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Abstract
The RNA polymerase II (Pol II) is a eukaryotic enzyme that catalyzes the synthesis of the

messenger RNA using a DNA template. Despite numerous biochemical and biophysical

studies, it remains elusive whether the “secondary channel” is the only route for NTP to

reach the active site of the enzyme or if the “main channel” could be an alternative. On this

regard, crystallographic structures of Pol II have been extremely useful to understand the

structural basis of transcription, however, the conformation of the unpaired non-template

DNA part of the full transcription bubble (TB) is still unknown. Since diffusion routes of the

nucleoside triphosphate (NTP) substrate through the main channel might overlap with the

TB region, gaining structural information of the full TB is critical for a complete understand-

ing of Pol II transcription process. In this study, we have built a structural model of Pol II with

a complete transcription bubble based on multiple sources of existing structural data and

used Molecular Dynamics (MD) simulations together with structural analysis to shed light

on NTP entry pathways. Interestingly, we found that although both channels have enough

space to allow NTP loading, the percentage of MD conformations containing enough space

for NTP loading through the secondary channel is twice higher than that of the main chan-

nel. Further energetic study based on MD simulations with NTP loaded in the channels has

revealed that the diffusion of the NTP through the main channel is greatly disfavored by

electrostatic repulsion between the NTP and the highly negatively charged backbones of

nucleotides in the non-template DNA strand. Taken together, our results suggest that the

secondary channel is the major route for NTP entry during Pol II transcription.
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Author Summary

In eukaryotic cells, the RNA polymerase II (Pol II) is a central enzyme that reads the
genetic information encoded in the DNA template to synthetize a messenger RNA. To
perform its function, Pol II needs to have the substrate nucleoside triphosphate (NTP) dif-
fuse into its deeply buried active site. Despite numerous efforts, the NTP entry routes
remain elusive: NTP could diffuse only through the secondary channel, or also via the
main channel. The structural information of the transcription bubble is essential to study
this process, however, the unpaired non-template DNA of the transcription bubble is
absent in the available X-ray crystal structures. In this regard, we have built a structural
model of the Pol II elongation complex with reconstructed transcription bubble using
existing experimental data. We then performed Molecular Dynamics (MD) simulations
and applied structural analysis to study the routes of NTP diffusion. We found that steri-
cally the probability of NTP loading through the secondary channel is more than twice
that of the main channel. Further analysis of the non-bonded energetic contributions to
NTP diffusion suggests that NTP diffusion through the main channel is greatly disfavored
by the electrostatic repulsion between the substrate and negatively charged backbones of
nucleotides in the non-template strand of the transcription bubble. Altogether, our find-
ings suggest that the secondary channel is the more favorable NTP diffusion route for Pol
II transcription elongation.

Introduction
The RNA polymerase II (Pol II) is a processive eukaryotic enzyme that plays a central role in
transcription. It catalyzes the synthesis of messenger RNA (mRNA) with high fidelity and effi-
ciency. Double-stranded DNA (dsDNA) enters the enzyme and unwinds around the active
site. The dsDNA strand separates and bends at the downstream edge of the transcription bub-
ble, leaving a DNA strand exposed as template (template DNA strand) for mRNA synthesis
[1–5]. Nucleoside triphosphates (NTPs) need to diffuse into the active site for the incorpo-
ration to the mRNA strand [6–12]. The nascent mRNA chain remains paired to the DNA tem-
plate in an RNA:DNA hybrid that extends for about 9 nucleotides [1, 2, 6–9, 13, 14]. Then, the
template DNA strand separates from the nascent mRNA strand and re-anneals with the non-
template DNA strand at the upstream edge of the transcription bubble (Fig 1).

In the past decades, extensive experimental and computational studies have been performed
to elucidate the molecular mechanisms of different steps during the transcription process [1–
50]. However, how the NTP diffuses from the surface of the enzyme into the active site is still
not fully understood. X-ray crystal structures and biochemical studies have proposed two pos-
sible entry routes, namely: secondary channel [7–9, 21, 23, 34, 51–55] and main channel [56–
62]. Both NTP loading routes are supported by experimental and computational studies. Crys-
tallographic structures have shown that NTPs can bind to the active site as well as an entry site
(E-site) in the secondary channel [7–9, 52], which in turn suggests a two-step mechanism of
nucleotide selection. That is, NTP may go through the secondary channel to bind at the E site
and then rotate its nitrogenous base to reach the active site. This nucleotide rotation may play
an important role in discriminating dNTPs from NTPs, and help to ensure the correct base
pairing between the incoming NTP and the template DNA [7, 8]. These ideas have also been
confirmed by a computational study, which shows that NTP binding to the E-site in the sec-
ondary channel could greatly enhance the NTP binding rate at the active center [21]. Alterna-
tively, NTP is suggested to first bind to a non-catalytic (i+2) site near the downstream edge of
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the transcription bubble, and then shuttles to the active site via the main channel [56–62].
Even though no crystal structure has been captured with NTP bound to the downstream DNA
region, a study using millisecond phase kinetics suggested that the NTP could pre-load to the i
+2 site in the main channel prior to translocation into the active site, and this two-step mecha-
nism would increase transcriptional fidelity and efficiency [57]. These observations have been
further supported by a recent study using transient state kinetics, which demonstrated that the
NTP binding to a non-catalytic template-specific site in the main channel could regulate nucle-
otide incorporation [59]. However, from a structural point of view, it remains unclear if the
main channel contains sufficient space to allow loading of the NTP and how is that a pre-
loaded NTP at i+2 site reaches the Pol II active site. In particular, the downstream dsDNA
occupies the main channel and leaves little space to allow the diffusion of the incoming NTP
[6–9, 13–15, 17, 28, 54, 55]. Moreover, the bridge helix and fork regions seem to sterically
block the diffusion route of preloaded i+2 NTP to reach active site along with template base
crossover above the bridge helix. In addition, the downstream region of the transcription

Fig 1. Structural model of Pol II elongation complex with the complete transcription bubble. The left panel shows a cut-view of our Pol II model with a
complete transcription bubble. The protein is shown in grey color (surface representation), the bridge helix is shown in dark green color (cartoon
representation) and the magnesium ion is shown by a purple sphere. The DNA template, DNA non-template and mRNA strands are shown in cyan, green
and red colors, respectively. The right-top panel shows the whole model without the cut view, with the various subunits of Pol II shown in different colors. The
right-bottom panel is a close-up of the transcription bubble shown in dark blue.

doi:10.1371/journal.pcbi.1004354.g001
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bubble overlaps with the region proposed to accommodate the incoming NTP, while the tran-
scription bubble is either not included in the crystallographic preparation or its conformation
is too flexible to be resolved in the available crystallographic structures of Pol II elongation
complex [6–9, 13–15, 17]. Furthermore, the unpaired non-template base in the downstream
edge of the transcription bubble might re-anneal with i+2 DNA and over-compete with free
NTP. Lacking of full bubble structure makes it difficult to examine the possibility of NTP load-
ing through the main channel based on available elongation structures. A structural model for
Pol II elongation complex with the complete transcription bubble is thus crucial for the investi-
gation of the NTP loading routes.

In this work, we have built a structural model of Pol II elongation complex with a complete
transcription bubble based on available structures [7–9, 20, 35] (Fig 1). The final model con-
tains 47 nucleotides in both the template and non-template DNA strands and the nascent
mRNA strand has been extended to 18 nucleotides in length (Fig 1). Furthermore, we used this
model to perform molecular dynamics (MD) simulations to study the effect of the dynamic Pol
II complex on the diffusion of NTP. In general, we found that nucleotides that are observed in
crystal structures [6–9, 13–15, 17] show less flexibility compared to those for which the elec-
tronic density is absent. Based on the stability of base pairing observed in our MD simulations,
we identified that the size of the transcription bubble is of 15 nucleotides. To pinpoint possible
NTP loading pathways, we analyzed ~1,000 MD snapshots by representing NTP as a sphere.
We observed that both channels are possible NTP entry routes, while the number of conforma-
tions containing enough space for NTP loading through the secondary channel is more than
twice that of the main channel. Based on these results, we constructed a series of structural
models with full atomic representation of an NTP molecule located at various positions along
the identified diffusion pathways, and performed MD simulations in the presence of explicit
solvent. Strikingly, we found that NTPs in the main channel have experienced significantly
unfavorable electrostatic interactions compared to those in the secondary channel, mainly due
to the strong repulsion from the negatively charged backbones of the nearby nucleotides. Our
findings suggest that secondary channel is the major route for the NTP entry during Pol II
elongation.

Results

Structural model validation by molecular dynamics simulations
We built a structural model of Pol II with complete transcription bubble by extending the
DNA (template/non-template) strands and nascent mRNA strand to 47 and 18 nucleotides in
length, respectively (see S1 Text.pdb). This structural model equilibrates after 15ns in the MD
simulations (S1 Fig). The root mean square deviation (RMSD) values of Cα atoms reach 3Å in
the first 10ns. Afterwards, the RMSD increases only slightly and stays around 3.5Å in the last
5ns of the 20ns simulations.

Nucleotides located in various regions of Pol II show different flexibility in MD simulations
(Fig 2). The nucleotides of the nascent mRNA strand from positions i-1 to i-10 demonstrate
small mobility, with the root mean square fluctuation (RMSF)< 1.0Å (Fig 2B). The mRNA
beyond position i-11 is more exposed to the solvent and in consequence exhibits a higher flexi-
bility (Figs 1 and 2B). This is consistent with missing electron density in crystallographic struc-
tures [6, 9, 14]. The template DNA strand contains 47 nucleotides and those located in the
RNA:DNA hybrid region (from positions i-1 to i-8) show small fluctuations in the MD simula-
tions (Fig 2C). The nucleotides from positions i+5 to i+16 are stable with an RMSF< 2.0Å as
they are paired with the nucleotides of non-template DNA strand under a constrained protein
environment. The non-template strand separates from the template DNA strand near the
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bridge helix in the downstream edge, and re-anneals with the template strand in the upstream
edge of the transcription bubble. The nucleotides of the non-template strand located near or
within the bubble region (from i-9 to i+4) do not have stable base pairing partners, thus fluctu-
ate significantly in the simulations (Fig 2D). On the contrary, the non-template nucleotides in
the downstream dsDNA show less fluctuation (Fig 2D). Furthermore, terminal nucleotides of
both DNA strands present higher fluctuations (Figs 2C and 2D). Especially for the region
between i-24 to i-28 of the upstream DNA, the RMSF could be as high as 4.5Å (Figs 2C and
2D). Comparison to crystal structures indicates that the structural components observed in the
X-ray crystals [6–9, 13–15, 17] are relatively stable in the MD simulations, while those absent
or disordered in the crystal structures show more significant fluctuations.

By measuring the base pairing stability in MD simulations we found that the transcription
bubble contains 15 nucleotides (Fig 3). The nucleotides from positions i-24 to i-12 region of
the upstream DNA strands and from i+5 to i+16 of the downstream duplex show stable base
pairing with hydrogen bonds probability> 60% (Fig 3A). The dsDNA starts to unwind
(probability< 60%) at i+4 and reunites at i-12 site. Furthermore, nucleotides in the RNA:DNA
hybrid from i-2 to i-9 are well paired, with hydrogen bonds probability> 70% (Fig 3B). The
base pairing stability for the 3’-terminus nucleotide of the mRNA (i-1) is slightly reduced (with
a hydrogen bond probability of ~50%) due to its higher flexibility compared to the nucleotides
locating from i-2 to i-9 (Figs 2B and 3B). The base pairing between the nucleotides of the
hybrid is completely lost (with a probability dropping to zero) starting from i-10, indicating
that the template DNA and nascent mRNA strands separate at position i-10 (Fig 3B).

Sterically, the secondary channel shows higher probability than the main
channel for NTP loading
Using the program CAVER [63], we analyzed the MD conformational ensemble to find path-
ways that could allow the diffusion of a NTP molecule into the active site region of Pol II (see
Methods). We discovered potential diffusion pathways through both the main channel and
secondary channel. For the main channel, we identified a bifurcated pathway that connects the
Pol II surface to the i+2 binding site (Fig 4A). Different from previous models for the NTP
entry through the main channel [56–62], neither branch of the pathway is located along the

Fig 2. Structural validation of the model by MD simulations: Nucleic acids flexibility. (a) The scheme
represents the nucleic acid scaffold used in our simulation (numbers denote nucleotide positions). (b)-(d) The
RMSF, per nucleotide position, observed in our MD simulations for: mRNA, template DNA and non-template
DNA. Grey background denotes those nucleotides that have been observed in crystallographic structures.

doi:10.1371/journal.pcbi.1004354.g002
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downstream DNA duplex, indicating that the available space in the downstream region is too
limited to allow the passage of NTP. However, as shown in Fig 4A, the NTP may diffuse from
the solvent to the i+2 binding site through the bifurcated pathway located at both sides of the
non-template DNA strand in the transcription bubble region. In the later part of this article,
we refer to this branched pathway as the main channel. We also discovered a pathway that can
lead directly from the enzyme surface to the i+1 active site (Fig 4B). This pathway goes through

Fig 3. Structural validation of the model by MD simulations: Base-pairing stability. The bar plots show
the probability of finding the optimal number of hydrogen bonds for: (a) between the template and non-
template DNA strands, and (b) between the DNA-RNA hybrid. In the middle, the nucleic acid scaffold scheme
is demonstrated with the region where the DNA duplex opens to form the transcription bubble shown in dark
blue.

doi:10.1371/journal.pcbi.1004354.g003

Fig 4. The secondary channel exhibits higher probability for NTP entry than the main channel. The
cavity analysis was performed using the program CAVER (see Methods) with an ensemble of MD
conformations of the elongation complex (without NTP). (a) The most possible pathways with enough space
to allow the pre-loading of a NTP to the i+2 site are shown in yellow. Similarly, (b) shows the most possible
pathways for a NTP to reach the active site in orange. In (c), the bar plot shows the probability of finding MD
conformations with enough space for NTP diffusion through the main channel versus the secondary channel
(see Methods). The template DNA (cyan), non-template DNA (green) and RNA (red) strands are shown with
tube and licorice representations. The protein components are shown in grey with a cut view with a surface
representation.

doi:10.1371/journal.pcbi.1004354.g004
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the funnel and pore region, and is consistent with the previously proposed secondary channel,
Hence we refer to this pathway as the secondary channel.

The probability of finding pathways for NTP (simulated as a hard sphere with a radius of
3.5 Å) to the i+1 active site along the secondary channel is more than twice that of finding the
pathways to the i+2 binding site along the main channel (Fig 4C). In particular, the main chan-
nel pathway was only observed in ~31% of the MD conformations, while almost 77% of the
MD conformations contain enough space for NTPs to diffuse to the active site through the sec-
ondary channel. Thus, though both channels contain enough space for the loading of NTP, the
higher probability of finding pathways to the active site makes the secondary channel the
major NTP entry route.

In order to consider the atomic structure of NTP molecules rather than simply treating
them as spheres, we further modeled the all-atom NTP conformations at various locations
along the above-mentioned loading pathways (Fig 5). In particular, we superimposed the cen-
ter of mass (c.o.m.) of NTP with the locations of spheres identified by CAVER [63] and per-
formed energy minimization. In this way, the NTPs could fit themselves into the space along
the pathways (see Methods). We observed again that the secondary channel was still more
favorable than the main channel. We found that the NTP molecules located along the main
channel pathway deviated more from their initial positions compared to those along the sec-
ondary channel (S2 Fig). In particular, ~50% of the NTP molecules in the main channel move
their c.o.m.> 1.0Å away from the initial locations after energy minimization. Three of them
even show deviations> 2.0Å, with the highest value being of 3.5Å (S2A Fig). Besides, the
shortest atomic distance deviation of NTP molecules in some locations of the main channel is
as high as 2.0Å (S2A Fig). In contrast, NTP molecules in the secondary channel do not need to
move significantly from their starting positions, where 90% of the conformations show an
atomic distance deviation< 1.0Å (S2B Fig). By taking into account the steric effects of the

Fig 5. MD relaxation of NTP in the main channel and the secondary channel. (a-b) Initially, the points
constituting the entry routes through the main and secondary channels were divided into 20 clusters. The
yellow and orange spheres represent the center of each cluster for the main channel and the secondary
channel, respectively. (c-d) A NTPmolecule (in licorice presentation) accompanied by a bound magnesium
atom (sphere representation) was aligned to each of the cluster centers (shown in (a-b)) by its center of mass
(see Methods). These conformations were used as starting points for relaxation via MD simulations (see
Methods). The template DNA, non-template DNA and mRNA strands are shown in cyan, green and red,
respectively, with tube and licorice representations. The cut-view of the protein is shown in grey with a
surface representation.

doi:10.1371/journal.pcbi.1004354.g005

NTP Entry Routes to the RNA Polymerase II

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004354 July 2, 2015 7 / 21



NTP molecules along the pathways, the comparison of the NTP molecules’ positional devia-
tions along the two channels after energy minimization also supports that the secondary chan-
nel is the most favorable route for the NTP entry.

NTP diffusion through the secondary channel is energetically more
favorable than the main channel
To determine the stability of NTP along the pathways under the dynamic protein environment,
we performed MD simulations starting from the energy minimized conformations and found
that the NTP molecules have more favorable non-bonded interactions with the environment in
the secondary channel than in the main channel (Fig 6A). Two components contribute to this
energy difference: NTPs interacting with Pol II (protein and nucleotides) and the solvent
(water and counter ions) (Figs 6B and 6C). We also find that the non-bonded energy difference
is mainly due to the discrepancy of the Coulomb interaction (S3A Fig). Analysis of electrostatic
potential shows a negatively charged potential along the main channel, while the secondary
channel shows a surface with a nearly even distribution of positive and negative electrostatic
potential (S4 Fig), suggesting a more favorable pathway for NTP diffusion through the second-
ary channel. The van der Waals (vdW) interactions (represented by the LJ interactions) do not
show a significant difference between the two channels (S3B Fig).

The NTP has more stable non-bonded interactions with the Pol II complex in the secondary
channel than along the main channel. As shown in Fig 6B, the interaction between NTP and
the Pol II complex in the main channel is quite unstable. This could be explained by the fact
that in the main channel the charges surrounding the NTP are mainly negative (Fig 7A), thus
destabilizing the also negatively charged NTP. In contrast, the NTP has more stable interac-
tions with the Pol II complex in the secondary channel (Fig 6B), because the overall charge dis-
tribution surrounding the NTP is mainly positive, hence a favorable electrostatic environment
for the NTP (Fig 7A). Further analysis shows that the charge difference between two channels
arises from the nucleotides (Fig 7B) while the charge distributions of the amino acids sur-
rounding NTP are similar along both channels (Figs 7C and 7D). As shown in Fig 4A, the
main channel bifurcated pathway locates near to the negatively charged phosphate backbone
of the non-template DNA strand, therefore the NTP which also carries negative charge would

Fig 6. Non-bonded interactions NTP experiences revealed by MD. The plots compare the energetic
contribution of non-bonded interactions (electrostatic + vdW) along the main channel and secondary channel
for: (a) NTP and its environment (the Pol II complex and solvent); (b) NTP and the Pol II complex; and (c) NTP
and solvent. In these calculations, the Pol II complex includes the protein and nucleotides. The solvent
contains water molecules together with the counter-ions. The results shown in (a) are the total contributions
from the Pol II complex (shown in (b)) and the solvent (shown in (c)) (see Methods).

doi:10.1371/journal.pcbi.1004354.g006
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be destabilized in the main channel by the repulsion from the nearby phosphate backbones.
On the contrary, the pathway of the secondary channel is distant from the nucleotide-dense
regions, resulting in more stable interaction between NTP the Pol II complex (Figs 4B and 7B).

The analysis of the interaction between NTP and solvent demonstrates an opposite pattern:
NTPs in the main channel are more stabilized by the solvent than those in the secondary chan-
nel (Fig 6C). This may be related to a higher exposure of the main channel to the solvent and
thus the screening effect due to the counter ions and solvent molecules helps to stabilize NTPs
(e.g. ~2 Na+ within 10Å of NTP by average). On the contrary, the secondary channel is more
deeply buried in the protein, thus NTPs along this pathway are poorly shielded by counter ions
and solvent molecules (e.g. around half of MD conformations containing no Na+ within 10Å
of NTP), leading to a less stable interaction between NTPs and solvent.

In summary, even though solvent screening effect helps to stabilize NTPs in the main chan-
nel, NTPs still prefer the secondary channel if we consider the nucleotide repulsions along the
main channel during MD simulations. This also supports that the secondary channel is the
major NTP entry route.

Discussion
Although previous studies have provided great insight into the NTP loading process during
Pol II transcription, it is still unclear how the NTP diffuses into the active site from the surface
of the enzyme. Two routes have been proposed: a secondary channel directly leading from the
enzyme surface to the active site [7–9, 21, 23, 34, 51–55] and a main channel following the
downstream DNA duplex binding region into the i+2 binding site [56–62]. Until now, crystal
structures have been able to capture NTP binding only to the secondary channel [7–9, 52].
Furthermore, based on the available structural information [6–9, 13–15, 17, 28, 54, 55], it is
unclear if the downstream DNA in the main channel would impede the passage of NTP into
the i+2 site. However, biochemical studies have proposed that NTPs could diffuse through
the main channel and bind to a non-catalytic site to accelerate RNA synthesis [57, 59]. Even
so, the role of main channel still remains controversial, as the non-template DNA part of the

Fig 7. Distribution of charges surrounding the NTP during MD simulations. (a) The plot shows the net
charge of the Pol II (protein and nucleotides, y-axis) within certain radius (x-axis) of the NTP in the diffusion
pathways through the main channel (dark grey) or the secondary channel (light grey). (b)-(d) The same as in
(a) but for the charges of the nucleotides, positively-charged amino acids (a.a.) and negatively-charged a.a.
around NTP, respectively.

doi:10.1371/journal.pcbi.1004354.g007
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transcription bubble overlapping with the main channel is crucial for the study of NTP diffu-
sion routes while its conformation is absent in the available crystal structures of Pol II elonga-
tion complex [6–9, 13–15, 17].

In this work, we have built a structural model of Pol II with full transcription bubble (Fig 1).
Based on this model, we performed MD simulations and used an ensemble of MD snapshots to
study the NTP entry routes. Firstly, the NTP was treated as a sphere and MD conformations
were examined to find pathways with enough space to allow NTP diffusion. Consistent with
the previously proposed model for NTP loading through the secondary channel, our analysis
also identified the same NTP entry pathway [7–9, 21, 23, 34, 51–55] (Fig 4B). In contrast, dif-
ferent from the previously hypothesized main channel pathway along the Pol II downstream
DNA duplex [56–62], we found an bifurcated alternative pathway from the enzyme surface to
the i+2 non-catalytic binding site, locating at two sides of the unpaired non-template DNA
strand in the bubble region (Fig 4A). Furthermore, though analysis of the MD conformational
ensemble shows that both channels are possible routes for NTP entry by considering only the
steric effect, the probability of finding the secondary channel is more than two times higher
than that of the main channel (Fig 4C).

Finally, to take into account the atomic details of the NTP molecule, we constructed all-
atom models with NTP molecules at various locations along the pathways (Figs 5C and 5D)
and further performed MD simulations to examine their stability. Strikingly, we discovered
that NTPs in the secondary channel are energetically much more stable than those in the main
channel (Fig 6A). In particular, NTP molecules experience significantly more favorable electro-
static interactions with the Pol II complex in the secondary channel than in the main channel
(Fig 6B), mainly because the NTP is repelled by the nearby negatively charged phosphate back-
bone of the non-template DNA in the main channel (Fig 7B). In addition, investigation of the
non-bonded interaction between NTP and solvent suggests that the screening effect from the
counter-ions and solvent helps to stabilize the NTPs in the main channel (Fig 6C), as the bifur-
cated pathway is shorter and more exposed to the solvent than the secondary channel. Never-
theless, after taking into account of the overall environment including Pol II and solvent, we
found that the NTP is still greatly favored energetically when entering through the secondary
channel compared to the main channel. Our findings are consistent with the previous proposal
that the secondary channel is the major pathway for NTP entry [7–9, 21, 23, 34, 51–55].

Our current study provides a qualitative comparison of the energetics for NTP to diffuse
via the two channels; however, the actual energy difference between the two channels might be
not accurate due to simplicity of the energy calculations that we have used. In this regard, free
energy calculations may help to investigate an accurate value for the potential of mean force
of NTP diffusion through the channels. Nevertheless, due to the complexity of this system,
directly performing free energy calculations is challenging and involves enormous computa-
tional cost, since it requires sampling all the relevant conformations of the NTP along the diffu-
sion pathways, including not only the conformations of NTP molecule itself, but also its
distribution along the pathways and any associated conformational change of Pol II.

Based on our modeling results, we can predict key residues in the NTP diffusion that can
be tested by experiment. For example, due to the more limited space for NTP loading through
the main channel, we expect that mutations of alanine or glycine along the main channel (for
example, A75 in chain B and G178 in chain A) to bulky amino acids or analogs could further
reduce the probability for NTP diffusion through the main channel. Since electrostatic interac-
tions play an important role for NTP diffusion, mutations of positively-charged amino acids
(for example, K176 in chain A, K422 in chain B and R249 in chain B) to the negatively-charged
amino acids could cause stronger repulsion to the NTP in the main channel, thus further
impede the NTP entry through the main channel.
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In vivo, RNAP may associate with various transcription factors and the presence of these
proteins may affect the diffusion of NTP. For example, the elongation factor Spt4/5 [33, 35]
locates near the entrance of the main channel pathway. To examine its effect on NTP diffusion,
we performed channel analysis and MD simulations of the Spt4/5-Pol II complex (see S2 Text
for modeling details). We found that Spt4/5 could further reduce the probability of NTP diffu-
sion through the main channel (see S2 Text and S5 Fig). We are aware that the structure of
Spt4/5 that we adopted [35] is not full-length. Therefore, there exist possibilities that the main
channel pathway may be further blocked with the presence of full-length Spt4/5. During the
proofreading process, the transcription factor TFIIS could bind to the secondary channel of Pol
II to cleave the mis-incorporated RNA nucleotides. Its presence will occupy the entire second-
ary channel [17], and thus exclude the possibility for the NTP to diffuse to the active site
through the secondary channel.

In future studies, it will be of interest to consider the coupling of NTP diffusion, DNA:RNA
oscillation and translocation. According to the Brownian-ratchet model, the translocation
motion is coupled to NTP binding, therefore it exists the possibility that RNAP could oscillate
between the pre- and post-translocation states during NTP loading. However, in the current
work each individual MD simulation is limited to the length of 20ns, and within this short
time-scale it is not possible to observe the oscillation of the DNA/RNA hybrid between pre-
and post-translocation states (Previous work suggests the timescale for the oscillation in the
absence of NTP is at tens of microseconds [20]). The mechanism of the NTP shuttling from
the i+2 site to the active site has been suggested by a few previous studies. For example, the
kinetic studies by Kennedy and Erie suggested that the NTP could diffuse through the main
channel, bind to the i+2 site and shuttle to the active site along with translocation [59]. Gong
et al. also found that there is enough space for the NTP shuttling from the i+2 site to the active
site based on a minimum scaffold of transcriptional complex [57]. The NTP shuttling to the
active site is a plausible model, but there also exists other alternative mechanisms. For example,
it is possible that the interaction of the NTP at the i+2 site simply has allosteric regulatory role
of translocation, downstream bubble opening or catalysis. Our current work is focused on
determining the possibility for NTP to diffuse into Pol II via the main channel (to the i+2 site)
or the secondary channel (to the i+1 site, i.e. active site). For this purpose, we chose to use the
post-translocation state of Pol II, this is because both sites (i+1 and i+2) are available for NTP
binding, while in the pre-translocation state only the i+2 binding site is available.

In conclusion, our work has provided insight into the possible routes of NTP entry by per-
forming unbiased pathway searching along both the main channel and secondary channel
using an ensemble of MD conformations. Two proposed entry channels are compared steri-
cally and energetically. Our results have shown that the main channel is still a possible route by
solely considering the steric effect. However, if we consider the substantial energy difference
between the two channels, the secondary channel becomes the favorable route for NTP diffu-
sion. Our work also lays foundation for future studies of the kinetics and thermodynamics of
NTP loading in Pol II.

Methods

Structural model construction for the complete transcription bubble
The structural model of Pol II with full transcription bubble was built based on available struc-
tures [7–9, 20, 35] (see S1 Text). The post-translocation state model built previously for the
translocation study [20] was used as our initial conformation. The downstream DNA was
extended by 4 nucleotides after aligning to the crystal structure (PDBID: 2E2H [7]) with the
P and O5’ atoms of the nucleotides in positions from i+1 to i+6 of the template strand (refer to
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the nucleotides positions in Fig 2A). Afterwards, the all-atomic model of eukaryotic RNAP II
elongation complex containing full transcription bubble with Spt4/5 bound to the clamp
domain [35] (quoted as “Pol II-Spt4/5” later in the text) was used as reference to build the tran-
scription bubble and the upstream DNA. We noticed that there exist other models that may
serve as alternative starting structures for our modeling such as the archaeal RNAP elongation
complex model with the full transcription bubble [33]. Specifically, we aligned Pol II-Spt4/5
structure to our model with longer downstream DNA by P, O5’ and C5’ atoms of the nucleo-
tides at i+1 ~ i+3 positions. To model the downstream edge of the full transcription bubble, we
used the coordinates of the nucleotides at positions i+3 to i+6 of the aligned Pol II-Spt4/5 to
replace the corresponding nucleotides in our model. Furthermore, the fragments of template
DNA starting from i-10 to i-28 of the 3’-end and the non-template DNA strand from the 5’-
end to i+7 were also extracted from the aligned Pol II-Spt4/5 and inserted into our model.
Because the nucleotides were disconnected around the upstream edge of the transcription bub-
ble due to the structural alignment, we applied energy minimization solely for nucleotides
located at i-8 ~ i-10 to connect them. One extra nucleotide pair was appended to the down-
stream dsDNA terminal by aligning the nucleotides’ atoms C5 and P from positions i+10 ~ i
+14 of the Pol II-Spt4/5 to our model. The nascent mRNA strand was also extended: we aligned
Pol II-Spt4/5 to our model by the carbon atoms of nucleotides bases at positions from i-6 to i-
9; then the fragments of the aligned Pol II-Spt4/5 from i-9 to i-18 were inserted into our model.
The final sequences shown in Fig 2A were achieved by point mutations of the nucleotides
using the molecular modeling suite Coot [64].

We also manually fixed some structural clashes between the amino acids and the nucleo-
tides. First, we aligned Pol II-Spt4/5 to our model by the Cα atoms of Rpb1 residues 200~240
and 270~310. Rpb1 residues 248~260 from the aligned Pol II-Spt4/5 were extracted and used
to replace the corresponding amino acids in our model. PHE with residue ID 252 was rotated
to avoid its positional overlap with the nearby nucleotide. To correct the clash between the
amino acids and the nucleotides in the 5’ exit of nascent mRNA strand, we aligned Pol II-Spt4/
5 to our model by the phosphate atoms of nucleotides from i-10 to i-19 and then extracted the
Rpb1 residues 60~65 from the aligned Pol II-Spt4/5 to replace these six residues in our model.
Similar modifications were also made to the Pol II Rpb2. In particular, we aligned Pol II-Spt4/5
to our model by the Cα atoms of Rpb2 residues 480–530. Afterwards, the fork loop 4 (Rpb2
residues 501–510) from the aligned Pol II-Spt4/5 was extracted to replace the corresponding
residues in our model. The side chain of Rpb2 residue 430 was rotated and residues 436~447
and 918~934 were also manually pulled to avoid their clash with the nucleotides. The final
structural model contains template/non-template DNA strands and mRNA strand of 47 and
18 nucleotides in length, respectively (Figs 1 and 2A).

MD simulations of Pol II elongation complex
The amber99sb force field [65] with modifications on nucleotides [66–71] was used to perform
all-atomMD simulations. To maintain the coordination between the zinc and the protein, we
have added harmonic restraints with a force constant of 2261.03 kJ.mol-1.Å-2 between zinc ions
and their coordinated cysteine residues. The protonation states of the histidines in our model
were assigned as previously described [20].

The structural model with the complete transcription bubble was used as our starting con-
formation. To remove the steric clashes, we first performed a 5,000-steps energy minimization
with the steepest descent algorithm by freezing the nucleotides. Furthermore, another 50,000
steps energy minimization was performed for the Pol II system in vacuum to smooth the con-
tact between the amino acids and nucleotides. Next, we solvated the whole system in a water
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box of 160Å�188Å�160Å (α = 90°, β = 90°, γ = 90°) and neutralized it by adding 141 sodium
ions. Our simulation system contains 481,887 atoms in total, including 139,789 TIP3P water
molecules [72]. Afterwards, 10,000 steps energy minimization was performed for the whole
system. To further relax the Pol II in solvent, position restraints with a force constant of 10 kJ.
mol-1.Å-2 was enforced on all the heavy atoms of the Pol II complex and simulation was per-
formed for the whole system for 200ps under an NVT ensemble (T = 310K). The final con-
figuration from the position-restrained simulation was used to initiate 4 independent NVT
production (T = 310K) simulations with different initial velocities. The first 500ps were used
for temperature annealing from 50K to 310K, followed up by 20ns simulations with the tem-
perature kept at 310K. We stored snapshots every 20ps. The long-range electrostatic interac-
tions beyond the cut-off at 12Å were treated with the Particle-Mesh Ewald (PME) method
[73]. The Lennard-Jones interactions were smoothly switched off from 10Å to 11Å. The neigh-
bors list was updated every 10 steps. An integration time step of 2.0ps was used and the LINCS
algorithm [74] was applied to constrain all the bonds. All the MD simulations were performed
using Gromacs 4.5 [75]. A PDB of the energy-minimized structure is available in the SI as S1
Text.pdb.

Structural validation
As shown in S1 Fig, the system becomes equilibrated after 15ns. Thus the conformations from
the last 5ns of MD simulations were adopted for the structural validations. To investigate the
flexibility of the nucleotides, we used the C4 atom of each nucleotide for RMSF calculations for
each trajectory. Afterwards, we averaged the data from all the trajectories and the resulting
RMSF values for mRNA, template and non-template DNA are shown in Figs 2B–2D. To inves-
tigate the base pairing stability, we calculated the probability of optimal hydrogen bonds for-
mation during the MD simulations (Fig 3). In particular, 2 and 3 hydrogen bonds are defined
as the “optimal number of hydrogen bonds” for A-T(U) and C-G pairs, respectively. We
applied the default hydrogen bond definition in Gromacs [75] (3.5Å for distance cut-off of
donor-acceptor and 30° for angle cut-off of acceptor-donor-hydrogen) to determine the num-
ber of hydrogen bonds observed in MD simulations. Then we calculated the percentage of
snapshots showing the optimal hydrogen bond number for each trajectory. We applied the
bootstrapping algorithm with replacement to get the average hydrogen bond probability (10
iterations with 10 random trajectories per iteration). We also validated the protonation states
of titratable residues and discussed the placement of counter ions in our MD simulation model
(S6 and S7 Figs and S1–S6 Tables).

Channel analysis based on MD conformations
The last 5ns of MD simulations (1,004 MD snapshots) were used to analyze the channels. The
program CAVER [63] was used to search for cavities that might form pathways connecting the
protein surface to the binding site (Figs 4A and 4B). For this purpose, the NTP was simulated
as a sphere of radius 3.5Å (as suggested previously in [21]). Default settings were used for other
input parameters to search the pathway, except that “shell_radius” and “shell_depth” were set
to be 30Å and 40Å considering the distance from the Pol II surface to the buried binding site
(see [63] for details). For the main channel, the i+2 on-catalytic binding site was used as the ini-
tial point for the pathway search. All the pathways that could allow the sphere to go through
were identified and divided into groups according to their mutual geometry distances. These
groups are then ranked according to the number and the cost of pathways in each group (see
[63] for methodology details). During our analysis, we only focused on the first group, which is
the most probable or the one of the highest priority (Fig 4A). We then applied the
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bootstrapping algorithm to randomly select 100 MD conformations from our ensemble for 100
times, and calculated fraction of these conformations containing pathways that belong to the
most probable group (Fig 4C). A similar procedure was applied to search the pathways and cal-
culate the probability for the secondary channel, but using the i+1 active site as the initial point
in CAVER (Figs 4B and 4C).

MD simulations for the NTP loading
We first used the k-centers algorithm in MSMBuilder-1.0 [76] to cluster all the points consti-
tuting the pathways into 20 microstates according to their positional similarity. We then
extracted the central point of each microstate (Figs 5A and 5B) and used these points as the ref-
erence positions for placing NTP molecules in the channels. According to the sequence shown
in Fig 2A, the matched NTPs for the main channel and secondary channel are UTP and ATP,
respectively. Each NTP molecule carries one magnesium ion coordinated with its Pα, Pβ and Pγ
atoms to simulate the Mg B in the crystal structure [7]. The c.o.m. of the NTP with Mg2+ was
aligned to the microstate center (Figs 5C and 5D). We then used the aligned NTP and the Pol
II MD conformation corresponding to the specific center to build up the structural models
with NTP along the channels. Because we used 20 microstate centers for each channel, we have
40 different structural models in total, including 20 models with (UTP-Mg)2+ in the main
channel and other 20 models with (ATP-Mg)2+ in the secondary channel.

The parameters of the protein residues, DNA, RNA and the ions were taken from the all-
atom amber99sb force field [65] with modifications on nucleotides [66–71]. To simulate NTP,
parameter modifications on the polyphosphate [77] of the NTP were also included. The coor-
dination between the Mg2+ and NTP was kept by adding the harmonic restraints with a force
constant of 2261.03 kJ.mol-1.Å-2 between the magnesium ion and an oxygen atom attached to
the Pγ atom. Since the binding of the Mg2+ to the NTP may induce significant charge re-distri-
bution, we have regenerated the partial charges of the (NTP-Mg)2- group using the restrained
electrostatic potential (RESP) [78] fitting to the quantum calculation (HF/6-31G�). The partial
charges of the (NTP-Mg)2- group ((UTP-Mg)2- for main channel and (ATP-Mg)2- for second-
ary channel) are listed in S7 and S8 Tables. The quantum calculations were performed using
Gaussion03 [79].

After building up the structural models, each system was then neutralized by adding 143
sodium ions and solvated in a water box containing 139,784 TIP3P water molecules [72].
Because in the previous channel analysis the (NTP-Mg)2- group was simulated as a sphere
without real geometrical shape, the (NTP-Mg)2- group in the simulation models may clash
with the surrounding residues. Furthermore, to avoid the inserted (NTP-Mg)2- group from
perturbing the Pol II conformation, we first froze the Pol II complex and only performed
1,000-steps energy minimization with the steepest descent algorithm on the (NTP-Mg)2-

group to let it re-orient and fit itself into the channels. To investigate the movement of the
(NTP-Mg)2- group, we measured the positional change for the c.o.m. of (NTP-Mg)2- group for
each energy minimization simulation (S2 Fig). We also calculated the shortest distance between
the atoms of (NTP-Mg)2- group and the initial reference center position (S2 Fig). After energy
minimization of only the (NTP-Mg)2- group in the channels, we performed 10,000-steps
energy minimization on the whole system, followed by a 200ps position restrain simulation
with a force constant of 10 kJ.mol-1.Å-2 on all the heavy atoms of the Pol II complex together
with (NTP-Mg)2- group under NVT ensemble (T = 310K). Afterwards, the restrain was
released and one 10ns simulation was performed with random initial velocity under the NVT
ensemble, and the simulated annealing algorithm was applied to elevate the temperature from
50K to 310K in the first 500ps of this simulation. Because we have 40 structural models in total
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and we performed one simulation for each model, finally we have 40 MD trajectories. Other
simulation parameters are the same as those used for the MD simulations of Pol II elongation
complex.

Calculations of non-bonded interactions that NTP experiences
We collected the last 5ns MD conformations for the calculations. Because we saved the snap-
shots every 20ps, the ensemble contains 5,020 conformations for each channel. In the calcula-
tions, Pol II, (NTP-Mg)2- and solvent were treated as three individual energy groups. For each
MD conformation, we first calculated the Lennard-Jones (E_LJ) and short-range Coulomb
(E_Coul_SR) interaction energies between the (NTP-Mg)2- and Pol II. For the long-range
Coulomb interaction, we first calculated the total PME energy of (NTP-Mg)2- and Pol II
(EPME_NTP+PolII) by turning off the partial charges of solvent. Afterwards, we set the partial
charges of (NTP-Mg)2- and solvent to zero to calculate the PME energy of Pol II (EPME_PolII).
Similarly, we turned off the partial charges of Pol II and solvent to calculate the PME energy of
(NTP-Mg)2- (EPME_NTP). The long-range electrostatic interaction energy (E_Coul_LR) between
(NTP-Mg)2- and Pol II was then derived by subtracting (EPME_PolII) and (EPME_NTP) from
(EPME_NTP+PolII). By summing up E_LJ, E_Coul_SR and E_Coul_LR, we could get the non-bonded
interaction energy between (NTP-Mg)2- and Pol II. Similar procedure was applied to calculate
the non-bonded interaction energy between (NTP-Mg)2- and solvent. The non-bonded inter-
action energy between (NTP-Mg)2- and environment was then obtained by summing up the
interaction energy between (NTP-Mg)2- and Pol II/solvent. To demonstrate the non-bonded
interaction energy in both channels, we used bootstrapping algorithm to randomly select
100 conformations from the ensemble and repeated it 100 times to obtain the average values
(Fig 6). To investigate the non-bonded interaction energies that NTP experiences along the
pathways, we divided the conformations from the last 5ns MD simulations into 20 clusters
according to the (NTP-Mg)2- positional similarity in the channels. We then calculated the
non-bonded interaction energy using the 20 MD cluster center conformations for each channel
(S3 Fig).

Calculations of charges around NTP
We calculated the net charge within certain radius of NTP for the Pol II complex (Fig 7). The
MD conformations from the last 5ns simulations (5,020 conformations per channel) were used
for the calculations. In particular, for one MD conformation, the charge of the Pol II complex
was calculated by considering charged amino acids and nucleotides with any atom inside a cer-
tain radius of NTP atoms. We repeated the calculation by changing the distance cut-off from
2Å to 10Å. Afterwards, a bootstrapping algorithm was applied to randomly select 100 confor-
mations from the MD conformational ensemble, and this process was repeated 100 times to
get the averaged net charges of the Pol II complex (Fig 7A). To study more details about the
charges of the Pol II complex, we applied the same calculation method for three separated
groups: nucleotides, positive-charged amino acids (LYS, ARG and HIP) and negative-charged
amino acids (GLU and ASP) (Figs 7B–7D). In addition, we also calculated the charge of sodium
(Na+) by using the same method with the distance cut-off 10Å.

Supporting Information
S1 Text. Structural model of the Pol II elongation complex with the complete transcription
bubble.
(PDB)
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S2 Text. Supplementary information text.
(DOC)

S1 Fig. RMSD of the alpha carbon atoms in the four parallel 20ns MD simulations.
(TIF)

S2 Fig. Distance between the NTP and the caver centers after energy minimization. (a) Dis-
tance between NTP and caver center for the main channel. The red circles with solid line show
the distance of NTP center of mass to the corresponding caver center, while the black triangles
with dashed lines demonstrate the shortest distance of NTP to the caver center. (b) The same
as (a) but for the secondary channel.
(TIF)

S3 Fig. Non-bonded interactions between NTP and the environment revealed by MD con-
formations. (a) Coulomb interactions between NTP and environment along different posi-
tions of the main channel (red solid line with triangles) and secondary channel (black dashed
line with circles). (b) Similar to (a) but for the Lennard-Jones energies.
(TIF)

S4 Fig. Electrostatic potential along the NTP channels. (a) The surface of the protein and
nucleotides within 10Å of the main channel NTP diffusion pathway are shown colored by its
electrostatic potential. Amino acids at>10Å from the main channel are shown just in a surface
representation and grey color. The template DNA, non-template DNA and RNA strand are
shown in licorice representation (cyan, green and red colors, respectively). The right panel is a
rotation of 180° respect to the left panel. The empty arrow denotes the NTP pathway. (b) The
same as (a) but for the secondary channel.
(TIF)

S5 Fig. Spt4/5 elongation factor binding to the upstream DNA locates near the entry of
main channel pathway. In (a)-(c), the main channel pathway discovered is shown in yellow
with different views (side view (a), front view (b) and top view (c)). The template DNA (cyan),
non-template DNA (green) and RNA (red) strand are shown with tube and licorice representa-
tions. The Pol II protein components are shown in grey; (d)-(f) are similar to (a)-(c), but with
the elongation factor Spt4 and Spt5 shown in pink and blue, respectively.
(TIF)

S6 Fig. Distribution of counter ion Na+ in the vicinity of Nucleic Acids during MD simula-
tion. (a) Left and right panels show the distribution of sodium ions (blue sphere) before and
after the MD simulation. The two bottom boxes are close-ups of the nucleotides and ions. The
template DNA (cyan), non-template DNA (green) and RNA (red) strand are shown in tube
and licorice representations. Protein surface is shown in light grey. (b) The plot shows the
number of Na+ ions within 9Å of the nucleotides during the course of 4 independent MD sim-
ulations.
(TIF)

S7 Fig. Probability of consistent protonation states in our MD setup and the pKa predicted
by Propka3.1. The values were obtained by considering 44 MD conformations. Please refer to
S1–S5 Tables for the residue index.
(TIF)

S1 Table. Comparison between protonation states of aspartic acid (ASP) adopted in our
MD simulations and those predicted by the Propka software.<pKa> were obtained by
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averaging predictions made by the Propka software using 44 MD conformations.
(DOC)

S2 Table. Comparison between protonation states of glutamic acid (GLU) adopted in our
MD simulations and those predicted by the Propka software.<pKa> were obtained by aver-
aging predictions made by the Propka software using 44 MD conformations. Amino acids
whose predicted pKa value (Propka) suggests a protonation state that differs from the one used
in our MD simulations are highlighted.
(DOC)

S3 Table. Comparison between protonation states of lysine (LYS) adopted in our MD simu-
lations and those predicted by the Propka software.<pKa> were obtained by averaging pre-
dictions made by the Propka software using 44 MD conformations. Amino acids whose
predicted pKa value (Propka) suggests a protonation state that differs from the one used in our
MD simulations are highlighted.
(DOC)

S4 Table. Comparison between protonation states of arginine (ARG) adopted in our MD
simulations and those predicted by the Propka software.<pKa> were obtained by averaging
predictions made by the Propka software using 44 MD conformations.
(DOC)

S5 Table. Comparison between protonation states of histidine (HIS) adopted in our MD
simulations and those predicted by the Propka software.<pKa> were obtained by averaging
predictions made by the Propka software using 44 MD conformations. Amino acids whose pre-
dicted pKa value (Propka) suggests a protonation state that differs from the one used in our
MD simulations are highlighted.
(DOC)

S6 Table. Distances between the amino acids and the main/secondary channel. The table
presents the distance to the NTP diffusion pathways for the six amino acids whose predicted
pKa value (Propka) suggests a protonation state that differs from the one used in our MD sim-
ulations. The distances are the average minimum distance from the 44 MD conformations
used for Propka predictions.
(DOC)

S7 Table. Partial charges of (UTP-Mg)2- group.
(DOC)

S8 Table. Partial charges of (ATP-Mg)2- group.
(DOC)

Acknowledgments
We would like to acknowledge Profs. Roger Kornberg and David Bushnell for helpful discus-
sions. Computing resources were provided by the National Supercomputing Center in Shen-
zhen. Figures containing the Pol II complex were made with Visual Molecular Dynamics
(“VMD”) software (http://www.ks.uiuc.edu/Research/vmd/).

Author Contributions
Conceived and designed the experiments: LZ DAS XH. Performed the experiments: LZ. Ana-
lyzed the data: LZ. Wrote the paper: LZ DAS FPA DW XH.

NTP Entry Routes to the RNA Polymerase II

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004354 July 2, 2015 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004354.s017
http://www.ks.uiuc.edu/Research/vmd/


References
1. Kornberg RD. The molecular basis of eukaryotic transcription. Proceedings of the National Academy of

Sciences of the United States of America. 2007; 104(32):12955–61. PMID: 17670940

2. Cheung ACM, Cramer P. A Movie of RNA Polymerase II Transcription. Cell. 2012; 149(7):1431–7. doi:
10.1016/J.Cell.2012.06.006 PMID: WOS:000305753800010.

3. Wang B, Feig M, Cukier RI, Burton ZF. Computational simulation strategies for analysis of multisubunit
RNA polymerases. Chem Rev. 2013; 113(11):8546–66. doi: 10.1021/cr400046x PMID: 23987500

4. Pardo-Avila F, Da L-T, Wang Y, Huang X. Theoretical Investigations on Elucidating Fundamental
Mechanisms of Catalysis and Dynamics Involved in Transcription by RNA Polymerase. Journal of The-
oretical and Computational Chemistry. 2013;0(0):1341005-.

5. Martinez-Rucobo FW, Cramer P. Structural basis of transcription elongation. Bba-Gene Regul Mech.
2013; 1829(1):9–19.

6. Kettenberger H, Armache KJ, Cramer P. Complete RNA polymerase II elongation complex structure
and its interactions with NTP and TFIIS. Molecular cell. 2004; 16:955–65. PMID: 15610738

7. Wang D, Bushnell Da, Westover KD, Kaplan CD, Kornberg RD. Structural basis of transcription: role of
the trigger loop in substrate specificity and catalysis. Cell. 2006; 127(5):941–54. PMID: 17129781

8. Westover KD, Bushnell Da, Kornberg RD. Structural basis of transcription: nucleotide selection by rota-
tion in the RNA polymerase II active center. Cell. 2004; 119(4):481–9. PMID: 15537538

9. Gnatt AL, Cramer P, Fu JH, Bushnell DA, Kornberg RD. Structural basis of transcription: An RNA poly-
merase II elongation complex at 3.3 angstrom resolution. Science. 2001; 292(5523):1876–82. PMID:
11313499

10. Huang X, Wang D, Weiss DR, Bushnell Da, Kornberg RD, Levitt M. RNA polymerase II trigger loop resi-
dues stabilize and position the incoming nucleotide triphosphate in transcription. Proceedings of the
National Academy of Sciences of the United States of America. 2010; 107(36):15745–50. doi: 10.1073/
pnas.1009898107 PMID: 20798057

11. Landick R. NTP-entry routes in multi-subunit RNA polymerases. Trends Biochem Sci. 2005; 30
(12):651–4. PMID: 16243529

12. Kireeva M, Kashlev M, Burton ZF. Translocation by multi-subunit RNA polymerases. Bba-Gene Regul
Mech. 2010; 1799(5–6):389–401.

13. Westover KD, Bushnell DA, Kornberg RD. Structural basis of transcription: Separation of RNA from
DNA by RNA polymerase II. Science. 2004; 303(5660):1014–6. PMID: 14963331

14. Sydow JF, Brueckner F, Cheung ACM, Damsma GE, Dengl S, Lehmann E, et al. Structural basis of
transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA.
Molecular cell. 2009; 34(6):710–21. doi: 10.1016/j.molcel.2009.06.002 PMID: 19560423

15. Cheung ACM, Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation.
Nature. 2011; 471(7337):249–53. doi: 10.1038/nature09785 PMID: 21346759

16. Cramer P, Bushnell Da, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 ang-
strom resolution. Science (New York, NY). 2001; 292(5523):1863–76.

17. Wang D, Bushnell Da, Huang X, Westover KD, Levitt M, Kornberg RD. Structural basis of transcription:
backtracked RNA polymerase II at 3.4 angstrom resolution. Science (New York, NY). 2009; 324
(5931):1203–6.

18. Da LT, Avila FP, Wang D, Huang XH. A Two-State Model for the Dynamics of the Pyrophosphate Ion
Release in Bacterial RNA Polymerase. Plos Computational Biology. 2013; 9(4).

19. Da LT, Wang D, Huang X. Dynamics of pyrophosphate ion release and its coupled trigger loop motion
from closed to open state in RNA polymerase II. Journal of the American Chemical Society. 2012; 134
(4):2399–406. doi: 10.1021/ja210656k PMID: 22206270

20. Silva DA, Weiss DR, Pardo-Avila F, Da LT, Levitt M, Wang D, et al. Millisecond dynamics of RNA poly-
merase II translocation at atomic resolution. Proceedings of the National Academy of Sciences of the
United States of America. 2014; 111(21):7665–70. doi: 10.1073/pnas.1315751111 PMID: 24753580

21. Batada NN, Westover KD, Bushnell Da, Levitt M, Kornberg RD. Diffusion of nucleoside triphosphates
and role of the entry site to the RNA polymerase II active center. Proceedings of the National Academy
of Sciences of the United States of America. 2004; 101(50):17361–4. PMID: 15574497

22. Yu J, Da LT, Huang X. Constructing kinetic models to elucidate structural dynamics of a complete RNA
polymerase II elongation cycle. Phys Biol. 2014; 12(1):016004. doi: 10.1088/1478-3975/12/1/016004
PMID: 25475208

23. Cramer P, Bushnell DA, Fu JH, Gnatt AL, Maier-Davis B, Thompson NE, et al. Architecture of RNA
polymerase II and implications for the transcription mechanism. Science. 2000; 288(5466):640–9.
PMID: 10784442

NTP Entry Routes to the RNA Polymerase II

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004354 July 2, 2015 18 / 21

http://www.ncbi.nlm.nih.gov/pubmed/17670940
http://dx.doi.org/10.1016/J.Cell.2012.06.006
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000305753800010
http://dx.doi.org/10.1021/cr400046x
http://www.ncbi.nlm.nih.gov/pubmed/23987500
http://www.ncbi.nlm.nih.gov/pubmed/15610738
http://www.ncbi.nlm.nih.gov/pubmed/17129781
http://www.ncbi.nlm.nih.gov/pubmed/15537538
http://www.ncbi.nlm.nih.gov/pubmed/11313499
http://dx.doi.org/10.1073/pnas.1009898107
http://dx.doi.org/10.1073/pnas.1009898107
http://www.ncbi.nlm.nih.gov/pubmed/20798057
http://www.ncbi.nlm.nih.gov/pubmed/16243529
http://www.ncbi.nlm.nih.gov/pubmed/14963331
http://dx.doi.org/10.1016/j.molcel.2009.06.002
http://www.ncbi.nlm.nih.gov/pubmed/19560423
http://dx.doi.org/10.1038/nature09785
http://www.ncbi.nlm.nih.gov/pubmed/21346759
http://dx.doi.org/10.1021/ja210656k
http://www.ncbi.nlm.nih.gov/pubmed/22206270
http://dx.doi.org/10.1073/pnas.1315751111
http://www.ncbi.nlm.nih.gov/pubmed/24753580
http://www.ncbi.nlm.nih.gov/pubmed/15574497
http://dx.doi.org/10.1088/1478-3975/12/1/016004
http://www.ncbi.nlm.nih.gov/pubmed/25475208
http://www.ncbi.nlm.nih.gov/pubmed/10784442


24. Bushnell DA, Cramer P, Kornberg RD. Structural basis of transcription: alpha-Amanitin-RNA polymer-
ase II cocrystal at 2.8 A resolution. Proceedings of the National Academy of Sciences of the United
States of America. 2002; 99(3):1218–22. PMID: 11805306

25. Basu RS, Warner BA, Molodtsov V, Pupov D, Esyunina D, Fernandez-Tornero C, et al. Structural Basis
of Transcription Initiation by Bacterial RNA Polymerase Holoenzyme. Journal of Biological Chemistry.
2014; 289(35):24549–59. doi: 10.1074/jbc.M114.584037 PMID: 24973216

26. Jun SH, Hirata A, Kanai T, Santangelo TJ, Imanaka T, Murakami KS. The X-ray crystal structure of the
euryarchaeal RNA polymerase in an open-clamp configuration. Nat Commun. 2014;5.

27. Murakami KS, Masuda S, Campbell EA, Muzzin O, Darst SA. Structural basis of transcription initiation:
An RNA polymerase holoenzyme-DNA complex. Science. 2002; 296(5571):1285–90. PMID:
12016307

28. Schwinghammer K, Cheung ACM, Morozov YI, Agaronyan K, Temiakov D, Cramer P. Structure of
human mitochondrial RNA polymerase elongation complex. Nature Structural & Molecular Biology.
2013; 20(11):1298–U225.

29. Zhang Y, Feng Y, Chatterjee S, Tuske S, Ho MX, Arnold E, et al. Structural Basis of Transcription Initia-
tion. Science. 2012; 338(6110):1076–80. doi: 10.1126/science.1227786 PMID: 23086998

30. Basu RS, Murakami KS. Watching the Bacteriophage N4 RNA Polymerase Transcription by Time-
dependent Soak-trigger-freeze X-ray Crystallography. Journal of Biological Chemistry. 2013; 288
(5):3305–11. doi: 10.1074/jbc.M112.387712 PMID: 23235152

31. Fu JH, Gnatt AL, Bushnell DA, Jensen GJ, Thompson NE, Burgess RR, et al. Yeast RNA polymerase II
at 5 angstrom resolution. Cell. 1999; 98(6):799–810. PMID: 10499797

32. Hirata A, Klein BJ, Murakami KS. The X-ray crystal structure of RNA polymerase from Archaea. Nature.
2008; 451(7180):851–U12. doi: 10.1038/nature06530 PMID: 18235446

33. Klein BJ, Bose D, Baker KJ, Yusoff ZM, Zhang XD, Murakami KS. RNA polymerase and transcription
elongation factor Spt4/5 complex structure. Proceedings of the National Academy of Sciences of the
United States of America. 2011; 108(2):546–50. doi: 10.1073/pnas.1013828108 PMID: 21187417

34. Zhang GY, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA. Crystal structure of Thermus
aquaticus core RNA polymerase at 3.3 angstrom resolution. Cell. 1999; 98(6):811–24. PMID:
10499798

35. Martinez-Rucobo FW, Sainsbury S, Cheung ACM, Cramer P. Architecture of the RNA polymerase-
Spt4/5 complex and basis of universal transcription processivity. Embo J. 2011; 30(7):1302–10. doi:
10.1038/emboj.2011.64 PMID: 21386817

36. Abbondanzieri Ea, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Direct observation of base-pair
stepping by RNA polymerase. Nature. 2005; 438(7067):460–5. PMID: 16284617

37. Larson MH, Zhou J, Kaplan CD, Palangat M, Kornberg RD, Landick R, et al. Trigger loop dynamics
mediate the balance between the transcriptional fidelity and speed of RNA polymerase II. Proceedings
of the National Academy of Sciences of the United States of America. 2012; 109(17):6555–60. doi: 10.
1073/pnas.1200939109 PMID: 22493230

38. Nayak D, Voss M, Windgassen T, Mooney RA, Landick R. Cys-Pair Reporters Detect a Constrained
Trigger Loop in a Paused RNA Polymerase. Molecular Cell. 2013; 50(6):882–93. doi: 10.1016/j.molcel.
2013.05.015 PMID: 23769674

39. Mooney RA, Landick R. RNA polymerase unveiled. Cell. 1999; 98(6):687–90. PMID: 10499791

40. Mooney RA, Landick R. Building a better stop sign: understanding the signals that terminate transcrip-
tion. Nat Methods. 2013; 10(7):618–9. doi: 10.1038/nmeth.2527 PMID: 23807194

41. Weixlbaumer A, Leon K, Landick R, Darst SA. Structural Basis of Transcriptional Pausing in Bacteria.
Cell. 2013; 152(3):431–41. doi: 10.1016/j.cell.2012.12.020 PMID: 23374340

42. Palangat M, Larson MH, Hu X, Gnatt A, Block SM, Landick R. Efficient reconstitution of transcription
elongation complexes for single-molecule studies of eukaryotic RNA polymerase II. Transcription.
2012; 3(3):146–53. doi: 10.4161/trns.20269 PMID: 22771949

43. Palangat M, Grass JA, Langelier MF, Coulombe B, Landick R. The RPB2 Flap Loop of Human RNA
Polymerase II Is Dispensable for Transcription Initiation and Elongation. Mol Cell Biol. 2011; 31
(16):3312–25. doi: 10.1128/MCB.05318-11 PMID: 21670157

44. Opalka N, Brown J, LaneWJ, Twist KAF, Landick R, Asturias FJ, et al. Complete Structural Model of
Escherichia coli RNA Polymerase from a Hybrid Approach. Plos Biol. 2010; 8(9).

45. Zhang JW, Palangat M, Landick R. Role of the RNA polymerase trigger loop in catalysis and pausing.
Nature Structural & Molecular Biology. 2010; 17(1):99–U123.

NTP Entry Routes to the RNA Polymerase II

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004354 July 2, 2015 19 / 21

http://www.ncbi.nlm.nih.gov/pubmed/11805306
http://dx.doi.org/10.1074/jbc.M114.584037
http://www.ncbi.nlm.nih.gov/pubmed/24973216
http://www.ncbi.nlm.nih.gov/pubmed/12016307
http://dx.doi.org/10.1126/science.1227786
http://www.ncbi.nlm.nih.gov/pubmed/23086998
http://dx.doi.org/10.1074/jbc.M112.387712
http://www.ncbi.nlm.nih.gov/pubmed/23235152
http://www.ncbi.nlm.nih.gov/pubmed/10499797
http://dx.doi.org/10.1038/nature06530
http://www.ncbi.nlm.nih.gov/pubmed/18235446
http://dx.doi.org/10.1073/pnas.1013828108
http://www.ncbi.nlm.nih.gov/pubmed/21187417
http://www.ncbi.nlm.nih.gov/pubmed/10499798
http://dx.doi.org/10.1038/emboj.2011.64
http://www.ncbi.nlm.nih.gov/pubmed/21386817
http://www.ncbi.nlm.nih.gov/pubmed/16284617
http://dx.doi.org/10.1073/pnas.1200939109
http://dx.doi.org/10.1073/pnas.1200939109
http://www.ncbi.nlm.nih.gov/pubmed/22493230
http://dx.doi.org/10.1016/j.molcel.2013.05.015
http://dx.doi.org/10.1016/j.molcel.2013.05.015
http://www.ncbi.nlm.nih.gov/pubmed/23769674
http://www.ncbi.nlm.nih.gov/pubmed/10499791
http://dx.doi.org/10.1038/nmeth.2527
http://www.ncbi.nlm.nih.gov/pubmed/23807194
http://dx.doi.org/10.1016/j.cell.2012.12.020
http://www.ncbi.nlm.nih.gov/pubmed/23374340
http://dx.doi.org/10.4161/trns.20269
http://www.ncbi.nlm.nih.gov/pubmed/22771949
http://dx.doi.org/10.1128/MCB.05318-11
http://www.ncbi.nlm.nih.gov/pubmed/21670157


46. Landick R. Transcriptional pausing without backtracking. Proceedings of the National Academy of Sci-
ences of the United States of America. 2009; 106(22):8797–8. doi: 10.1073/pnas.0904373106 PMID:
19470457

47. Liu X, Bushnell DA, Silva DA, Huang XH, Kornberg RD. Initiation Complex Structure and Promoter
Proofreading. Science. 2011; 333(6042):633–7. doi: 10.1126/science.1206629 PMID: 21798951

48. Liu X, Bushnell DA, Wang D, Calero G, Kornberg RD. Structure of an RNA Polymerase II-TFIIB Com-
plex and the Transcription Initiation Mechanism. Science. 2010; 327(5962):206–9. doi: 10.1126/
science.1182015 PMID: 19965383

49. Liu X, Bushnell DA, Kornberg RD. RNA polymerase II transcription: Structure and mechanism. Bba-
Gene Regul Mech. 2013; 1829(1):2–8.

50. Zuo Y, Steitz Thomas A. Crystal Structures of the E. coli Transcription Initiation Complexes with a Com-
plete Bubble. Molecular Cell. (0). doi: http://dx.doi.org/10.1016/j.molcel.2015.03.010.

51. Adelman K, Yuzenkova J, La Porta A, Zenkin N, Lee J, Lis JT, et al. Molecular mechanism of transcrip-
tion inhibition by peptide antibiotic microcin J25. Molecular Cell. 2004; 14(6):753–62. PMID: 15200953

52. Kettenberger H, Armache KJ, Cramer P. Complete RNA polymerase II elongation complex structure
and its interactions with NTP and TFIIS. Molecular Cell. 2004; 16(6):955–65. PMID: 15610738

53. Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH. Antibacterial peptide microcin J25 inhibits
transcription by binding within and obstructing the RNA polymerase secondary channel. Molecular
Cell. 2004; 14(6):739–51. PMID: 15200952

54. Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. Structural basis for transcrip-
tion elongation by bacterial RNA polymerase. Nature. 2007; 448(7150):157–U3. PMID: 17581590

55. Vassylyev DG, Vassylyeva MN, Zhang JW, Palangat M, Artsimovitch I, Landick R. Structural basis for
substrate loading in bacterial RNA polymerase. Nature. 2007; 448(7150):163–U4. PMID: 17581591

56. Erie DA, Kennedy SR. Forks, pincers, and triggers: the tools for nucleotide incorporation and transloca-
tion in multi-subunit RNA polymerases. Current Opinion in Structural Biology. 2009; 19(6):708–14. doi:
10.1016/j.sbi.2009.10.008 PMID: 19913407

57. Gong XQ, Zhang CF, Feig M, Burton ZF. Dynamic error correction and regulation of downstream bub-
ble opening by human RNA polymerase II. Molecular Cell. 2005; 18(4):461–70. PMID: 15893729

58. Holmes SF, Erie DA. Downstream DNA sequence effects on transcription elongation—Allosteric bind-
ing of nucleoside triphosphates facilitates translocation via a ratchet motion. Journal of Biological
Chemistry. 2003; 278(37):35597–608. PMID: 12813036

59. Kennedy SR, Erie DA. Templated nucleoside triphosphate binding to a noncatalytic site on RNA poly-
merase regulates transcription. Proceedings of the National Academy of Sciences of the United States
of America. 2011; 108:6079–84. doi: 10.1073/pnas.1011274108 PMID: 21447716

60. Nedialkov YA, Gong XQ, Hovde SL, Yamaguchi Y, Handa H, Geiger JH, et al. NTP-driven translocation
by human RNA polymerase II. Journal of Biological Chemistry. 2003; 278(20):18303–12. PMID:
12637520

61. Xiong YL, Burton ZF. A tunable ratchet driving human RNA polymerase II translocation adjusted by
accurately templated nucleoside triphosphates loaded at downstream sites and by elongation factors.
Journal of Biological Chemistry. 2007; 282(50):36582–92. PMID: 17875640

62. Burton ZF, Feig M, Gong XQ, Zhang CF, Nedialkov YA, Xiong YL. NTP-driven translocation and regula-
tion of downstream template opening by multi-subunit RNA polymerases. Biochem Cell Biol. 2005; 83
(4):486–96. PMID: 16094452

63. Chovancova E, Pavelka A, Benes P, Strnad O, Brezovsky J, Kozlikova B, et al. CAVER 3.0: A Tool for
the Analysis of Transport Pathways in Dynamic Protein Structures. Plos Computational Biology. 2012;
8(10).

64. Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D.
2010; 66:486–501. doi: 10.1107/S0907444910007493 PMID: 20383002

65. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple amber
force fields and development of improved protein backbone parameters. Proteins-Structure Function
and Bioinformatics. 2006; 65(3):712–25.

66. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, et al. Refinenement of the
AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophys J.
2007; 92(11):3817–29. PMID: 17351000

67. Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, et al. Refinement of the Cornell
et al. Nucleic Acids Force Field Based on Reference QuantumChemical Calculations of Glycosidic Tor-
sion Profiles. J Chem Theory Comput. 2011; 7(9):2886–902. PMID: 21921995

NTP Entry Routes to the RNA Polymerase II

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004354 July 2, 2015 20 / 21

http://dx.doi.org/10.1073/pnas.0904373106
http://www.ncbi.nlm.nih.gov/pubmed/19470457
http://dx.doi.org/10.1126/science.1206629
http://www.ncbi.nlm.nih.gov/pubmed/21798951
http://dx.doi.org/10.1126/science.1182015
http://dx.doi.org/10.1126/science.1182015
http://www.ncbi.nlm.nih.gov/pubmed/19965383
http://dx.doi.org/10.1016/j.molcel.2015.03.010
http://www.ncbi.nlm.nih.gov/pubmed/15200953
http://www.ncbi.nlm.nih.gov/pubmed/15610738
http://www.ncbi.nlm.nih.gov/pubmed/15200952
http://www.ncbi.nlm.nih.gov/pubmed/17581590
http://www.ncbi.nlm.nih.gov/pubmed/17581591
http://dx.doi.org/10.1016/j.sbi.2009.10.008
http://www.ncbi.nlm.nih.gov/pubmed/19913407
http://www.ncbi.nlm.nih.gov/pubmed/15893729
http://www.ncbi.nlm.nih.gov/pubmed/12813036
http://dx.doi.org/10.1073/pnas.1011274108
http://www.ncbi.nlm.nih.gov/pubmed/21447716
http://www.ncbi.nlm.nih.gov/pubmed/12637520
http://www.ncbi.nlm.nih.gov/pubmed/17875640
http://www.ncbi.nlm.nih.gov/pubmed/16094452
http://dx.doi.org/10.1107/S0907444910007493
http://www.ncbi.nlm.nih.gov/pubmed/20383002
http://www.ncbi.nlm.nih.gov/pubmed/17351000
http://www.ncbi.nlm.nih.gov/pubmed/21921995


68. Besseova I, Banas P, Kuhrova P, Kosinova P, Otyepka M, Sponer J. Simulations of A-RNA Duplexes.
The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J Phys Chem B.
2012; 116(33):9899–916. doi: 10.1021/jp3014817 PMID: 22809319

69. Krepl M, Zgarbova M, Stadlbauer P, Otyepka M, Banas P, Koca J, et al. Reference Simulations of Non-
canonical Nucleic Acids with Different chi Variants of the AMBER Force Field: Quadruplex DNA, Quad-
ruplex RNA, and Z-DNA. J Chem Theory Comput. 2012; 8(7):2506–20. PMID: 23197943

70. Zgarbova M, Luque FJ, Sponer J, Cheatham TE, Otyepka M, Jurecka P. Toward Improved Description
of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J Chem Theory Com-
put. 2013; 9(5):2339–54. PMID: 24058302

71. Yildirim I, Kennedy SD, Stern HA, Hart JM, Kierzek R, Turner DH. Revision of AMBER Torsional
Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base
Pairs. J Chem Theory Comput. 2012; 8(1):172–81. PMID: 22249447

72. JorgensenWL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of Simple Potential
Functions for Simulating Liquid Water. J Chem Phys. 1983; 79(2):926–35.

73. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald
Method. J Chem Phys. 1995; 103(19):8577–93.

74. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: A linear constraint solver for molecular sim-
ulations. J Comput Chem. 1997; 18(12):1463–72.

75. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput
and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013; 29(7):845–54. doi:
10.1093/bioinformatics/btt055 PMID: 23407358

76. Bowman GR, Huang XH, Pande VS. Using generalized ensemble simulations and Markov state mod-
els to identify conformational states. Methods. 2009; 49(2):197–201. doi: 10.1016/j.ymeth.2009.04.013
PMID: 19410002

77. Meagher KL, Redman LT, Carlson HA. Development of polyphosphate parameters for use with the
AMBER force field. J Comput Chem. 2003; 24(9):1016–25. PMID: 12759902

78. Bayly CI, Cieplak P, Cornell WD, Kollman PA. AWell-Behaved Electrostatic Potential Based Method
Using Charge Restraints for Deriving Atomic Charges—the Resp Model. J Phys Chem-Us. 1993; 97
(40):10269–80.

79. Gaussion03. G03. In: Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,
et al., editors. Wallingford CT: Gaussian, Inc.; 2004.

NTP Entry Routes to the RNA Polymerase II

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004354 July 2, 2015 21 / 21

http://dx.doi.org/10.1021/jp3014817
http://www.ncbi.nlm.nih.gov/pubmed/22809319
http://www.ncbi.nlm.nih.gov/pubmed/23197943
http://www.ncbi.nlm.nih.gov/pubmed/24058302
http://www.ncbi.nlm.nih.gov/pubmed/22249447
http://dx.doi.org/10.1093/bioinformatics/btt055
http://www.ncbi.nlm.nih.gov/pubmed/23407358
http://dx.doi.org/10.1016/j.ymeth.2009.04.013
http://www.ncbi.nlm.nih.gov/pubmed/19410002
http://www.ncbi.nlm.nih.gov/pubmed/12759902

