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ABSTRACT
Background. Grain weight is a grain yield component, which is an integrated index of
grain length, width and thickness. They are controlled by a large number of quantitative
trait loci (QTLs). Besides major QTLs, minor QTLs play an essential role. In our
previous studies, QTL analysis for grain length and width was performed using a
recombinant inbred line population derived from rice cross TQ/IRBB lines. Twomajor
QTLs were detected, which were located in proximity to GS3 and GW5 that have been
cloned. In the present study, QTLs for grain weight and shape were identified using rice
populations that were homozygous at GS3 and GW5.
Method. Nine populations derived from the indica rice cross TQ/IRBB52 were used.
An F10:11 population namedW1, consisting of 250 families and covering 16 segregating
regions, was developed from one residual heterozygote (RH) in the F7 generation of
Teqing/IRBB52. Three near isogenic line (NIL)-F2 populations, ZH1, ZH2 and ZH3
that comprised 205, 239 and 234 plants, respectively, were derived from three RHs
in F10:11. They segregated the target QTL region in an isogenic background. Two NIL
populations, HY2 and HY3, were respectively produced from homozygous progeny of
the ZH2 and ZH3 populations. Three other NIL-F2 populations, Z1, Z2 and Z3, were
established using three RHs having smaller heterozygous segments. QTL analysis for
1000-grain weight (TGW), grain length (GL), grain width (GW), and length/width ratio
(LWR) was conducted using QTL IciMapping and SAS procedure with GLM model.
Result. A total of 27 QTLs distributed on 12 chromosomes were identified. One
QTL cluster, qTGW2/qGL2/qGW2 located in the terminal region of chromosome
2, were selected for further analysis. Two linked QTLs were separated in region
Tw31911−RM266. qGL2 was located in Tw31911−Tw32437 and mainly controlled
GL and GW. The effects were larger on GL than on GW and the allelic directions were
opposite. qTGW2 was located in Tw35293−RM266 and affected TGW, GL and GW
with the same allelic direction. Finally, qTGW2 was delimited within a 103-kb region
flanked by Tw35293 and Tw35395.
Conclusion. qTGW2 with significant effects on TGW, GL and GW was validated and
fine-mapped using NIL and NIL-F2 populations. These results provide a basis for map-
based cloning of qTGW2 and utilization of qTGW2 in the breeding of high-yielding rice
varieties.
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INTRODUCTION
Rice is one of the staple food crops and consumed by half of the world’s population.
Enhancing grain yield is always among main objectives of breeding programs. Grain
weight is a key component of grain yield in rice, which is mainly determined by grain
length, width and thickness. All these traits are quantitatively inherited and controlled by
both major and minor genes.

More than 500 quantitative trait loci (QTLs) for grain weight and shape have been
identified previously (http://www.gramene.org/). So far, 16 QTLs for these traits with large
effects were cloned using diverse mapping populations. Among these, ten genes regulate
grain weight by mainly affected grain length, including GS2/GL2, OsLG3, OsLG3b, GS3,
GL3.1/qGL3, qTGW3/TGW3/GL3.3, TGW6, GW6a, GL6, and GLW7 (Fan et al., 2006; Qi
et al., 2012; Zhang et al., 2012; Ishimaru et al., 2013; Hu et al., 2015; Song et al., 2015; Che
et al., 2016; Si et al., 2016; Yu et al., 2017; Hu et al., 2018; Xia et al., 2018; Ying et al., 2018;
Yu et al., 2018; Wang et al., 2019a; Wang et al., 2019b). Other four genes regulate grain
weight by primarily influencing grain width, including GW2, GS5, GSE5 and GW8 (Song
et al., 2007; Li et al., 2011; Wang et al., 2012; Duan et al., 2017). The remaining two genes,
GL7 /GW7, andGS9, have similar influences on grain length and width with opposite allelic
directions, thus they hardly affect grain weight (Wang et al., 2015b;Wang et al., 2015c; Zhao
et al., 2018). Identification of these genes have facilitated the breeding of high-yield rice
varieties.

Although it has been recognized that both major and minor QTLs play essential roles
in the genetic control of complex traits (Mackay, Stone & Ayroles, 2009), identification of
minor QTLs has been limited due to their small effects across different genetic backgrounds
and environments. Recently, more and more studies have paid attention to minor QTLs. A
number of minor QTLs for grain weight and shape were fine-mapped, such as qTGW1.1a,
qTGW1.2a, qGS1-35.2, qGW1-35.5, and qTGW10-20.8 (Zhang et al., 2016; Dong et al.,
2018; Wang et al., 2019a; Wang et al., 2019b; Zhu et al., 2019b). Isolation of more minor
QTLs would be beneficial for establishing the network regulating grain weight in rice.

In our previous studies, QTL analysis for grain length and width was performed using
recombinant inbred lines (RILs) of indica rice crosses between Teqing (TQ) and IRBB lines.
Two major QTLs were detected, which were located in approximate to GS3 and GW5,
respectively (Wang et al., 2017). The present study aims to identify QTLs for grain weight
and shape after eliminating the segregation of GS3 and GW5. Firstly, QTLs for grain weight
and shape were detected using an F10:11 population that was derived from one residual
heterozygote (RH) of TQ/IRBB52 and homozygous at GS3 and GW5. Then, a QTL region
on chromosome 2 was selected for validation, dissection and fine-mapping. Using two sets
of near isogenic lines (NIL) and six NIL-F2 populations derived from the F10:11 population,
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two QTLs were separated in the target region. One of them, qTGW2, was delimited into a
103-kb region flanked by Tw35293 and Tw35395.

MATERIALS & METHODS
Plant materials
Nine mapping populations of indica rice were used in this study. The first one was an
F10:11 population that was previously developed from one RH in the F7 generation of
TQ/IRBB52 (Zhang et al., 2019), consisting of 250 families and segregated 16 regions
distributed on the 12 rice chromosomes. This population was named W1. The remaining
eight populations were developed from RHs selected from the W1 population as described
below and illustrated in Fig. 1. Three plants in F10, which carried heterozygous segments
that covered partial or entire region of the interval Tw31911−RM266 on chromosome
2, were identified. They were selfed to produce three NIL-F2 populations consisting of
205, 239 and 234 plants and named ZH1, ZH2 and ZH3, respectively. Two QTLs were
separated, of which qTGW2 located in the downstream region was selected for further
analysis. Non-recombinant homozygotes were identified in the ZH2 and ZH3 populations
and selfed. Two sets of NILs namedHY2 andHY3were developed, each consisting of 35 TQ
homozygous lines and 35 IRBB52 homozygous lines. They were used to validate qTGW2.
Then, other three RHs, carrying heterozygous segments overlapped in the terminal region
Tw35293−RM266 of chromosome 2, were identified from the W1 population. The three
plants were selfed to produce three NIL-F2 populations in F12, which consisted of 174, 237
and 228 plants and named Z1, Z2 and Z3, respectively.

Field experiment and trait measurement
The rice populations were planted in the experimental stations of the China National Rice
Research Institute located at either Lingshui in Hainan Province or Hangzhou in Zhejiang
Province. For the F10:11 population and two sets of NILs, the experiments followed a
randomized complete block design with two replications. For each replication, twelve
plants per line were planted in one row. At maturity, five of the middle ten plants in
each row were harvested in bulk and sun-dried. Two samples of approximately 10 g
fully filled grains were randomly selected for the measurement of TGW, GL, GW, and
length/width ratio (LWR) following the procedure reported by Zhang et al. (2016). For the
six NIL-F2 populations, plants were harvested individually and sun-dried. Two samples of
approximately 3 g fully filled grains of each plant were selected for the measurement of the
four traits.

DNA marker analysis
For the W1 population and two NIL populations, leaf samples collected from the middle
eight plants of a rice line were mixed for DNA extraction using a mini-preparation
protocol (Zheng et al., 1995). For the six NIL- F2 populations, a two cm-long leaf sample
collected from an F2 plant was used for DNA extraction using the same method. PCR
amplification was performed according to Chen et al. (1997). The products were visualized
on 6% non-denaturing polyacrylamide gels using silver staining. A total of 68 polymorphic
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Figure 1 Development of nine populations used in this study.
Full-size DOI: 10.7717/peerj.8679/fig-1

markers were used, including 57 simple sequence repeats, eight insertion/deletions, one
cleaved amplified polymorphic sequence, and two sequence tagged sites. Nine of them
were developed according to sequence differences between TQ and IRBB52 detected with
whole-genome resequencing (Table S1).

Data analysis
For theW1 and six NIL-F2 populations, genetic maps of each populations were constructed
using Mapmaker/Exp 3.0, in which genetic distances between markers were presented
in centiMorgan (cM) derived with Kosambi function. QTL mapping was performed
using the default setting of the BIP (QTL mapping in bi-parental populations) approach
in IciMapping V4.1 (Meng et al., 2015). LOD thresholds were calculated with 1,000
permutation test (P < 0.05) and used to claim a putative QTL.

For the two NIL populations, two-way analysis of variance (ANOVA) was performed
to test the phenotypic differences between the two genotypic groups in each NIL set. The
analysis was performed using the SAS procedure GLM (SAS Institute Inc, 1999) as described
previously (Dai et al., 2008). Given the detection of a significant difference (P < 0.05), the
same data were used to estimate the genetic effect of the QTL, including additive effect and
the proportion of phenotypic variance explained (R2). QTL were designated according to
the rules recommended byMcCouch & CGSNL (2008).
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RESULTS
QTLs detected in the W1 population
A total of 27QTLs for the four traits were detected, whichwere distributed on 14 segregating
regions (Fig. 2, Table 1). Four of them had significant effects on three traits. In the
Tw35293−RM266 region on chromosome 2, the IRBB52 allele increased TGW, GL and
GW by 0.39 g, 0.060 mm and 0.013 mm, respectively. In the RM14032−RM14383 interval
on chromosome 3, the IRBB52 allele increased GL by 0.025 mm, decreased GW by 0.014
mm and increased LWR 0.022. In the RM16252−RM335 region on chromosome 4, the
IRBB52 allele decreased TGW and GW by 0.18 g and 0.017 mm, respectively, but increased
LWR by 0.021. In the Tv963−RM27610 interval on chromosome 12, the IRBB52 allele
increased GL by 0.031 mm, decreased GW by 0.013 mm and increased LWR 0.027. Worthy
to note, the Tw35293−RM266 region had R2 of 14.50% for TGW and 18.60% for GL,
which were much higher than the R2 values for these two traits detected in the other three
regions.

Five regions had significant effects on two traits. In the RM12210 region on chromosome
1 the IRBB52 allele increased GL and LWR by 0.026 mm and 0.011, respectively. In the
RM3321−RM274 interval on chromosome 5, the IRBB52 allele increased GL and LWR by
0.062 mm and 0.018, respectively. In the RM549 region on chromosome 6, the IRBB52
allele increased TGW and GW by 0.27 g and 0.012 mm, respectively. In the interval
RM22755−RM23001 on chromosome 8, the IRBB52 allele reduced GW by 0.009 mm
and increased LWR by 0.017. In the interval RM1108−RM7300 on chromosome 10, the
IRBB52 allele reduced GW by 0.004 mm and increased LWR by 0.012.

The remaining five QTLs were unaccompanied with other QTLs, including qTGW7 for
TGW, qGW9.1 and qGW9.2 for GW, and qLWR11 and qLWR12.2 for LWR.

Dissection of two QTLs for grain size on chromosome 2
As described above, the terminal region of chromosome 2 had relatively large effects in
terms of the number of QTLs detected and R2 of single QTL. Therefore, this region was
chosen for further validation and fine-mapping.

Three NIL-F2 populations, ZH1, ZH2 and ZH3, were constructed, following the
results of the W1 population (Fig. 3A). To fill the long distance between Tw32437 and
Tw35293, two polymorphic markers, RM14034 and RM14056, were selected (Table
S1). The two markers were homozygous in all the three populations. Two segregating
regions, Tw31911−Tw32437 and Tw35293−RM266, were separated in the Z1 population
(Fig. 3B). As shown in Table 2, QTLs were detected in both regions. In the interval
Tw31911−Tw32437, the IRBB52 allele decreased TGW and GL but increased GW and
LWR, having R2 of 6.05, 29.51, 13.61 and 28.52%, respectively. QTLs in this region affected
GL and GW with opposite directions. The effect was larger on GL than on GW, resulting
in the detection of a residual effect on TGW. Thus, this QTL was nominated as qGL2. In
the Tw35293−RM266 region, the IRBB52 allele increased TGW, GL and GW, having R2

of 31.76, 17.95 and 3.73%, respectively. QTLs in this region affected GL and GW with the
same direction, and the accumulative effect resulted in larger influence on TGW. Thus,
this QTL was nominated as qTGW2.
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Figure 2 Genomic distribution of QTLs for four traits detected in theW1 population. TGW, 1,000-
grain weight; GL, Grain length; GW, Grain width; LWR, Length/width ratio. The markers flanking GS2,
GS3, and GW5 are indicated in boldface.

Full-size DOI: 10.7717/peerj.8679/fig-2

The ZH2 and ZH3 populations were only segregated in the Tw35293−RM266 region.
In both populations, significant effects were detected on all the traits except LWR. The
enhancing alleles were always derived from IRBB52, and the effects were similar between
the two populations. The additive effects were 0.55 and 0.46 g on TGW, 0.065 and 0.061mm
on GL, and 0.021 and 0.020 mm on GW. The R2 were 28.63 and 21.83% for TGW, 22.34
and 28.86% for GL, and 22.91 and 22.37% for GW. These results are similar to those found
in the ZH1 population, indicating that qTGW2 located in the interval Tw35293−RM266
affects TGW, GL and GW with the same allelic direction. Since qTGW2 showed stable
effects across the three populations, this QTL was selected for further analysis.

Validation and fine-mapping of qTGW2
Two sets of NILs, HY2 and HY3, were used to validate the genetic effects of qTGW2.
Frequency distributions of the four traits were plotted using the two genotypic groups as
two series (Fig. 4). For TGW, GL and GW, the difference between the TQ and IRBB52
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Table 1 QTLs detection for four traits using theW1 population.

Chr. Interval QTL LOD A D R2 (%)

1 RM12210 qGL1 3.82 0.026 −0.017 3.96
qLWR1 5.09 0.011 −0.013 3.30

2 Tw35293–RM266 qTGW2 11.76 0.39 0.15 14.50
qGL2 15.49 0.060 0.006 18.60
qGW2 6.15 0.013 0.006 5.69

3 RM14302–RM14383 qGL3 3.81 0.025 0.027 4.01
qGW3 7.26 −0.014 −0.004 6.91
qLWR3 14.99 0.022 0.005 11.24

4 RM16252–RM335 qTGW4 3.01 −0.18 0.06 3.41
qGW4 11.81 −0.017 −0.013 11.21
qLWR4 15.26 0.021 0.020 11.67

5 RM3321–RM274 qGL5 17.79 0.062 0.005 21.67
qLWR5 11.31 0.018 −0.009 8.39

6 RM549 qTGW6 6.58 0.27 −0.22 7.41
qGW6 5.82 0.012 −0.004 5.19

7 RM10–RM70 qTGW7 12.15 0.39 −0.09 15.27
8 RM22755–RM23001 qGW8 3.48 −0.009 −0.010 3.20

qLWR8 9.84 0.017 0.005 7.08
9 RM219–RM1896 qGW9.1 3.70 0.009 0.012 3.88

RM107 qGW9.2 7.13 0.012 0.010 6.39
10 RM1108–RM7300 qGW10 4.45 −0.004 −0.029 4.34

qLWR10 8.00 0.012 0.023 5.28
11 RM167–RM287 qLWR11 7.58 −0.016 −0.019 7.05
12 Tv963–RM27610 qGL12 3.85 0.031 0.015 4.95

qGW12 7.00 −0.013 −0.010 6.24
qLWR12.1 23.37 0.027 0.013 18.05

12 Pita–RM511 qLWR12.2 4.59 −0.010 0.015 3.22

Notes.
TGW, 1,000-grain weight (g); GL, Grain length (mm); GW, Grain width (mm); LWR, Length/width ratio; A, additive ef-
fect of replacing a Teqing allele with a IRBB52 allele; D, dominance effect; R2, proportion of the phenotypic variance explained
by the QTL.

homozygous genotypes were observed in both the populations. The IRBB52 homozygous
lines were distributed in the higher-value region, and the TQ homozygous lines were
distributed in the lower-value region. On the other hand, no distinction was found for
LWR. These results indicate that QTLs for TGW, GL and GW were segregated in the two
populations with the enhancing alleles derived from IRBB52.

Results of the two-way ANOVA on the four traits are presented in Table 3. Highly
significant effects (P < 0.0001) were detected for TGW, GL and GW in both the HY2 and
HY3 populations. The effects were similar between the two populations, with the IRBB52
allele always increasing the trait values. The additive effects were 0.47 and 0.45 g on TGW,
0.054 and 0.061 mm on GL, and 0.021 and 0.013 mm on GW. The R2 were 60.94 and
66.02% for TGW, 48.26 and 62.12% for GL, and 36.67 and 22.74% for GW. In addition,
significant influence on LWR were only detected in the HY3 population (P = 0.0003).
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Figure 3 Segregating regions of the eight populations. (A) Three populations in F11. (B) Segregating re-
gions of the three populations in F11 were updated with new polymorphic markers. Two sets of NIL popu-
lations in F11:12 were used to validate the genetic effects of qTGW2. (C) Three populations in F12 were used
for fine-mapping of qTGW2.

Full-size DOI: 10.7717/peerj.8679/fig-3

The IRBB52 allele increased LWR by 0.009 with the R2of 12.94%. It was found that the
allelic direction of qTGW2 remained unchanged across the five populations, with the
IRBB52 allele always increasing TGW, GL and GW. As compared to the ZH1, ZH2 and
ZH3 populations, the additive effect of qTGW2 hardly changed but the R2 values increased
greatly in HY2 and HY3.
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Table 2 Dissection of two QTLs using three NIL-F2 populations.

Population Segregating region Trait LOD A D R2 (%)

ZH1 Tw31911–Tw32437 TGW 2.83 −0.20 −0.15 6.05
GL 12.06 −0.069 −0.049 29.51
GW 5.77 0.004 −0.024 13.61
LWR 5.30 0.004 0.050 28.52

Tw35293–RM266 TGW 14.79 0.46 −0.19 31.76
GL 15.54 0.056 −0.008 17.95
GW 1.87 0.006 −0.003 3.73
LWR 0.17

ZH2 Tw35293–RM266 TGW 17.60 0.55 −0.02 28.63
GL 13.15 0.065 −0.022 22.34
GW 13.54 0.021 −0.001 22.91
LWR 0.39

ZH3 Tw35293–RM266 TGW 12.52 0.46 0.03 21.83
GL 17.42 0.061 −0.006 28.86
GW 12.81 0.020 0.001 22.37
LWR 0.38

Notes.
TGW, 1,000-grain weight (g); GL, Grain length (mm); GW, Grain width (mm); LWR, Length/width ratio; A, additive ef-
fect of replacing a Teqing allele with a IRBB52 allele; D, dominance effect; R2, proportion of the phenotypic variance explained
by the QTL.
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To further narrow down the region of qTGW2, three polymorphic markers, RM14189,
Tw35277 and Tw35395, were added (Table S1). Three plants were identified from the
W1 population and selfed to produce three NIL-F2 populations named Z1, Z2 and Z3.
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Table 3 Validation of qTGW2 using two NIL populations.

Population Trait Phenotype (Mean± SD) P A R2(%)

NILTQ NILIRBB52

HY2 TGW 25.23± 0.29 26.17± 0.34 <0.0001 0.47 60.94
GL 8.081± 0.045 8.189± 0.049 <0.0001 0.054 48.26
GW 2.784± 0.021 2.826± 0.025 <0.0001 0.021 36.67
LWR 2.915± 0.024 2.911± 0.031 0.5690

HY3 TGW 22.65± 0.24 23.56± 0.26 <0.0001 0.45 66.02
GL 7.919± 0.041 8.040± 0.036 <0.0001 0.061 62.12
GW 2.652± 0.017 2.678± 0.018 <0.0001 0.013 22.74
LWR 3.000± 0.022 3.017± 0.015 0.0003 0.009 12.94

Notes.
TGW, 1,000-grain weight (g); GL, Grain length (mm); GW, Grain width (mm); LWR, Length/width ratio; A, additive
effect of replacing a Teqing allele with a IRBB52 allele; D, dominance effect; R2, proportion of the phenotypic variance ex-
plained by the QTL.; NILTQ, and NILIRBB52 Near-isogenic lines with Teqing and IRBB52 homozygous genotypes in the segre-
gating region, respectively.

Table 4 Fine mapping of qTGW2 using three NIL-F2 populations.

Population Trait Phenotype (Mean± SD) LOD A D R2 (%)

Teqing IRBB52 Heterozygote

Z1 TGW 24.03± 0.53 23.99± 0.51 23.94± 0.66 0.20
GL 8.017± 0.073 8.004± 0.072 8.004± 0.065 0.26
GW 2.805± 0.032 2.809± 0.036 2.808± 0.034 0.06
LWR 2.858± 0.026 2.850± 0.026 2.851± 0.025 0.65

Z2 TGW 24.96± 0.54 25.90± 0.51 25.33± 0.49 18.38 0.46 −0.10 29.93
GL 8.156± 0.094 8.266± 0.091 8.205± 0.087 9.30 0.053 −0.008 16.26
GW 2.976± 0.026 3.004± 0.029 2.986± 0.022 7.76 0.014 −0.004 13.70
LWR 2.750± 0.041 2.762± 0.037 2.757± 0.031 0.68

Z3 TGW 26.26± 0.88 26.34± 0.73 26.20± 0.84 0.22
GL 8.272± 0.111 8.262± 0.078 8.271± 0.113 0.07
GW 3.046± 0.046 3.054± 0.027 3.043± 0.046 0.51
LWR 2.726± 0.070 2.714± 0.029 2.727± 0.067 0.39

Notes.
TGW, 1,000-grain weight (g); GL, Grain length (mm); GW, Grain width (mm); LWR, Length/width ratio; A, additive effect of replacing a Teqing allele with a IRBB52 allele;
D, dominance effect; R2, proportion of the phenotypic variance explained by the QTL.

As shown in Fig. 3C, the segregating regions in Z1, Z2 and Z3 were RM14189−Tw35293,
Tw35293−RM266, and Tw35395−RM266, respectively. QTL analysis for TGW, GL, GW
and LWR were conducted (Table 4). Significant effects were detected in Z2 but not in the
other two populations. This result suggests that qTGW2 was segregated in Z2 but not in
Z1 and Z3. Consequently, the qTGW2 was delimited within a 103-kb region flanked by
Tw35293 and Tw35395. In Z2, the IRBB52 allele increased TGW by 0.46 g, GL by 0.053
mm and GW by 0.014 mm, with the R2 of 29.93, 16.26 and 13.70%, respectively.
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DISCUSSION
Although progress has been made in fine mapping and cloning of major genes for grain
weight, experimental constraints have limited our knowledge of minor genes that could
be responsible for a larger proportion of trait variation. In this study, 27 QTLs for grain
weight and shape in rice were detected using one population derived from an RH that was
homozygous at major QTLs detected previously, followed by delimitation of qTGW2 for
grain weight, length and width into a 103-kb region on chromosome 2.

All the populations used in this study were constructed from a single F7 plant of an
indica rice cross. Among them, threeNIL-F2 populations in F11 were grown under short-day
conditions in Lingshui, and others were grown under long-day conditions in Hangzhou.
qTGW2 showed stable effects on TGW, GL and GW across these populations. The IRBB52
allele increased TGW, GL and GW by a range of 0.45 to 0.55 g, 0.053 to 0.065 mm, and
0.006 to 0.021 mm, respectively. These results support that minor QTLs could be steadily
detected in a highly isogenic background despite of diverse environment conditions, and
the use of RHs could be an efficient way to detect and fine map minor QTLs.

Among the 16 QTLs cloned for grain weight and shape with major effects, GS3, OsLG3,
OsLG3b, GS5, GSE5, GW6a, GL7 /GW7, GLW7 and GW8 were found with high frequency
in the modern rice varieties (Yan et al., 2009; Wang, Chen & Yu, 2011; Takano-Kai et
al., 2009; Mao et al., 2010; Yu et al., 2017; Yu et al., 2018; Li et al., 2011; Duan et al., 2017;
Wang et al., 2015a; Wang et al., 2015b; Wang et al., 2015c; Si et al., 2016. Two of the other
QTLs, GW2 and GS2/GL2/GLW2 on chromosome 2 were rarely found in modern rice
varieties. qTGW2 identified in this study was located in the interval Tw35293−Tw35395,
corresponding to the 35.3−35.4 Mb region on the terminal end of chromosome 2, which
was 6.4 Mb away from GS2 locus in the Nipponbare genome (IRGSP, 2005). The interval
RM6−RM240 covering GS2 was detected as a non-segregating region in the populations
used in the present study (Fig. 2). These results suggest that qTGW2 identified in this study
is likely a new QTL for grain weight. Cloning and functional characterization of qTGW2
would provide new information for understanding the genetic and molecular basis of grain
weight in rice.

Based on the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu),
there are 16 annotated genes in the 103-kb region for qTGW2 (Table S2). Thirteen of
these genes encode known proteins, among which LOC_Os02g57630 encodes ubiquitin
carboxyl-terminal hydrolase, LOC_Os02g57640 encodes a protein with the KH domain,
LOC_Os02g57650 encodes a no apical meristem protein, LOC_Os02g57660 encodes
phosphatidylinositol-4-phosphate 5-kinase, LOC_Os02g57670 encodes ribosomal L9,
LOC_Os02g57690 encodes a kelch repeat protein, LOC_Os02g57700 encodes protein
kinase, LOC_Os02g57710 encodes signal peptide peptidase-like 2B, LOC_Os02g57750
encodes a protein binding protein, LOC_Os02g57760 encodes O-methyltransferase,
LOC_Os02g57770 encodes glycosyl hydrolases family 16, LOC_Os02g57790 encodes
a ZOS2-19-C2H2 zinc finger protein, and LOC_Os02g57720 encodes an aquaporin
protein. LOC_Os02g57720 may correspond to RWC3 and OsPIP2a. RWC3 was involved
in the regulation of rice drought avoidance (Lian et al., 2004), and the expression of
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OsPIP2a in rapidly growing internodes of rice is not primarily controlled by meristem
activity or cell expansion (Malz & Sauter, 1999). Of the remaining three annotated genes,
LOC_Os02g57740 and LOC_Os02g57780 encode uncharacterized expressed proteins, and
LOC_Os02g57730 encodes hypothetical protein. Further analyses are needed to confirm
the candidate gene for qTGW2.

In addition to the qGL2−qTGW2 cluster on the terminal end of chromosome 2, a few
other regions were detected to have important effects on grain weight and shape in the
W1 population (Table 1). One of them, the RM1108−RM7300 region on the long arm of
chromosome 10, has been targeted for more studies. Three QTLs were dissected (Zhu et al.,
2019a), one of which was delimitated within a 70.7-kb region containing seven annotated
genes (Zhu et al., 2019b). Five other regions, RM14302−RM14383 on chromosome 3,
RM3321−RM274 on chromosome 5, RM10−RM70 on chromosome 7, RM167−RM287
on chromosome 11 and Tv963−RM27610 on chromosome 12, were previously reported
to influence heading date differences between TQ and IRBB52 (Sun et al., 2018). Work is
underway to determine the roles of these QTLs on multiple traits in rice.

CONCLUSIONS
A minor-effect QTL for grain weight, length and width in rice, qTGW2 located in the
terminal region on the long arm of chromosome 2, was delimited to a 103-kb region
flanked by Tw35293 and Tw35395 using NILs and NIL-F2 populations. This QTL had a
consistent effect across different environment, providing a potential candidate gene for
map-based cloning.
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