
����������
�������

Citation: Ranade, H.; Paliwal, P.;

Chaudhary, A.A.; Piplani, S.;

Rudayni, H.A.; Al-Zharani, M.;

Niraj, R.R.; Datta, M. Predicting

Diagnostic Potential of Cathepsin in

Epithelial Ovarian Cancer: A Design

Validated by Computational,

Biophysical and Electrochemical

Data. Biomolecules 2022, 12, 53.

https://doi.org/10.3390/

biom12010053

Academic Editor: Vladimir

N. Uversky

Received: 24 November 2021

Accepted: 16 December 2021

Published: 30 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Predicting Diagnostic Potential of Cathepsin in Epithelial
Ovarian Cancer: A Design Validated by Computational,
Biophysical and Electrochemical Data
Hemangi Ranade 1, Priya Paliwal 1 , Anis Ahmad Chaudhary 2 , Sakshi Piplani 3, Hassan Ahmed Rudayni 2 ,
Mohammed Al-Zharani 2, Ravi Ranjan Niraj 1 and Manali Datta 1,*

1 Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
hemangi96.ranade@gmail.com (H.R.); Paliwal.priya5@gmail.com (P.P.); rrkniraj@jpr.amity.edu (R.R.N.)

2 Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University,
Riyadh 11564, Saudi Arabia; aachaudhary@imamu.edu.sa (A.A.C.); harudayni@imamu.edu.sa (H.A.R.);
mmylzarani@imamu.edu.sa (M.A.-Z.)

3 Vaxine Pty Ltd., Flinders University, Bedford Park, SA 5042, Australia; piplani.sakshi@gmail.com
* Correspondence: manali.datta@gmail.com; Tel.: +91-7742889287

Abstract: Background: Epithelial ovarian cancer remains one of the leading variants of gynecological
cancer with a high mortality rate. Feasibility and technical competence for screening and detection of
epithelial ovarian cancer remain a major obstacle and the development of point of care diagnostics
(POCD) may offer a simple solution for monitoring its progression. Cathepsins have been implicated
as biomarkers for cancer progression and metastasis; being a protease, it has an inherent tendency to
interact with Cystatin C, a cysteine protease inhibitor. This interaction was assessed for designing
a POCD module. Methods: A combinatorial approach encompassing computational, biophysical
and electron-transfer kinetics has been used to assess this protease-inhibitor interaction. Results:
Calculations predicted two cathepsin candidates, Cathepsin K and Cathepsin L based on their binding
energies and structural alignment and both predictions were confirmed experimentally. Differential
pulse voltammetry was used to verify the potency of Cathepsin K and Cathepsin L interaction with
Cystatin C and assess the selectivity and sensitivity of their electrochemical interactions. Electrochem-
ical measurements indicated selectivity for both the ligands, but with increasing concentrations, there
was a marked difference in the sensitivity of the detection. Conclusions: This work validated the util-
ity of dry-lab integration in the wet-lab technique to generate leads for the design of electrochemical
diagnostics for epithelial ovarian cancer.

Keywords: cathepsin-cystatin; molecular dynamics; differential pulse voltammetry

1. Introduction

Epithelial ovarian cancer (EOC) is the fourth most common cause of cancer-associated
death in women in the developing world [1]. The disease typically presents in post-
menopausal women, and depicts a lifetime risk of 40–60% [2,3]. CA125 and HE4 have been
consistently utilized as clinically approved biomarkers for EOC detection but they have
associated advantages and disadvantages [4,5]. Prior detection of EOC increases the life
expectancy by 5 years; hence, the availability and utilization of multivariate markers may
enable sensitive detection of EOC [6].

Cathepsins are highly expressed in a multitude of human cancers and have been
found to be associated with tumor metastasis [7]. This family encompasses cysteine
proteases (CPs) (B, C, F, H, L, K, O, S, V, W, X, Z), serine proteases (A and G) and aspartic
proteases (D and E) [8]. CPs are ubiquitously expressed, with exceptions being CatK
expressed only in osteoclasts and CatV in the thymus and testis [9]. CPs are monomeric
proteins with molecular weight ranging between 20 and 35 Kda with their overall structure
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resembling the native structure of papain. It comprises two functional domains, the N-
terminal domain and the C-terminal domain coordinated with a thiolate imidazole ion
pair. Amongst the CPs, CatF, CatV, CatL and CatK are endopeptidases, CatC and CatX are
exopeptidases, whereas CatH and CatB in addition to their endopeptidase activity possess
dual functionality as aminopeptidase and carboxypeptidase [10]. The substrate binding
site for cathepsins extends over three well defined subsites, namely S1, S1′and S2 and other
subsites like S3 and S4 enabling stabilization of the side chains of the substrates and thus the
catalytic prowess of CPs [11,12]. Structural comparison amongst the different CPs indicated
a marked demarcation in the substrate binding sites. CatV and CatL exhibited broad
specificity for substrate binding at S3 and S1′ sub-sites owing to the sequence variation
(Figure 1). In contrast, CatK exhibits substrate specificity at S2 and S2′ with proline as a
preferred residue at P2 cleavage position. Comparison of the primary structure of various
CPs performed using Clustal Omega indicated conservation of residues at Gly19 of L-
domain, residues from Cys22-Trp 26, His 160 and Asn 187 from R-domain. A sequence
similarity of almost 79% was found between CatV and CatL, indicating that CatV may be
an isoform of CatL.
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0.76 (CatH) when compared with CatL (Figure 2C). 

Figure 1. (A) Cartoon representation of Cathepsin with Left (L) and Right (R) domains consisting
substrate binding subsites S2′ (red), S3 (blue) and S2(yellow), S1′(pink) respectively. The N-terminal
L-domain contains mostly α-helix whereas the C-terminal R-domain with mostly β-sheets. The
image was prepared by PyMOL. (B) The cartoon structure of protein is showing the position of active
site cleft at the mid-point of L- and R-domain. The red spheres indicating the presence of binding
pocket at this site. The image was created by Computed Atlas of Structure Topography of proteins
(CASTp). (C) Surface structures of all the cathepsins are showing their structural similarity with
papain, comprising S2′(red), S3(blue) substrate binding sites at Left (L) and S2 (yellow), S1′ (pink)
substrate binding sites at Right (R) domains. All the images were created by using PyMOL.
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Cystatins are protease inhibitors comprising of four classes namely, Type I or Stefin,
Type II or Cystatins, Type III or kininogens and Type IV [10,13,14]. Cystatins considered
as exosite binding reversible inhibitors of CPs bind adjacent to active sites obstructing the
direct access of substrate with the enzyme’s catalytic center [15]. Amongst all Cystatins,
a very high interaction with an association rate constant Kass 105–107 M−1s−1 has been
determined for Cystatin C (CysC) and CPs with dissociation equilibrium Kd in the range of
10−9–10−12 M indicating slow disintegration of the complex [16]. Mature human CysC with
a molecular mass of 13Kda possesses three conserved regions namely N-terminal segment,
C-terminal interconnected via an L1-L2 loop containing a highly conserved (Q-X-V-X-G)
region (Figure 2) [17,18].
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Figure 2. (A) The multiple sequence alignment representation of different cathepsins namely CatL
(PDB Id. 4AXL), CatK (PDB Id. 6ASH),CatV (PBD Id. 1FH0),CatH (PDB Id. 1NB3), CatF (PDB Id.
1M6D): figure generated by Clustal Omega and Espript3. The substrate binding subsites S2′, S3 of
L-domain and S2, S1′of R-domain are highlighted with dotted box. The figure [highlighted in red]
denotes sequence conservation of active site residues at their respective subsites. (B) The domain
architecture of cathepsin indicates conservation in overall functional classification of domains SD rep-
resents the signal sequence domain, PD as prodomain, MD is the mature domain; Number of amino
acid present in each domain is mentioned. (C) Superposition of backbone traces of five cathepsins indi-
cate sequence diversity in domains S1, S2, S3 and S1′ has generated three dimensional perturbations.
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The progression of cancer is a multiplex process initiated via an invasion through the
epithelial basement membrane progressing to metastasis. The perforation of tumor cells
to their neighboring regions is a result of cell-cell, cell-matrix adhesion or degradation
and remodeling of extracellular matrix (ECM) [19]. This highly dynamic process of cell-
matrix interaction and invasion is known as Epithelial Mesenchymal Transition (EMT).
Mimicking natural protein–protein interactions (PPI) may generate reliable partners for
some of the disease molecular markers. A large number of such interactions have been
discovered and subsequently validated by computational methods and high-throughput
experiments. Previous approaches that investigate the information capacity of pre-existing,
native networks, our goal with this work is to ask how we can manipulate the biophysics
of PPIs to engineer new networks that optimize information transmission. In this article,
we have assessed the feasibility of using CysC as a probe for the detection of a class of
cancer-specific CPs using computational as well as traditional wet lab experimentation. The
CPs selected for this study have been established as components and functionaries enabling
EMT with their collagenase and elastolytic activity leading to matrix degradation. [20]. Our
study findings may serve as an essential reference for integrating a yet unexplored in vitro
protein-protein partnership in the development of electrochromic cancer diagnostics.

2. Materials and Methods
2.1. Materials

SPMWE-COOH (cMWCNT)/carbon electrode REF: C110CNT (Palmsens, Houten,
Netherlands) was purchased from Spain and modified. Cathepsin, Cystatin C (CysC),
1-Ethyl-3-(3-dimethyl-aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS)
were purchased from Sigma Aldrich, St. Louis, MO, USA. Potassium hexacyanoferrate (III)
[K3Fe(CN6)], Ethanol and other chemicals were obtained from Qualigens, Mumbai India.
All other reagents were analytical grade and solutions were prepared in phosphate buffer,
pH 7.2 (PB).

2.2. PDB File Preparation and Structural Assessment

Structure files for the probable CPs implicated in EOC, namely, CatL, CatK, CatV,
CatH, CatF and CysC were downloaded from RCSB-PDB https://www.pdb.org (accessed
on 10 October 2021) in .pdb format (Table 1) [21]. Additionally, the amino acid sequence for
the CPs and CysC were also retrieved and processed for identification of disordered regions
or flexible regions in the proteins using GlobPlot 2.3 http://globplot.embl.de/ (accessed
on 10 September 2021) [22] and PONDR-FIT http://www.pondr.com (accessed on 10
September 2021) [23]. The Computed Atlas for Surface Topography of Proteins (CASTp)
http://sts.bioe.uic.edu/castp/ (accessed on 10 September 2021) [24] and Consensus Protein-
Protein Interaction Site Predictor (Cons-PPISP) https://www.pipe.rcc.fsu.edu (accessed on
10 September 2021) [25] was used to determine the active site of a protein. For docking, only
single chains were considered; heteroatoms and water molecules were removed from the
PDB files. The heteroatoms found in http://www.pondr.com the proximity of the active
site pocket tend to have a substantial impact on the binding of the ligand to the protein.
Similarly, water molecules interfere in a similar mechanism, hence both were deleted using
the edit command of AutoDock 1.5.6. Energy minimization of the structure was done using
SPDBV 4.1.0 [26].

https://www.pdb.org
http://globplot.embl.de/
http://www.pondr.com
http://sts.bioe.uic.edu/castp/
https://www.pipe.rcc.fsu.edu
http://www.pondr.com
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Table 1. Table representing the information related to the PDB files used.

PDB ID Protein Name Description Resolution

4AXL Cathepsin L Human cathepsin L apo form with ZN 1.92 Å

6ASH Cathepsin K Crystal structure of human Cathepsin K
with a non-active site inhibitor 1.42 Å

1FH0 Cathepsin F Crystal structure of human cathepsin F 1.60 Å

1NB3 Cathepsin H Crystal structure of stefin A in complex
with cathepsin H 2.80 Å

1M6D Cathepsin V
Crystal structure of human cathepsin V

complexed with an irreversible vinyl
sulfone inhibitor

1.70 Å

3GAX Cystatin C Crystal structure of monomeric human
cystatin C stabilized against aggregation 1.70 Å

2.3. Protein-Protein Docking

The docking was performed using ZDOCK, a protein–protein docking program which
performs rigid docking [27] utilizing the Fast Fourier Transform algorithm. Out of the
numerous poses generated for CPs and CysC, the top structures were selected based on the
ZDOCK’s default scoring function which includes a combination of electrostatics, shape
complementarity and statistical potential term. The top ten complexes for each CPs-CysC
were selected on the basis of scores and the complexes were assessed for their rotational and
translational correctness using PyMol tool [28]. Thereafter using SPDBV 4.1.0, electrostatic
potential and molecular surface-based force field energy values were noted, followed
by energy minimization using the Steepest Descent method [29]. The docking results
were visualized and the hydrophilic and hydrophobic interactions were determined using
PyMol 2.4.1 [28].

2.4. Molecular Dynamics Simulation

Computer simulations may facilitate understanding of the dynamics of the binding
of CatK and CatL with CysC, thus molecular dynamics simulation of the docked protein
complex were performed using GROMACS 2018.1 tool [30]. GROMACS 2018.1 is a high-
performance molecular dynamics simulation platform that relies on CHARMM36 and
SPC/E water model combination to achieve high performance accuracy. The force field
Gromos43a1 was selected for the study and protein salvation was executed with SPC water
model. The solvated protein was processed for energy minimization using the steepest
algorithm up to a maximum of 25,000 steps or until the maximum force (Fmax) is not
greater than 1000 kJ/mol nm which is the default threshold. Both complexes CysC-CatK
and CysC-CatL were subjected to a 20 ns of final MD simulation followed by intensive
analysis in order to characterize many structural and dynamic perturbations. Evaluation of
the simulated complexes was done on the basis of root mean square deviation (RMSD) and
root mean square fluctuations (RMSF) [31,32].

2.5. Electrochemical Assessment of Lead Cathepsins with Cystatin C

To assess the validity of the bioinformatics study, analysis of the shortlisted targets
was performed by differential pulse voltammetry (DPV). DPV, a type of electrochemical
measurement, is highly sensitive and specific, hence presenting a cost-effective alternative
for the design of diagnostic platforms. The experiments were carried out on a Palmsens
emstat4 potentiostat controlled by PSTrace5.8 software (Palmsens, Houten, Netherlands).
Immobilization of CysC as a probe on a multiwalled screen printed electrode was done as
per the protocol cited in Desai et al., 2018 [33]. Briefly, the screen printed cMWCNT electrode
(SPMWE) was activated by using 10 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
hydrochloride (EDC) and 10 mM N Hydroxysuccinimide (NHS) (1:1, v/v in PB) for 1 h
followed by washing and drying. Reactive ester groups generated on the working electrode
were functionalized by immobilization of CysC. Immobilization of CysC on SPMWE
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[cMW] was monitored by Faradaic current amplified by the potassium ferricyanide redox
mechanism. Thereafter, both candidates, CatL and CatK were incubated on the working
area of cMW for 30 min following which DPV measurements were taken. These interactions
were tested at physiological conditions (T = 37 ◦C and pH = 7.4 phosphate-buffered solution)
and effect of concentration was also monitored.

3. Results
3.1. Structural Assessment of Cathepsin Family Members

Disordered regions in the protein have been often implicated in protein interaction
and functionality. The disordered regions for the proteins were found using GlobPlot for
all selected CPs. The N terminal (1–5) and region comprising of residues 11–29 (Except
CatV) were found to be consistently disordered in all the CPs which coincides with the
substrate interaction site, S2′.

The major interacting residues which were identified in the S2′ site of CPs are Asn 18,
Gln19, Gly20, Cys22, Gly23, Ser24 and Cys25. Another site (54–69), S3 domain implicated
in substrate binding was found to be disordered in CATL, CATK and CATF. At S3 site
the interacting pocket residues identified by CASTp were Gln60 and Gly68. Both S2′

and S3 site belong to the L domain of the protein structure and are inherently involved
in protease-inhibitor interaction sites. The ERRAT plot and PROCHECK tool in SAVES
server http://saves.mbi.ucla.edu (accessed on 11 September 2021) enabled us in assessing
the overall quality and reliability of the structure files selected for the study whereby the
maximum overall quality ranged between 92% and 99% [34,35].

The structure of the available cathepsins were aligned to each other to observe the
difference in the three dimensional structure of the candidates. The root mean square
deviation (RMSD) values of aligned structures were 0.34 (CatV), 0.39 (CatK), 0.64 (CatF)
and 0.76 (CatH) when compared with CatL (Figure 2C).

The S2′ sub-site of L-domain and S1′ of R-domain seems to show an overall conserva-
tion in primary as well as their tertiary alignment. The S3 subsite indicates deviations in
CatF in the tertiary structure which is justified by the sequence variation in the primary
structure (Figure 2A,C) [36].

3.2. Interaction of Cystatin C with Different Cathepsins

Docking is a robust mechanism to assess the affinity and stability of the probe-ligand
interactions. The top ten predictions for each of the CPs with CysC were selected and ranked
on the basis of predictive free energies. SPDBV was used to determine the free energy of the
complexes by force field specification that evaluates energy with partial implementation
of the GROMOS96. A more negative value of free energies of the complexes indicated
a stronger binding [37]. One pose for each of the CPs, namely, CatL, CatK, CatV, CatH,
CatF was selected based on their free energy and subjected to energy minimization in
SPDBV to attain a pose with the least inaccurate geometry and minimum energy. On the
basis of the energy profiles, two complexes with their respective minimum energy were
selected for further analysis, whereby favorable binding partners of CysC were found as
CATK and CATL with interaction energies as −16180.323 KJ/mol and −15253.120 KJ/mol,
respectively. CysC being an exosite inhibitor does not interact with all the residues of the
catalytic triad of CPs consisting of Cys-His-Asn (Figure 3) [18].

http://saves.mbi.ucla.edu
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Figure 3. (A) Representing the interacting residues of CATK in CYAN and CATL in PALEGREEN with
CysC in MAGENTA forming hydrogen bonding network at the binding pocket. H-bonding could
be observed between Tyr67 and Val83, Cys25 and Ala84 of CATK and Cys C, respectively, Asp162
and Val83, Trp189 and Trp132 of CATL and CysC respectively. (B) Representing the hydrophobic
interacting residues of CATK and CATL with CysC. The binding of the CysC in the exosite of CatL
is substantiated by the distribution of the hydrophobic moieties in the S2 and S1 subsites, whereas,
CatK demonstrates a more uniform distribution the hydrophobic residues in the active site.

Consistent interaction has been observed between CysC and Cys 25 and His 163
(corresponding to CatL sequence). Furthermore, CysC active site residues namely, Gln 81,
Ile 82, Val 83, Ala 84, Gly 85; Tyr 128, Pro 131, Trp 132, were found to be interacting with
the residues of the CPs located in the S3 and S2′ subsites of the L domain (Figure 3). A
summary of contacting residues between the CPs with CysC has been elaborated in Table 1.

CysC was observed to form hydrogen bonding interactions with residues Cys25 and
Tyr 67 in CatK whereas in CatL residues implicated were illustrated hydrogen bonding
with Asp 162 and Trp 189. The difference in approach of CatK and CatL to CysC lies in the
difference in the overall sequence alignment with many dissimilar amino acids found at
the interaction sites. The differential interaction patterns are chiefly the reason for different
affinities of CPs to CysC. Hydrophobic binding geometry for CatK and CatL by CysC were
also analyzed. Comparison of binding of CatK and CatL and their interactions with CysC
indicated a predominance of hydrophobic residues located in at the S2′, S2 and S1′ subsite.
Analysis of the docked structure indicated that CatL facilitated a ‘snug fit’ for CysC as an
exosite binding ligand (Figure 3B), thus justifying the role of hydrophobic contacts.

The more proficient CATK interaction with CysC may be largely attributed to the
uniform distribution of the hydrophobic residues throughout the binding pocket and
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thus portraying a ‘tighter fit’. The RMSD plot indicated the complexes were stable after
commencing the simulation. The RMSD values of CysC-CatK and CysC-CatL seemed
to vary between 20−30 Å, thus indicating the ligands have a huge impact on the protein
structures. The RMSD plot of CatK was comparatively more stable than for the complete
span of 20 ns, suggesting that CatK does not undergo any large conformational changes
after binding CysC in comparison to CatL (Figure 4A). Furthermore, CysC-CatL after 17 ns
simulation starts showing fluctuations in RMSD in the order of approximately 25 Å, which
remained consistent, until the end of simulation time of 20 ns. Moreover, a comparison
of the RMSF plot signifies the overall stabilities of CysC-CatK and CysC-CatL complexes.
In CatL, the N terminal portion of the protein seems more flexible whereas, in CatK the
C-terminal demonstrates more conformational flexibility (Figure 4B). Subsites involved
in binding to CysC in CatK and CatL in the complexes exhibited lower confirmational
fluctuation, thus justifying the role played by these subsites in the stabilized binding of
CysC [32,38,39].
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3.3. Electrochemical Assessment of the Probe-Biomarker Interaction

In silico interaction analysis generated two positive leads for the diagnosis of ovarian
cancer. DPV was performed in presence of 5mM K3(FeCN)6 in 10 mM KCl as a redox indica-
tor with a potential range of −400 mV to −500 mV with a scan rate of 50 mVs−1 [26]. There
was a marked fall in the current (51.096 µA for Cys C) when compared with CysC/CatL
(46.199 µA) and CysC/CatK (39.5 µA) (Figure 4). Molecular dynamics of the binding
interactions confirm the strong affinity of CatK for CysC. As the affinity of CysC-CatK
is very high, lesser delocalization of the electrons occurs, resulting in decreased electro-
chemical detection. Additionally, the residues generating a strong binding interaction
in CatK-CysC are hydrophobic in nature. Current generated in DPV studies are due to
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the crossplay of electrons and their surface concentration in the interacting partners [40].
As a result, electron transfer between the electrode and CatK-CysC became difficult gen-
erating a weaker voltametric response. In contrast, the formation of in situ CatL-CysC
complexes generated a stronger peak current [41]. CatL interaction with CysC is resultant
of electrostatic interaction; signifying a constant exchange of electrons within the species. A
constant voltage across the cMW has a tendency to pull the electrons towards the working
electrode, which was strongly depicted in CatL-CysC and weak electronic fluctuation in
CatK-CysC. The concept was validated upon increasing the concentration of the CatL and
CatK showed a significant change in the peak current in CatL but a non-perceptible change
upon the increasing concentration of CatK. Upon increasing the concentration of both CatK
and CatL, peak current response was more magnified in the case of CatL as compared to
CatK (Figure 4C).

4. Conclusions

To date, no point of care diagnostic has been developed which may detect ovarian
cancer in home settings. Symptoms of cancer may be alleviated if detected early. Hence,
a diagnostic device is clearly the need of the hour which may enable regular monitoring
of cancer and thus enable timely therapeutic management. Cathepsins have time and
again been implicated in pathological manifestations of EOC. Both CatL and Catk have
presented themselves as biomarkers for the detection of EOC. The serum level of CatL
is significantly higher in patients with malignant EOC and its levels may be used to
categorize the severity of the disease. CatK, on the other hand, has been implicated in
bone cancer which has the tendency to metastasize to ovaries; hence, the time frame of
detection of EOC in case CatK may be subject to the prevalence of cancer in the bones [10].
A diagnostic design was conceptualized for detection of the cathepsin as a biomarker for
the screening of asymptomatic EOC candidates. In silico and in vitro experimentation
confirmed that both cathepsins, CatL and CatK serve as good candidates for binding to
CysC; yet, during electrochemical validation, minimal fluctuations in the concentration
of CatL elicited increased difference in peak current and hence an improved sensitivity.
As the intended diagnostic prototype is conceptualized on the basis of electrochemical
interaction, CatL-CysC presented itself as a more reliable target probe combination. The
diagnostic platform designed on the complementary interaction using CatL as a biomarker
and CysC as an optimized ligand may supplement prognostic detection of EOC and add to
the armamentarium of cancer in vitro diagnostics.
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