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Abstract

Background: To determine the optimal threshold of 18 F-fluorodexyglucose (18 F-FDG) positron emission
tomography CT (PET/CT) images that generates the best volumetric match to internal gross target volume (IGTV)
based on four-dimensional CT (4DCT) images.

Methods: Twenty patients with non-small cell lung cancer (NSCLC) underwent enhanced three-dimensional CT (3DCT)
scan followed by enhanced 4DCT scan of the thorax under normal free breathing with the administration of intravenous
contrast agents. A total of 100 ml of ioversol was injected intravenously, 2 ml/s for 3DCT and 1 ml/s for 4DCT. Then
18 F-FDG PET/CT scan was performed based on the same positioning parameters (the same immobilization devices and
identical position verified by laser localizer as well as skin marks). Gross target volumes (GTVs) of the primary tumor
were contoured on the ten phases images of 4DCT to generate IGTV10. GTVPET were determined with eight different
threshold using an auto-contouring function. The differences in the position, volume, concordance index (CI) and
degree of inclusion (DI) of the targets between GTVPET and IGTV10 were compared.

Results: The images from seventeen patients were suitable for further analysis. Significant differences between the
centric coordinate positions of GTVPET (excluding GTVPET15%) and IGTV10 were observed only in z axes (P < 0.05).
GTVPET15%, GTVPET25% and GTVPET2.0 were not statistically different from IGTV10 (P < 0.05). GTVPET15% approximated closely
to IGTV10 with median percentage volume changes of 4.86%. The best CI was between IGTV10 and GTVPET15% (0.57). The
best DI of IGTV10 in GTVPET was IGTV10 in GTVPET15% (0.80).

Conclusion: None of the PET-based contours had both close spatial and volumetric approximation to the 4DCT IGTV10.
At present 3D-PET/CT should not be used for IGTV generation.

Keywords: Non-small cell lung cancer, Fluorodeoxyglucose positron emission tomography, Four-dimensional
computed tomography, Standardized uptake value
Background
Worldwide, lung cancer is the most common cause of
cancer-related mortality [1]. About 80% of the cases of
lung cancer are non-small-cell lung cancer (NSCLC) [2].
Radiotherapy plays a major role in the management of
patients with NSCLC who cannot tolerate or refuse
surgery. Unfortunately, the prognosis of patients with
NSCLC remains poor because of high rates of local
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failure and distant metastases [3,4], with local control
rates of approximately 50% after radical radiotherapy [5].
A geometric target miss induced by tumor motion
during radiotherapy is considered as one of the main
reasons for local failure [6]. In order to account for geo-
metric uncertainties due to internal variations in tumor
position, size, and shape, the International Commission
on Radiation Units and Measurements (ICRU) report 62
introduced the concept of an internal target volume
(ITV) [7]. For lung tumors, respiratory motion is the
major consideration for the ITV.
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Currently, four-dimensional CT (4DCT) is widely used
for the simulation of lung cancer. It is a reliable and
effective tool for assessing tumor and organ motion [8,9]
and can provide patient-specific information about
tumor position, shape, and size at different phases of the
respiratory cycle. The internal gross target volume
(IGTV) can make the determination of the ITV more
efficient [6]. IGTV10 is generated by combining all 10
individual gross tumor volumes (GTVs) contoured in
each phase of the 4DCT dataset, which is thought to
encompasses the motion information for the tumor in
the whole respiratory cycle [10]. Therefore, it is expected
to provide the most accurate IGTV based on a given
4DCT dataset [11].
As a functional imaging modality, 18 F-fluorodeoxyglu-

cose (18 F-FDG) positron emission tomography/computer
tomography (PET/CT) images have been shown to have
greater specificity and sensitivity than CT alone for the
diagnosis and staging of NSCLC patients [12]. Further-
more, the interobserver variability, as well as the intra-
observer variability, could be significantly reduced when
the 18 F-FDG PET image was used for tumor volume de-
lineation [13,14]. In addition, since three-dimensional PET
(3D-PET) images are acquired over several minutes and
represent the accumulated traces of multiple respiratory
cycles, they may be capable of accounting for movement
by indicating the average location of a tumor over time
[15]. A phantom study by Caldwell et al. [16] concluded
that PET imaging could more accurately depict the 3D
volume of a moving phantom compared with spiral CT.
Therefore, 3D-PET/CT might represent the ITV of a tu-
mor. However, the optimal threshold values for patients
with NSCLC have never been reported.
Hence, We perform this study to investigate the

appropriateness of the threshold method to determine
the best volumetric match to 4DCT-based IGTV10 when
contouring the primary tumor volume of NSCLC.
Additionally, the feasibility of 3D-PET/CT images was
evaluated with respect to incorporating tumor motion
into the radiation target for NSCLC.

Methods
Patients
This study was approved by the Shandong Cancer Hos-
pital and Institute review board, and 20 patients provided
written informed consent. Patients with histologically
proven primary NSCLC who were scheduled to undergo
radiotherapy were eligible for this study, excluding those
with atelectasis and/or obstructive pneumonia. None of
them had previously been treated with radiotherapy or
chemotherapy for their lung tumor. Between December
2012 and December 2013, 20 patients were enrolled in this
study. The maximal standardized uptake value (SUVmax)
in the tumor of 3 patients was 2.89, 3.16 and 3.27,
respectively. Therefore, they were not suitable for further
analysis as several of the threshold-based contouring
methods used would not discriminate between the tumor
and background lung uptake. The other 17 patients in-
cluded 13 men and 4 women, with a median age of 66
years (range, 45–84 years). Six patients had centrally lo-
cated lesions, and eleven patients had peripherally located
lesions. The median of the SUVmax for the primary tumors
was 11.34 (range from 6.07 to 25.51). Table 1 summarized
the characteristics of the 17 patients and their primary
tumors.

CT simulation and image acquisition
During the simulation, all patients were immobilized using
thermoplastic mask for covering the head, neck and shoul-
ders in the supine position. For each patient, an axial
enhanced 3DCT scan of the thoracic region was performed
followed by a enhanced 4DCT scan under uncoached free
breathing conditions on a 16-slice CT scanner (Philips
Brilliance Bores CT) with the administration of intravenous
contrast agents. A total of 100 ml of ioversol was injected
intravenously, 2 ml/s for 3DCT and 1 ml/s for 4DCT. De-
tails of 3DCT and 4DCT scan as well as image acquisition
were given in Li et al. [17]. Then, 3DCT and 4DCT images
were transferred to MIM (MIM-6.0.4, MIM Software Inc,
Cleveland, OH) imaging software.

PET/CT simulation and image acquisition
On the same day as the 4DCT scan, the FDG-PET/CT
scans of the chest were performed with a integrated PET/
CT scanner (Philips Gemini TF Big Bore). Through the
same immobilization devices, the patient’s position was
identical to that for the 4DCT scan. Two radiation thera-
pists were present to ensure the accuracy of the set-up by
laser localizer and skin marks. All patients fasted for at least
6 h before the PET/CT examination. All patients were
injected with 7.4 MBq/kg body weight of 18FDG and then
rested for about 1 h in a quiet room before imaging. The
16-slice CT component was operated with an X-ray tube
voltage peak of 120 kV, 90 mA, a slice thickness of 5 mm
and an interval of 4 mm, and was used both for attenuation
correction of PET data and for localization of FDG uptake
in PET images. No CT contrast agent was administered.
PET scanning was performed covering the same axial range
for 2 min per bed position (total of 3–5 bed positions). Both
PET and CT acquisition was performed during free brea-
thing. Data were reconstructed using an ordered subset ex-
pectation maximization (OSEM) algorithm and attenuation
correction derived from CT data. Then, the PET/CT
images were transferred to MIM software.

Image registration
An initial automatic rigid registration was performed
using MIM software. Due to the 3DCT and 4DCT



Table 1 Baseline characteristics of patients and the maximal standardized uptake values of every primary tumor

Patients (n) Sex Age (y) Tumor location Histology Tumor stage SUVmax Tumor size* (mm) Tumor volume+ (cm3)

1 M 66 Upper lobe Adenocarcinoma T2N2 25.51 36 17.49

2 F 68 Lower lobe Adenosquamous carcinoma T2N2 11 46 139.72

3 M 70 Upper lobe Adenocarcinoma T2N2 7.71 18 4.81

4 M 79 Upper lobe Adenocarcinoma T1N2 8.8 33 26.40

5 F 49 Lower lobe Squamous cell carcinoma T2N2 8.85 38 38.59

6 M 66 Upper lobe Squamous cell carcinoma T2N2 14.41 33 16.28

7 M 75 Upper lobe Squamous cell carcinoma T2N2 12.39 32 14.37

8 F 65 Upper lobe Adenocarcinoma T2N2 13.41 25 8.12

9 M 76 Lower lobe Squamous cell carcinoma T3N2 15.13 52 115.42

10 M 84 Lower lobe Adenocarcinoma T2N2 24.81 40 27.53

11 M 68 Upper lobe Squamous cell carcinoma T2N2 9.83 40 45.97

12 M 65 Upper lobe Adenocarcinoma T2N3 14.38 42 39.43

13 F 67 Upper lobe Adenocarcinoma T1N3 6.99 15 5.96

14 M 65 Upper lobe Squamous cell carcinoma T4N2 14.52 80 157.67

15 M 45 Upper lobe Adenocarcinoma T1N3 6.09 10 5.06

16 M 65 Lower lobe Adenocarcinoma T1N2 6.07 24 4.53

17 M 60 Upper lobe Squamous cell carcinoma T4N1 11.34 34 19.95

SUVmax, maximal standardized uptake value; *Tumor sizes represent the major axis of the tumor; +Tumor volume is the average volume of the 10 phases of the
gross target volume delineated on four-dimensional CT.
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images for the same person were produced during the
same imaging session, MIM would consider the images
as being registered with each other. After the 3DCT and
PET image datasets were co-registered with the help of
the transmission CT from PET/CT, the 4DCT images
would be auto-registered with the CT component of
PET/CT. The registration was then manually adjusted
by one radiotherapist, experienced in registering PET/
CT images, by matching bony anatomy such as the
vertebral bodies at the level of the visible lung lesion.
Hence, each contour was transferred to the 3DCT to
calculate their specific parameters.

Target volume delineation
Our investigation focuses on the primary tumors. If the
positive lymph nodes could not be separated from the
primary tumor visually, they were delineated together as if
they were part of the primary tumor. Patients were treated
according to the 4DCT-based volumes and PET/CT con-
tours were only used as part of a virtual planning study.
Using the lung window setting (W= 1,600, C = −600) and
mediastinal window settings (W= 400, C = 40) for the
interface if the tumor was close to the mediastinum or
chest wall [18], GTVs were manually contoured on all 10
phases of the 4DCT scan by a single radiation oncologist
and verified by another radiation oncologist. Both of them
did not know the PET results in an effort to decrease bias.
IGTV10 were derived from the 10 phases of the GTVs.
PET/CT-based GTV of the primary tumor (GTVPET) was
defined by the auto-contouring function of MIM. After
identification the primary tumor as a region of interest
(ROI), MIM automatically calculated the SUVmax of ROI.
Eight different threshold methods were used in this study:
(1) SUV of 2.0 or greater (SUV2.0); (2) SUV of 2.5 or
greater (SUV2.5); (3) 15% of SUVmax within the ROI
(SUV15%); (4) 20% of SUVmax within the ROI (SUV20%);
(5) 25% of SUVmax within the ROI (SUV25%); (6) 30% of
SUVmax within the ROI (SUV30%); (7) 35% of SUVmax

within the ROI (SUV35%); (8) 40% of SUVmax within the
ROI (SUV40%). All the noncancerous regions within the
GTVPET, including the areas overlaid by the heart, bone
and great vessels, were corrected to exclude manually with
the help of the CT of component of PET/CT.

Volumes comparison
The differences in the position, size, concordance index
(CI) and degree of inclusion (DI) between the GTVPET

and the IGTV10 were compared.
Target volume positions were defined by center of target

coordinates and expressed using the x (left-right, LR),
y (anterior-posterior, AP) and z (cranial-caudal, CC)
coordinates of the center of mass. Centroid shifts in
the 3D directions were calculated according to the
formula as follows:

3D centroid shifts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LR2 þ AP2 þ CC2

p

The concordance index of volume A and B [CI (A, B)]
was defined as the ratio of the intersection of A with B
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to the union of A and B [19]. The maximum value of CI
is 1 if the two volumes are identical, and the minimum
value is 0 if the volumes are completely nonoverlapping.
That is,

CI ¼ A∩B
A∪B

The definition of DI of volume A in volume B [DI (A
in B)] is the percentage of the overlap between volume
A and B in volume A [20]. The formula is as follows:

DI A in Bð Þ ¼ A∩B
A

:

The DI can represent the percentage of one volume
included by another volume, and 1-DI can represent the
percentage of one volume not included by another
volume.

Statistical analysis
Statistical analysis was performed using the SPSS
software package (SPSS 17.0). The one-way ANOVA test
was used to determine the variations in the DIs of
GTVPET and IGTV10, and in the CIs of GTVPET and
IGTV10. The Wilcoxon test was performed to estimate
the differences of centroid coordinate positions between
GTVPET and IGTV10, and also used to estimate the
Table 2 The centroid shifts of the GTVPET and IGTV10 in 3D di

Lesion GTVPET15% GTVPET20% GTVPET25% GTVPET3

1 1.10 1.07 1.04 1.09

2 0.67 0.75 0.85 0.94

3 0.77 0.75 0.77 0.74

4 0.33 0.34 0.37 0.38

5 0.38 0.28 0.23 0.23

6 0.09 0.16 0.18 0.18

7 1.13 1.29 1.36 1.30

8 0.76 0.75 0.76 0.75

9 0.22 0.36 0.48 0.54

10 0.33 0.29 0.33 0.32

11 0.20 0.32 0.36 0.43

12 1.16 1.14 1.14 1.11

13 0.32 0.36 0.41 0.48

14 1.01 1.02 1.11 1.17

15 - 0.15 0.17 0.25

16 - 2.01 1.95 2.02

17 0.43 0.38 0.43 0.44

Median 0.43 0.38 0.48 0.54

sd 0.37 0.50 0.49 0.49

sd, standard deviation.
variabilities of target volumes between GTVPET and
IGTV10. We used the Spearman correlation test to
analyze for associations between centroid shifts in the
3D directions and CIs. Values of P < 0.05 were regarded
as significant for all the tests. Descriptive statistics were
used as appropriate.
Results
For lesion 15 and 16, the SUVmax in the tumor was 6.09
and 6.07, we could not obtain GTVPET15% target volumes
as the volume obtained from the SUV15% contours were
indistinguishable from background lung activity.
Centroid shifts of the volumes derived from PET/CT and
4DCT
Table 2 showed the centroid shifts in 3D directions of
the IGTV10 volumes and the PET/CT volumes. The
variations in the centroid coordinate positions in the
CC direction of GTVPET20% and IGTV10, GTVPET25%

and IGTV10, GTVPET30% and IGTV10, GTVPET35% and
IGTV10, GTVPET40% and IGTV10, GTVPET2.0 and IGTV10,
GTVPET2.5 and IGTV10 were significant (z = −2.131,
−2.131, −2.012, −2.012, −2.012, −2.012, −2.226; P = 0.033,
0.033, 0.044, 0.044, 0.044, 0.044, 0.026), while in the LR
and AP directions were not significant (P > 0.05). The vari-
ations in the LR, AP and CC directions of GTVPET15% and
rections (cm)

0% GTVPET35% GTVPET40% GTVPET2.0 GTVPET2.5

1.08 1.07 1.08 1.07

1.05 1.14 0.68 0.79

0.70 0.73 0.78 0.72

0.37 0.35 0.35 0.38

0.25 0.22 0.28 0.23

0.20 0.20 0.12 0.14

1.43 1.55 1.16 1.30

0.79 0.77 0.75 0.73

0.59 0.63 0.14 0.24

0.34 0.35 0.12 0.23

0.46 0.47 0.31 0.37

1.13 1.17 1.17 1.14

0.49 0.50 0.44 0.48

1.29 1.52 0.96 0.98

0.26 0.22 0.18 0.42

2.01 2.01 2.01 1.98

0.50 0.52 0.33 0.39

0.59 0.63 0.44 0.48

0.50 0.54 0.51 0.49
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IGTV10 were not significant (z = −0.502, −0.881, −1.505;
P = 0.615, 0.378, 0.132).

Volume variation
The volumes of primary tumors measured by PET/CT
and 4DCT were shown in Table 3. Compared to IGTV10,
GTVPET15%, GTVPET20% and GTVPET2.0 showed no signi-
ficant difference (P values were 0.281, 0.102 and 0.687, re-
spectively). Figure 1 illustrated the median percentage of
volume changes from GTVPET to IGTV10 standardized
to the IGTV10 for each case. The SUV 15% contour
approximated most closely to the IGTV10 with the lo-
west median percentage volume changes of 4.86%. The
corresponding values with respect to the IGTV10 for
the SUV20%, SUV25%, SUV30%, SUV35%, SUV40%,
SUV2.0 and SUV2.5 contours were −8.87%, −24.51%,
−37.51%, −43.57%, −52.24%, −7.03% and −21.93%,
respectively.

CI
Figure 2 shows the median CIs of the PET volumes and
the IGTV10 volumes. The median CIs ranged from 0.30 to
0.57 (F = 2.526, P = 0.018). The best fit for CI was at
SUV15% (0.57), followed by SUV 2.0 (0.56). The CIs of
IGTV10 and GTVPET were inversely correlated with
the centroid shifts in 3D directions (r = −0.668, −0.699,
−0.728, −0.728, −0.801, −0.755, −0.711, −0.787; P = 0.007,
0.002, 0.001, 0.001, 0.000, 0.000, 0.001, 0.000).
Table 3 The volumes of primary tumors measured by PET/CT

Lesion GTVPET15% GTVPET20% GTVPET25% GTVPET30%

1 24.98 20.59 17 15.31

2 159.69 122.17 95.89 72.35

3 16.34 10.47 7.82 6.13

4 39.49 34.32 29.54 26.89

5 70.9 53.99 46.02 41.27

6 19.41 14.44 11.4 9.04

7 19.68 13 8.5 5.93

8 13.03 10.16 7.9 6.49

9 183.15 140.37 115.35 98.64

10 24.24 19.76 16.35 13.81

11 72.69 56.06 46.42 39.95

12 45.43 35.7 28.19 23.45

13 26.49 19.64 14.06 9.92

14 141.98 112.7 89.36 69.05

15 - 8.59 5.76 3.94

16 - 7.64 5.68 4.2

17 42.34 31.21 27.05 23.24

Median 39.49 20.59 17 15.31

P value 0.281 0.102 0.004 0.000

P value, GTVPET VS IGTV10.
DI
Figure 3 showed the median DIs of GTVPET in IGTV10,
and IGTV10 in GTVPET. The median DIs of IGTV10 in
GTVPET ranged from 0.31 to 0.80 (F = 7.814, P = 0.000).
The best DI was IGTV10 in GTVPET15%. The median DIs
of GTVPET in IGTV10 ranged from 0.60 to 0.85 (F = 1.017,
P = 0.422). The best DIs were GTVPET35% and GTVPET40%

in IGTV10.

Discussion
Accurate definition of the target volume, ideally incor-
porating metabolic information, becomes paramount
importance in the current trend in NSCLC treatment
planning [21]. A number of studies compared 3DCT vol-
umes with 18 F-FDG PET/CT volumes of NSCLC [22-24].
However, the best methodology for applying 18 F-FDG
PET/CT to IGTV definition is not currently well estab-
lished. To the best of our knowledge, there is few study
that has compared tumor sizes and CI values between
GTVPET and IGTV10 in contouring NSCLC.
In this study, we determined the IGTV10 from 10 phases

of the 4DCT dataset and used them as the reference to
find the optimal threshold that yield the best match bet-
ween the GTVPET and IGTV10 in both the target size and
the spatial conformity. Our study revealed that GTVPET

using a threshold setting of SUV15% approximated most
closely to the IGTV10 with the lowest median percentage
volume changes. When using the threshold level of
and 4DCT (cm3)

GTVPET35% GTVPET40% GTVPET2.0 GTVPET2.5 IGTV10

13.83 11.94 32.75 30.37 24.5

54.9 40.9 135.47 107.23 173.72

4.15 3.59 7.67 5.04 5.9

23.72 21.54 31.11 28 37.66

36.48 32.39 49.45 42.45 44.01

8.07 7.28 20.46 16.81 22.31

4.27 3.52 18.07 12.76 19.99

5.53 4.68 13.03 10.70 9.8

86.46 76.09 201.56 166.58 152.8

11.99 10.33 39.27 33.15 33.16

34.47 29.97 54.44 45.79 56.93

18.3 15.83 48.46 40.40 57.53

7.48 5.7 10.84 7.15 11.7

51.05 35.97 152.57 128.12 164.1

3.12 2.05 5.91 3.67 7

3.55 2.84 3.78 2.66 11.82

19.18 16.89 33.02 28.60 26.15

13.83 11.94 32.75 28.60 26.15

0.000 0.000 0.687 0.031 -



Figure 1 Median percentage volume change of GTVPET to
IGTV10. SUV n = SUV of n; SUV n% = n% of maximum SUV.
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≥ SUV25% and/or ≥ SUV2.5, the PET-based tumor sizes
were estimated to be smaller than the IGTV10. Therefore,
on the basis of the results of our study, the SUV threshold
setting of ≥25% and/or ≥2.5 is not suitable for IGTV
contouring in NSCLC.
Analogously, Hanna et al. [25] compared volumes

from a manual method and five automated PET segmen-
tation techniques to 4DCT-derived ITV and found that
none of the PET target volumes approximated closely to
the 4DCT target volumes. However, in their study, the
patient’s PET/CT and 4DCT scans were not acquired on
the same day or in identical position. In this circum-
stance, it was possible that changes in tumor geometry
or size occurred and potentially increased the likelihood
of a mismatch between the PET-based contours and the
4DCT-based contours [25]. Caldwell et al. [16] reported
that using a threshold as low as 15% of the maximum
value could account for respiratory motion and more ac-
curately depict the true extension of the moving target.
Another phantom study by Okubo et al. [26] concluded
that when a threshold value of 35% of the measured
maximum FDG activity was adopted, the sizes of PET
delineation were almost the same for static and moving
phantom spheres of 22 mm or more in the axial plane.
Our study was similar to the result of Caldwell et al., but
smaller than the result of Okubo et al. This is possible
because patients enrolled in our study had a range of
tumor sizes and positions. Moreover, the 15% threshold
method was not suitable for contouring some lung
Figure 2 Median concordance index of GTVPET and IGTV10.
tumors that have low SUV, because it might fail to dis-
tinguish tumor from background lung activity. Neverthe-
less, Okubo et al. suggested that the threshold of 35% of
measured maximum FDG activity was only a provisional
criterion for tumors of 2–4 cm given that appropriate
threshold values could be changed on the basis of the
tumor size [26]. In addition, it should be acknowledged
that any phantom studies versus clinical comparison is
limited. For example, unlike in real tumors, the FDG
distribution in the spheres of the phantoms and in the
background was homogenous.
Similarity in absolute volume does not mean identity in

the space location. Our results indicated that GTVPET15%,
GTVPET20% and GTVPET2.0 showed no significant dif-
ference with IGTV10 in target volume. However, the CIs
of them were significantly lower than 1.0. The best CI was
between IGTV10 and GTVPET15%, which was only 0.57. It
is not surprising as GTVPET15% is the biggest volume and
hence has the greatest degree of potential overlap. Based
on this consideration, this may not make it the most
accurate. The poor CIs suggested great unconformity bet-
ween what was indicated abnormal on PET image and on
CT image. One of the reasons is that shape and/or pos-
itional alterations between IGTV10 and GTVPET had oc-
curred. Our study showed that the minimum variation
in the centroid coordinate position in the 3D direction
of GTVPET and IGTV10 was 0.38 cm (median). More-
over, the CIs were inversely correlated with the centroid
shifts in 3D directions. Although patients in our study
were immobilized in the same position for both 4DCT
and PET/CT, millimetric precision in set-up using
immobilization devices may not be feasible. Further-
more, a rigid registration might not be sufficient for
lung tumors. Hence, registration error may inevitable
affect the spatial position between GTVPET and IGTV10.
In addition, it is possible that some of this difference
may be related to differences in the patient’s breathing
pattern between acquiring the PET/CT and 4DCT. Dif-
ferent breathing pattern can influence tumor size, shape
and distribution of activity on the free-breathing PET
images [27].



Figure 3 Median degree of inclusion of GTVPET in IGTV10, and IGTV10 in GTVPET.
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Hanna et al. [25] used the Dice similarity coefficient
(DSC) to assess volumetric, shape and positional simi-
larity in the PET-generated target volumes and 4DCT
target volumes. Their study revealed that the highest
DSCs (mean) were 0.64. Grills et al. [21] investigated
the impact of PET/CT for GTV definition in NSCLC
using the matching index (similar to CI in our study)
to compare the GTV, as defined by CT, with the GTV
defined by PET co-registered with CT. In their study,
the mean matching index was 0.65. Gondi et al. [23]
demonstrated that CI values of NSCLC with the
incorporation of FDG-PET and CT were 0.44. The
results of our study were similar to data published in
prior studies [21,23,25]. In addition, although CI can
provide the most information on both volume change
and positional change [28], it cannot quantify the
percentage of one volume included by another volume.
Further analyzing the inclusion relation between
GTVPET15% and IGTV10, there was 20% of (median)
GTVPET15% not included in IGTV10 and 40% of (median)
IGTV10 not included in GTVPET15%. It suggested that
ITGV10 did not encompass GTVPET15% completely or vice
versa. Therefore, we concurred with Gondi [21] who
concluded that although the quantitative absolute target
volume could sometimes be similar between CT and
PET, the qualitative target locations can be significantly
different.
One limitation of our study is the small number of

patients studied, so that subgroup analyses were limited.
Therefore, a larger cohort of patients with many differ-
ent tumor sizes and locations should be conducted to
further investigate the relationship of using 3D-PET/CT
and 4DCT for contouring IGTV of NSCLC. We are
continuing our work to enroll more patients for further
clinical investigations.

Conclusion
None of the PET based contours had both close spatial
and volumetric approximation to the 4DCT IGTV10. At
present 3D-PET/CT should not be used for IGTV
generation.
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