change affects the stability of the TS and S0 reactant differently and contributes to the Ea

T increase 
in A. korotneffi.

As seen in Fig. 3c, the A292S substitution relating P. kneri to A. korotneffi does not blue-shift the λ max through 
a direct change, but through a modification of the HBN. In fact, A292S induces a relocation/reorientation of 
WAT2 which displaces it away from the Schiff base region (see Figs 3c and 4a bottom). Since the positive pole of 
WAT2 points towards the -C15= NH- moiety and destabilizes the S1/S0 charge difference, such WAT2 relocation 
increases the Δ E in A. korotneffi. The same mechanism, which is also responsible for the P. jettelesi to A. korotneffi 
λ max blue-shift (see Fig. 4c), explains the increased Ea

T in A. korotneffi through a decreased destabilization of the 
TS/S0 charge difference. However, the A292S induced WAT2 relocation also mediates a secondary indirect change 
of Ea

T. In fact, it perturbs an HBN connecting the conserved residues E181, S186 and Y268 (see bottom and top 
in Fig. 4b) which thus contribute to modulate Ea

T. This is demonstrated by the 1.3 kcal mol−1 increase of S186 and 
− 2.1 and − 1.4 kcal mol−1 decrease of E181 and Y268 respectively in A. korotneffi compared to P. kneri. Notice 
that, although individually E181 and Y268 induce a reduction in Ea

T, such HBN modulation is dominated by the 
4.6 kcal mol−1 increase due to WAT2 (see Fig. 3c).

Finally, the G114A substitution, which replaces a non-polar residue with a sterically larger residue, shows a 
contrasting effect in A. korotneffi. As shown in Fig. 4a top and c, the G114 hydrogen of P. kneri and P. jettelesi is 
close to the Schiff base linkage and stabilizes the S1/S0 charge difference. Thus, the G114A substitution in A. korot-
neffi contributes to increase the Δ E. Such Δ E change is not paralleled Ea

T which instead decreases. Nevertheless, 
due to the limited change in polarity, the decrease (see Fig. S7) is smaller than the Ea

T increase due to the Y261F 
and A292S substitutions.

In conclusion, point-charge analysis has revealed a set of substitutions which simultaneously modulate Δ E 
and Ea

T via cooperative direct and indirect HBN mediated mechanisms. While the magnitude of the described 
changes is expected to be sensitive to the details of our basic QM/MM models, the same substitutions have 

Figure 4. Spectral tuning sites in Baikal cottoid rhodopsins. (a) Direct (side-chain replacement) and indirect 
(conserved residue or water molecule reorientation) mechanisms for color-tuning based on Nakanishi point 
charge model. The effect of each mechanism on the Δ E variation (e.g. S1 destabilization or S0 stabilization) 
is illustrated by the corresponding bar diagrams. Top. Geometrical variations associated with the Y261F and 
G114A substitutions characterizing the transition from P. kneri (red) and A. korotneffi (blue). Bottom. Water 
molecule (WAT2) reorientation caused by the A292S substitution characterizing the same transition.  
(b) Spectral-tuning mechanism related to the Y261F substitution between P. kneri (red) and P. jettelesi (yellow). 
(c) Spectral-tuning mechanism related to the A292S and G114A substitutions between P. jettelesi and A. korotneffi  
(blue). (d) Cavity and extra-cavity substitutions associated with the transitions between different rhodopsins. 
The full arrows indicate the proposed evolutionary relationship between the corresponding species when 
assuming P. jettelesi to be the closest to the ancestor. In contrast, the grey arrow indicates the substitutions 
involved in the transition between littoral and abyssal species.
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been detected in other contexts. In fact, Y261F has been shown to be responsible for the spectral differentiation 
between green and red cone pigments in primates22. G114A has been shown to cause a blue-shift also in Rh when 
expressed in vivo23,24 and in spite of the limited polarity change. A292S has also been detected in blue-shifted 
rhodopsin from other fish25, marine mammals26, and monotremes27.

Light-sensitivity in related species. Above we have employed MCQC-based QM/MM models of rho-
dopsins reconstituted with both A1 and A2 retinals to investigate the relationship between spectral tuning and 
thermal isomerization rate in different species of cottoid fish. The results support the existence of a direct pro-
portionality relationship between Δ E and Ea

T for pigments of closely related species which evolved in the con-
fined environment of Lake Baikal. This expands the validity of the Barlow correlation discussed for rod and 
cone pigments of distant species9,10,28 and provides a link with the observed inverse proportionality relationship 
between λ max and isomerization rate in proton-pumping rhodopsins29 and even in the extreme case of 13-cis 
retinal chromophore salts in solution30.

The Δ E and Ea
T proportionality originates at the electronic level. Indeed, the similarity between the S1/S0 and 

TS/S0 charge differences, (see Fig. 2c and f) due to the changes in chromophore π -electron density, makes Δ E and 
Ea

T sensitive to the same substitutions. At a more fundamental level, such similarity originates from the fact that 
the same charge transfer configuration (φ CT) of the chromophore dominates the rhodopsin vertical S1 state and 
S0 transition state. As previously shown18, this is a consequence of a quantum mechanical property of the conical 
intersection of the rhodopsin chromophore18,31. Therefore the λ max changes observed in Baikal rhodopsins reflects 
the biological exploitation of a quantum effect to increase light sensitivity32.

The analysis of the QM/MM models indicates that the variation of Δ E and Ea
T in phylogenetically closely 

related rhodopsins is controlled by the electrostatic characteristics of the protein. Our implementation of 
Nakanishi’s point charge analysis has identified 8 rhodopsin substitutions, over a total of 20, modulating light 
sensitivity from red-shifted P. kneri to the blue-shifted A. korotneffi. The same analysis also produced an “atomis-
tic model” of dim-light adaptation through specific side-chain substitutions. Through this model, specific mecha-
nisms can be associated to the proposed phylogeny5 assumed to originate from P. jettelesi as its λ max matches that 
of the ancestor. While the modification of the point charges associated with a cavity substitution have a direct 
impact on Δ E and Ea

T (e.g. F261Y when comparing P. jettelesi and P. kneri in Fig. 4b), it would be impossible to 
model the observed trends without taking into account the HBN modifications associated with the same substi-
tution (e.g. A292S comparing P. jettelesi and P. korotneffi in Fig. 4c) or the effect of extra-cavity substitutions (e.g. 
D83N, T297S and T166S when comparing P. jettelesi and C. inermis and, additionally, S298A in P. jettelesi and A. 
korotneffi). Also, in our QM/MM models, extra-cavity substitutions display large effects when an ionized residue 
replaces a neutral one (e.g. C140R replacing cysteine in P. jettelesi to a arginine in P. kneri).

In conclusion, when assuming that the thermal isomerization of rhodopsin dominates its thermal noise, the 
regular Baikal rhodopsin blue-shift observed when moving from littoral to abyssal habitats may be a byproduct 
of visual adaptations to extremely low levels of illumination. In fact, our study shows that for Baikal fishes, these 
two aspects of visual pigment function are interdependent: the isomerization rate (which would determine the 
amount of thermal noise) and the wavelength of maximal absorbance. Amino acid substitutions have evolved in 
these fishes that shift both quantities simultaneously for adaptations that would contribute to better visual sen-
sitivity and enable colonization of the dimly lit blue-shifted deepwater environments of Lake Baikal. Our results 
suggest that it is possible similar mechanisms may underlie colonization of other deepwater dimly lit environ-
ments such as those inhabited by deep sea fishes in marine habitats.

Methods
Molecular biology methods. No experiments on live vertebrates were carried out in this study. Incomplete 
Baikal cottoid RH1 sequences were taken from5 and completed with wildtype bovine sequences for the N- and 
C-termini. The full-length hybrid RH1 genes were synthesized by GeneArt (Invitrogen) with BamHI and EcoRI 
restriction sites at the 5′  and 3′  ends, respectively. The synthesized sequences were then inserted into the p1D4-
hrGFP II expression vector which tags expressed rhodopsin sequences with the nine amino acid 1D4 peptide 
sequence (TETSQVAPA) at the carboxy terminus33. This enables immunoaffinity purification of expressed pro-
teins from HEK293T cells as previously described34,35. UV-vis absorption spectra of purified rhodopsin samples 
were measured at room temperature both in the dark, and following light-bleaching for 60 seconds using a fiber 
optic lamp. Difference spectra were calculated by subtracting the light-bleached spectra from respective dark 
spectra. To provide accurate estimates of λ max, dark absorbance spectra were fit to standard templates for either 
A1 or A2 visual pigments36.

Computational methods. The QM/MM models of both A1 and A2 fish rhodopsins were prepared starting 
with a structures obtained via comparative modeling. To do so, the chain A of the 1U19 structure of bovine rho-
dopsin37 was used as a template. The models were then constructed by relaxing the cavity-counterion-chromophore 
complex in its protein environment via molecular dynamics and geometry optimization. The chromophore was 
treated using the complete-active-space self-consistent field (CASSCF) method38 with an active space correspond-
ing to the entire π -system and the 6–31G* basis set. The protein environment was instead described using the 
AMBER force field. To account for the dynamic electron correlation, the model equilibrium CASSCF/AMBER 
geometries and wavefunctions were used for single-point multiconfigurational second-order perturbation theory 
(CASPT2) calculations with a two-root state average zeroth-order wavefunction39. The Δ E values are computed at 
the CASPT2//CASSCF/AMBER level. The transition states controlling the thermal isomerization were located via 
restricted-step rational-function-optimizations40 at the CASSCF/AMBER level. The corresponding Ea

T values were 
computed at the CASPT2//CASSCF/AMBER level. See the SI Appendix for further details.
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