Wang et al. BMC Bioinformatics 2019, 20(Suppl 22):714

https://doi.org/10.1186/s12859-019-3227-1 B M C B| o) | nfo rm atl cS

RESEARCH Open Access

PEIS: a novel approach of tumor purity ®
estimation by identifying information sites
through integrating signal based on DNA
methylation data

Shudong Wang', Lihua Wang', Yuanyuan Zhang'#", Shanchen Pang' and Xinzeng Wang®

Check for
updates

From International Conference on Data Science, Medicine and Bioinformatics
Nanning, China. 22-24 June 2019

Abstract

Background: Tumor purity plays an important role in understanding the pathogenic mechanism of tumors. The
purity of tumor samples is highly sensitive to tumor heterogeneity. Due to Intratumoral heterogeneity of genetic
and epigenetic data, it is suitable to study the purity of tumors. Among them, there are many purity estimation
methods based on copy number variation, gene expression and other data, while few use DNA methylation data
and often based on selected information sites. Consequently, how to choose methylation sites as information sites
has an important influence on the purity estimation results. At present, the selection of information sites was often
based on the differentially methylated sites that only consider the mean signal, without considering other possible
signals and the strong correlation among adjacent sites.

Results: Considering integrating multi-signals and strong correlation among adjacent sites, we propose an
approach, PEIS, to estimate the purity of tumor samples by selecting informative differential methylation sites.
Application to 12 publicly available tumor datasets, it is shown that PEIS provides accurate results in the estimation
of tumor purity which has a high consistency with other existing methods. Also, through comparing the results of
different information sites selection methods in the evaluation of tumor purity, it shows the PEIS is superior to
other methods.

Conclusions: A new method to estimate the purity of tumor samples is proposed. This approach integrates multi-
signals of the CpG sites and the correlation between the sites. Experimental analysis shows that this method is in
good agreement with other existing methods for estimating tumor purity.
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Background

An important issue in tumor research is that tumor
samples during sampling are always mixed with normal
cells, which we refer to as “tumor purity”. The under-
standing of the pathogenic mechanism of tumor has
risen from the physical and chemical carcinogenesis in
the past to the virus and mutation carcinogenesis later,
and finally to the multi-step and multi-factor carcino-
genesis. Accurate measurements of tumor purity can
reduce the variance caused by other mixed genes in
samples and help more effectively target which genes
may be closely related to tumor development. In recent
years, estimating the “tumor purity” [1-5] of the sample,
i.e. the percentage of tumor cells in tumor sample, has
received increasing attention. Traditional tumor purity
estimation is basically obtained by pathological re-
searchers through image and image analysis. As well as
the later technologies based on cell classification, these
methods not only cost human resources but also have
high costs, which are not suitable for large-scale promo-
tion. Coincidentally, because of the significant genetic
and epigenetic differences between tumor cells and nor-
mal cells, it is feasible to use available high-throughput
data to estimate tumor purity. There are many methods
to estimate tumor purity using gene expression [6], copy
number variation [7] and single nucleotide polymorph-
ism [8] as predictors, but few are based on methylation
differences.

DNA methylation is a common and important mech-
anism in gene expression regulation, which is involved
in cell differentiation and proliferation, tumorigenesis
and other important life activities [9, 10]. Changes in
normal methylation patterns of the genome are closely
related to the occurrence of tumors [11]. Abnormal
DNA methylation patterns (including CpG island hyper-
methylation and DNA hypo-methylation) and tumori-
genesis have been one of the hot topics in the medical
field. DNA methylation is found in almost all cancers
and occurs before or at an early stage of cancer, so it is
expected to be an ideal marker for early diagnosis of
cancer. An important problem in tumor research is that
the tumor tissues obtained from clinical trials are highly
heterogeneous. They are a mixture of tumor cells, adja-
cent normal cells, stromal and infiltrating immune cells.
In high-throughput DNA methylation experiments, the
whole tumor sample is processed to extract DNA from
all cells and then the methylation levels are profiled. So,
these measurements are actually mixed signals from dif-
ferent cell types [12]. If there is no correct interpretation
of the sample mix, there will be deviations in the down-
stream data analysis, such as differential methylation
analysis and sample clustering.

Methods of using DNA methylation data to estimate
tumor purity have gradually emerged, nowadays. It is
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not difficult to find that the current methods of using
methylation data to estimate tumor purity are mostly
based on the selection of information sites. MethylPurify
[1] uses EM algorithm to identify information sites and
then infer tumor purity; InfiniumPurify [5] identifies in-
formation sites by rank-sum test and estimates tumor
purity which combined with Gaussian kernel density;
PAMES [2] utilizes the methylation levels of dozens of
highly cloned specific CpG sites to evaluate the purity of
tumor samples. The common feature of these methods
is that they need to select the information difference
methylation site first and then carry out purity estima-
tion. Currently, methods for identifying differentially
methylation sites based on differences in mean methyla-
tion levels between tumors and normal samples have
been well studied. However, the estimation results of
tumor purity by different methods are disparate. There-
fore, it is particularly important to select the differen-
tially methylation sites related to tumor as the
information sites. Early on, IMA [13] used Wilcoxon
rank-sum tests to identify differential methylation sites
by comparing mean values. Afterwards, FastDMA [14]
used variance analysis based on linear model. Currently,
most of the methods which identify differentially methyl-
ated sites are based on hypothesis testing, and integrat-
ing signal as well as strong correlation among adjacent
sites is seldom considered.

Here, we present an approach to estimate tumor
purity by identifying information difference methylation
sites from the comprehensive signal score of CpG sites,
called PEIS (Purity Estimation through Integrating
Signal). The method consists of two stages: the first
stage selects information sites by integrating signal
scores and strong correlation among adjacent sites; in
the second stage, the Gaussian kernel density was used
to estimate the purity of tumor samples. The algorithm
of PEIS is illustrated in Fig. 1. By applying PEIS on more
than 600 tumor and normal adjacent samples from 12
tumor types, PEIS shows a high degree of consistency
with other existing methods. Also, compared with other
methods of selecting information different methylation
sites, PEIS has more accurate results in evaluating

purity.

Results

Experimental data preprocessing

We downloaded DNA methylation data of 12 tumor
types of The Cancer Genome Atlas from UCSC Cancer
Genome Browser [15]. The tumor types that we used in-
clude BLCA (Bladder Urothelial Carcinoma, 21 paired
samples), BRCA (Breast invasive carcinoma, 92 paired
samples), COAD (Colon adenocarcinoma, 38 paired
samples), HNSC (Head and Neck squamous cell carcin-
oma, 50 paired samples), KIRC (Kidney renal clear cell
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Fig. 1 A flowchart to illustrate the PEIS algorithm

Carcinoma, 160 paired samples), KIRP (Kidney renal
papillary cell carcinoma, 45 paired samples), LIHC (Liver
hepatocellular carcinoma, 50 paired samples), LUAD
(Lung adenocarcinoma, 29 paired samples), LUSC (Lung
squamous cell carcinoma, 41 paired samples), PRAD
(Prostate adenocarcinoma, 50 paired samples), THCA
(Thyroid carcinoma, 56 paired samples), UCEC (Uterine
Corpus Endometrial Carcinoma, 33 paired samples). The
number of tumor and normal-adjacent samples of these
tumor types is not less than twenty. And all DNA
methylation CpG sites were filtered for quality control
in advance.

Tumor purity estimation results from PEIS

To illustrate the advantages of PEIS, we applied four
methods to our selected and pretreated DNA methyla-
tion data (665 samples from 12 tumor types). Figure 2a
shows scatter plots of tumor purity comparison for 11
tumor types. ABSOLUTE [16] is called the “gold stand-
ard” for estimating tumor purity, and InfiniumPurify is
currently the only method to estimate tumor purity
using DNA methylation data. The two methods are the
focus of our comparison. In general, PEIS is well corre-
lated with other methods. PEIS and InfiniumPurify have
the highest Pearson’s correlation (R=0.76) and the

lowest correlation (R =0.55) with ESTIMATE. But by
comparison, PEIS has a higher correlation with each
method than ABSOLUTE with them, except for CPE.
The estimated result of CPE [16] is the median purity
level derived from the normalization of ABSOLUTE, ES-
TIMATE and other methods. Therefore, this results in a
very high correlation between CPE and ABSOLUTE esti-
mation results. For each tumor type, we calculated their
Pearson’s correlation, and for most tumor types they
have a high correlation (Additional file 1: Figures S1—
S4). However, the sample size of each tumor type we
used was still relatively small, which is another factor in-
fluencing the correlation. Figure 2b shows correlations
between PEIS and other methods. Obviously, we can see
that the overall correlation between PEIS and IHC is
relatively low. It is not ruled out that this is because IHC
data source is image, which is not genetic or epigenetic
data, and according to relevant studies [16] has shown
that IHC is not consistent with other methods. The AB-
SOLUTE method only has correlation results for eight
tumor types, because no other tumor types are currently
estimated. For the other three methods, PRAD showed a
very low correlation. This can also be seen from Fig. 2c,
in the distribution of tumor purity estimation results for
12 tumor types, the purity of PRAD is lower than 0.2.
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This may be due to different methylation rates of pros-
tate cancer genes at different stages. Among them, the
methylation level of gene Retinoic acid receptor [2
(RARP2) is related to clinical staging [17, 18]. In prostate
cancer, the methylation rate of at least two genes in
stage D is significantly higher than that in stage B and C.
It is possible that as the disease progresses, the number
of methylated genes in prostate cancer increases. For
one type of tumor, we evaluated the integrating signal
score of the overall mean and variance of a CpG site in
all samples. Through the study on the information sites
of PRAD, we found that the selected information sites
showed significant differences in the CpG sites of a sin-
gle sample, while the remaining samples showed almost
no differences. This results in the selected information

sites being specific and not applicable to all samples.
Therefore, PEIS estimates low purity. Only one of the
50 PRAD tumor samples has a high correlation with
other methods, while the rest generally have a low cor-
relation. Based on the study of PRAD clinical data, we
find that the initial pathological diagnosis age of this
sample is before 45years old, and the age of the
remaining 49 samples is after 50 years old (Additional
file 2: Table S1). We do not rule out the possibility that
the results of PRAD tumor purity are age-related.
Moreover, the data set used in the experiment is proc-
essed to remove the locus on the sex chromosomes,
while PRAD mainly affect men after the age of 60, and
the cancer-related locus may be largely located on the
sex chromosomes, which would also affect the
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subsequent tumor purity estimation results. In
addition, we observed that the bottom edge of the
THCA boxplot using PEIS is significantly longer than
that using InfinjumPurify and some types of tumor
show slightly lower consistency, all of these because
the number of samples used in our study is small, so
even small deviations can reduce the consistency with
InfiniumPurify. This is also the part that we will con-
tinue to study in depth in the follow-up work.

Comparison of purity estimation results from different
methods

The different methylation sites selected by different in-
formation sites selection methods are not the same. The
selection of tumor-related information sites is crucial for
the estimation of tumor purity. The tumor purity esti-
mation results of several different information sites se-
lection methods as shown in Fig. 3. And the different
colored sites in the figure represent different tumor
types. In general, the results estimated by traditional hy-
pothesis testing methods have relatively low correlation
with other methods. The purity estimation results of
paired T-test are generally high and close to 1. Paired T-
test estimation, which compares the B-value of the over-
all samples, ignores the influence of individual samples
on the whole. As can be seen from Fig. 3a, the purity es-
timation of almost all samples of KIRC verges on 1.
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Through some understanding and analysis of the tumor,
this may be due to KIRC (Kidney renal clear cell carcin-
oma) is often clinically mixed with granulosa cell carcin-
oma and spindle cell carcinoma. It is difficult to
distinguish by using the B-value analysis of the whole, so
it may affect the estimation of the true purity. However,
this reason is only our speculation at present, which
needs to be further explored and confirmed. F-test itself
is not suitable for selecting information sites, because
too many information sites are selected according to the
significance of mean difference. Here, the purity estimate
obtained is the result of the combination of F-test and
T-test to select information sites. It is not difficult to see
that the result of F-test combined with T-test is much
better than that of T-test alone, as shown in Fig. 3b. The
hypothesis test method of KL divergence is not suitable
for identifying information sites, because it considers the
proportion of B-value of each sample to the whole, and
ignores the methylation information carried by the sam-
ple itself. Here, the KL divergence method we use is im-
proved by Zhang et al. [19], hereinafter referred to as KL
divergence. According to Fig. 3¢, it can be seen that some
tumor purity estimated by KL divergence is obviously
high, while a small part is obviously low. It was found that
the purity of KIRC tumor samples estimated by KL diver-
gence was generally higher, but the PRAD estimation
results were highly correlated with InfiniumPurify. For
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PRAD which tumor purity estimation are not ideal by
PEIS, the result of KL divergence estimation is in good
agreement with other methods. This also indicates that
due to tumor heterogeneity, information sites identified
by different methods are not the same and different infor-
mation sites selection methods behave differently for dif-
ferent types of tumor.

Discussion

Accurate estimation of tumor purity is of great signifi-
cance for subsequent differential methylation analysis
and genetic analysis. Using the available genetic or
epigenetic data to estimate tumor purity has more bio-
logical value and reference significance. Tumor hetero-
geneity brings difficulties and opportunities to estimate
tumor purity. Currently, gene expression data and copy
number variation (CNV) data are mostly used to esti-
mate tumor purity. However, methods for estimating
purity using DNA methylation data are far fewer. With
these considerations in mind, we propose a method to
integrating signal and correlation among adjacent sites
to identify information sites related to tumor purity
based on DNA methylation data. By applying our
method to 12 tumor types, we found that for most
tumor samples, our estimates were highly consistent
with other commonly used methods.

There are many types of data on cancer studies, such
as gene mutations, gene expression and DNA methyla-
tion. Nevertheless, none of the data was specifically used
to estimate tumor purity, in other words, tumor samples
estimation results from these data are not absolutely ac-
curate. Every data has its drawbacks in the estimation
process. For example, gene expression data can show
huge differences because of slight differences in DNA.
The estimation results of copy number variation data
are extremely uncertain. Therefore, comprehensive use
of CNV and SNV (somatic number variation) to evaluate
tumor purity has emerged. By comparison, DNA methy-
lation data are more stable. Of course, the estimation of
DNA methylation data is only a supplement to the exist-
ing results, which cannot be said to be the standard.

It is worth noting that most methods of estimating
tumor purity by DNA methylation are based on the se-
lection of information differential methylation sites. The
selection of information sites has a great influence on
the estimation results. That is because the selected infor-
mation sites contain low tumor information. However,
this cannot be used as a criterion to evaluate the selec-
tion method of differentially methylated sites. Therefore,
the key to estimate tumor purity using DNA methylation
data is to select information sites containing more tumor
information. This is also the direction that we should
make continuous efforts in the future. It can also be seen
from the experimental results in this paper that the same
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method has different results for different tumor types,
which is caused by tumor heterogeneity.

During the experiment, we also tried to calculate the
influence of all the sites within the range of 1000 bps,
but the information sites are more likely to be the sites
with close genomic distance, and some of the sites them-
selves are not differential methylation sites, which will
affect the subsequent purity estimation. Perhaps apply-
ing this approach to CpG islands will yield better results.
This is the part we will study in the following
experiments.

Conclusions

Tumor tissue obtained in clinical work is often mixed
with non-tumor cells, which play an important role in
tumor growth, progression or drug resistance. It is very
significant to correctly estimate and adjust the purity of
tumors for subsequent differential methylation analysis
and genetic analysis. In order to select tumor-related in-
formation sites to estimate tumor purity, we present an
approach based on integrating multi-signals and strong
correlation among adjacent sites. We apply our method
to 12 tumor types and show that our method is highly
consistent with the results of other commonly used
tools. The correlation between sites is taken into ac-
count to make the selected information sites more
biological.

Methods

In this section, we detailedly introduce PEIS which con-
siders CpG site’s integrating signal score and correlation
among adjacent sites, and then combine with Gaussian
kernel density to estimate the tumor purity. The algo-
rithm of PEIS is illustrated in Fig. 1.

Selection of informative CpG sites

In selecting information sites, we use a two-stage ap-
proach. Firstly, the integrating signal scores of the CpG
sites are calculated, and secondly, the correlation among
adjacent sites is integrated for score correction.

Step 1: define integrating signal scores
With reference to [20], the integrating signal score of a
CpG site i could be expressed as

|Tmz|

;=i
T,

(Aﬂ’l’li + (1—/11')1/[),

where m;= ¢ '(1 - p,;) and v;= ¢ (1 - p,;). Here, @ is
standard normal quantile function, and p,,; and p,; are
P-values from the two-sided paired T-test testing and
from the one-sided F-test testing at CpG site i, respect-
ively. The sites with mean and variance signal scores of
zero and smaller than zero are not considered. Because
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the P-values of these sites are p,,;>0.5 and p,;>0.5.

Here, T, is the T-statistic of the two-sided paired T-

T
test, where lT’"“

indicate whether the CpG site i is nega-

tive sign or positive sign. Positive signals indicate hyper-
methylated, whereas negative signals indicate hypo-
methylated. Since the mean and variance signals have
different scales, we weight the two scores by A; and 1
- A;, respectively. According to [20], the weight of the
balanced mean and variance signal score is defined as

Vi

=
m; + v;

In general, we are supposed to multiply our respective
weights by the corresponding scores, but this will mag-
nify the effect of one of the signals, the mean or the vari-
ance, on the final result. For instance, the mean and
variance signals of site i are 0 and 38 (i.e. p,,; > 0.5 and
Pvi = 1.0e — 320), and its signal score is 38; the mean and
variance signals of site j are 14.9 and 14.9 (i.e. p,,,; = 1.0e
- 50 and p,, = 1.0e - 50), and its signal score is 14.9. Ob-
viously, this can seriously affect the evaluation of the site
signal score.

Step 2: integration of correlation among adjacent sites
The significance of the site is not only determined by
the integrating signal of the site itself, but also influ-
enced by the adjacent site. For a CpG site i, we define its
final integrating signal score (i.e. f) as

fo =5+,

Here, i, (n=1,2) are the two nearest sites to CpG
site i, and the genomic distance between these two sites
and site i is less than 1000 bps. S;l and S;Z are the influ-
encing scores of CpG site i; and i, on site i. For the
CpG site i; which is close to CpG site i, We define the
influencing score as

S, =a-S,.

Where, « indicates the influence ratio of site i, on i,
and we consider the influencing ratio to be inversely
proportional to the genomic distance. We define the in-
fluencing ratio as

distance
a=l-—"

1000,
where, distance represents the gene distance of the two
sites. On the basis of final integrating signal scores, the
top 1000 sites with the highest score are selected. The
significance of CpG site (P-value) is converted into sig-
nal score. The higher the signal score, the stronger the
significance of the site.

According to the relevant research and experiments,
the site with a genomic distance of less than 1000 bps
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has the most obvious influence on CpG site i [20-22],
that is to say, the site with a genomic distance of more
than 1000 bps has negligible influence on CpG site i. In
the actual calculation process, we also consider the influ-
ence of all sites within 1000 bps of the calculated CpG
site i on it. However, some sites were selected as infor-
mation sites due to the influence of surrounding sites,
and these sites originally were not differential methyla-
tion sites. According to names of 1000 CpG sites, the
corresponding original DNA methylation data are se-
lected for subsequent purity estimation.

Estimation of tumor purity

Here, the method for estimating tumor purity is derived
from Zheng’s InfiniumPurify [5, 23]. According to p-
values, the selected information sites were divided into
hyper-methylated and hypo-methylated sites. The [-
value of information sites in tumor samples is trans-
formed as follows: the p-value of hyper-methylated
information sites remained unchanged, while that of
hypo-methylated information sites were converted to 1-
B. These transformation rules are based on whether the
B-value is greater than 0.5, which is not affected by other
factors. Then the transformed methylation levels of in-
formation sites are processed by Gaussian kernel density
estimation method. The purity is estimated by density
function.
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