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The third trimester of pregnancy represents a sensitive phase for infant brain plasticity

when a series of fast-developing cellular events (synaptogenesis, neuronal migration,

and myelination) regulates the development of neural circuits. Throughout this dynamic

period of growth and development, the human brain is susceptible to stress. Preterm

infants are born with an immature brain and are, while admitted to the neonatal

intensive care unit, precociously exposed to stressful procedures. Postnatal stress

may contribute to altered programming of the brain, including key systems such as

the hypothalamic–pituitary–adrenal axis and the autonomic nervous system. These

neurobiological systems are promising markers for the etiology of several affective

and social psychopathologies. As preterm birth interferes with early development of

stress-regulatory systems, early interventions might strengthen resilience factors and

might help reduce the detrimental effects of chronic stress exposure. Here we will review

the impact of stress following premature birth on the programming of neurobiological

systems and discuss possible stress-related neural circuits and pathways involved in

resilience and vulnerability. Finally, we discuss opportunities for early intervention and

future studies.

Keywords: prematurity, stress, hypothalamus-pituitary-adrenal axis, autonomic nervous system, large-scale brain

networks, epigenetics, resilience

INTRODUCTION

The third trimester of pregnancy represents a sensitive phase for infant brain plasticity, as a series
of fast-developing cellular events, such as synaptogenesis, neuronal migration, and myelination
regulate the development of neural circuits (1). Throughout this period of growth and development,
the human brain is highly susceptible to stress exposure. Very preterm infants are born with a
neurobiological immature system and are precociously exposed to stressful procedures during
weeks to months in the Neonatal Intensive Care Unit (NICU). The excessive and prolonged
exposure to stress during NICU admission can exceed the infant’s natural regulatory capacity,
threatening the allostatic balance of the infant, and might permanently alter neuroendocrine,
autonomic, cardiovascular, and neural responses (2), leading to persisting mental morbidity
throughout the lifespan (3, 4).

Along with increased survival in extremely preterm born infants (EP; gestational age <28
weeks) due to continued progress in perinatal care (5, 6), the rates of dysfunction in the area of
mental health and behavior have remained unchanged or even worsened during the last decades
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(7–10). With an increased risk for a wide spectrum of psychiatric
disorders, the preterm phenotype is primarily represented
by deficits in attention, executive functioning, and emotional
symptoms. Importantly, whilst preterm birth is associated with
a higher prevalence of psychiatric disorders, a large proportion of
children remain relatively unaffected [e.g., (11)].

Here we will review the impact of stress following prematurity
on the programming of neurobiological systems. We begin by
giving a short overview of the different types of stressors observed
in postnatal stress research, followed by the typical development
of autonomic, endocrine, and top-down regulatory systems in
the fetal period. We then turn to evidence that postnatal stress
following prematurity has short- and long-term effects on brain
development. Lastly, we discuss possible mechanisms by which
postnatal adversity increases the risk for social and affective
problems following prematurity. Throughout this review, we
call attention to critical gaps and unanswered questions and
make suggestions for future research elucidating the mechanisms
linking postnatal stress, neurobiology, and future social and
affective development.Where appropriate, we focus on providing
evidence from human postnatal studies; however, we rely on
prenatal and/or animal studies where investigations of critical
questions in preterm individuals are lacking.

SOURCES OF STRESS AFTER
PREMATURE BIRTH

In the current review, we define stressors as any “real or
interpreted threat to the physiological or psychological integrity
of an individual that results in physiological and/or behavioral
responses” [(4), p. 508]. In full recognition of the fact that there are
numerous categorizations and types of stressors, including the
administration of synthetic corticosteroids (e.g., dexamethasone)
and its detrimental impact on postnatal development [e.g.,
(12)], for the purpose of this review we divided postnatal
stressors into physical, environmental, and maternal stimuli
or events. It is important to note that the effects of neonatal
stress might be confounded by prenatal factors causative of
preterm birth, such as vascular disease and infections (13), and
hence both mechanisms may coexist. Also, the abrupt loss of
intrauterine neurotrophic support following preterm birth could
have deleterious effects on developmental programming, with
reported damage to oligodendrocytes in the developing nervous
system [for a review see (14)]. These prenatal factors are both
highly relevant but are beyond the scope of the current review.

Physical Stress
Physical stress of repetitive procedural pain occurs routinely
in extremely preterm neonates who are admitted to the
intensive care unit. Preterm infants and neonates show an
increased physiological and behavioral sensitivity toward painful
procedures, as their pain transmission and modulation are
still underdeveloped [for a review see (15)]. Due to a
disbalance between afferent excitatory neurotransmitters and the
descending inhibitory neurotransmitters, this hypersensitivity
to pain is exacerbated in preterm infants (16, 17). There are

currently two main categorizations of pain-related stressors: (1)
acute procedural, (2) and acute prolonged (18). Acute procedural
stress is triggered by a specific noxious stimulus (19), such as
a heel stick, whereas acute prolonged stress represents a longer
time duration with a distinguishable beginning and expected
endpoint, such as mechanical ventilation or surgery (20).

Although we currently only defined physical neonatal stress
as painful procedures and interventions; medical complications,
such as hypoxia, infections, and inflammation, could also be
considered as extremely stressful for preterm-born individuals.
Hence, the current description of physical stress is not exhaustive.

Environmental Postnatal Stress
The effects of the nursery environment on the preterm
infant, such as sound levels and nursing interventions, have
become an area of concern for research. Studies showed
that noise levels often exceed the American Academy of
Pediatrics-recommendation of 40–45-dB (21), with NICU
sounds ranging from 50 to 90 dB (22). Continuous loud
noise has deleterious physiological effects on preterm infants
and induces stress behaviors. More specifically, excess auditory
stimulations have been associated with decreased oxygen
saturation, increased heart rate and blood pressure, and
alterations in sleep-wake state [for a review see (23)]. To reduce
these unfavorable environmental factors, recent effort has been
put into investigating the effects of single-family rooms vs. open
bay units [for a review see (24) and section Opportunities for
Early Intervention].

Physicians and nurses have rated routine caregiving events in
the NICU as stressful to preterm infants (25). Indeed, common
nursing interventions, such as diaper changes, noise, and light,
can elicit similar stress-like responses as with invasive procedures
[e.g., salivary cortisol levels, crying, heart rate (26, 27)]. However,
to date, the impact of caregiving-related stress on the developing
brain is not thoroughly researched.

Maternal Care
Preterm infants generally experience atypical maternal care while
admitted to the NICU, whilst maternal behavior toward their
preterm infant plays a crucial role in the early regulation of
the infant’s stress responses (28). Both physical and emotional
closeness might become obstructed, subsequently increasing
feelings of separation and negatively impacting mother-infant
attachment (29, 30). Interestingly, previous studies found that
both mother’s mental well-being and the physical conditions of
the infant contribute independently to the degree of maternal
attachment (31). More specifically, preterm infants may be
regarded as less “rewarding social partners,” as their neurological
immaturity negatively impacts their social responsiveness [e.g.,
less time in alert state (32–34)]. In other words, preterm infants
might be less responsive to parental cues and show more
negative expressions, which might negatively impact the quality
of mother-infant interaction [for a review see (35)]. In turn, due
to the circumstances, mothers of preterm infants tend to spend
less time holding, talking to, and looking at their premature
infant compared to mothers of full terms (36).

Frontiers in Psychiatry | www.frontiersin.org 2 January 2021 | Volume 11 | Article 531571

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Lammertink et al. Preterm Birth and Developmental Programming

FIGURE 1 | Fetal development of stress-response and stress-regulatory brain networks for illustration purposes. Autonomic Nervous System (orange),

Hypothalamic-Pituitary-Adrenal axis (blue), Salience Network (red), Executive Control Network (green). PNS, parasympathetic nervous system, SNS, sympathetic

nervous system, HPT, hypothalamus, PG, pituitary gland; AC, adrenal gland; HP, hippocampus; AMG, amygdala; TH, thalamus; IC, insular cortex; FL, frontal lobe; PL,

parietal lobe; SFS, superior frontal sulcus. Timing based on literature reviewed under section Pre- and Post-natal Brain Development of Stress Systems and Brain

Networks. Default Mode Network (gray).

PRE- AND POST-NATAL BRAIN
DEVELOPMENT OF STRESS SYSTEMS
AND BRAIN NETWORKS

Fetal brain development is characterized by large maturational
changes in volume, as well as changes in microstructural
and functional connectivity, which has broad implications
for future development (37). These maturational changes are
regulated by complex molecular and cellular processes, such
as neurogenesis and neuronal migration, synaptogenesis, and
axonal growth [for an overview of the spatial progression,
the reader is referred to (38)]. The endocrine and autonomic
stress-systems are fundamentally shaped during the fetal period.
Here we will give a short overview of the spatiotemporal
changes involved in the development of the autonomic nervous
system (ANS), hypothalamic-pituitary-adrenal axis (HPA-axis),
and stress-related brain networks, and their role in the fetal stress
response (see Figure 1).

Fetal Development of the Autonomic
Nervous System (ANS)
The most immediate response to a stressor is modulated by the
autonomic nervous system (ANS)—through its parasympathetic
and sympathetic functions—which plays an important role

in maintaining physiological homeostasis. The sympathetic
discharge, during a “fight-or-flight” response, is accompanied
by stimulation of the sympatho-adrenomedullary system, which
is pivotal for rapid changes in physiological state, such as
increased heart rate and blood pressure by catecholamine–
induced excitation of the cardiovascular system (39, 40), whereas
parasympathetic activation modulates the sympathetic system
and restores the body to a restful state.

During the third trimester, the fetal ANS is changing
rapidly (41). The maturational changes in the ANS are
pivotal for the successful adaptation of the newborn to
extrauterine life. The vagal nerve plays an important role
in the parasympathetic regulation of autonomic functioning
and subsequent socio-emotional function (42). There are two
major components of the parasympathetic nervous system
(PNS), namely, the unmyelinated vagal fibers [dorsal nucleus
of the vagus (DMNX)] and the myelinated vagal system
(nucleus ambiguus). At 9 weeks of gestation, the DMNX
is distinguishable from the caudal brainstem, with the first
differentiation into two subnuclei (i.e., dorsomedial and
ventral) at 13 weeks. At 15–21 weeks, the subnuclei of the
DMNX become more clearly visible, and the cytoarchitectonic
differentiation of the DMNX is largely completed by 25
weeks (43, 44). Importantly, the phylogenetically primitive
unmyelinated vagal nerve does not have many functions
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prior to birth, as it facilitates immobilization to deal with
environmental challenges.

The nucleus ambiguus system develops later in fetal
development, as it heavily depends on myelination. The nucleus
ambiguus system is the primary vagal inhibitory pathway,
facilitating an active vagal brake, modulating cardiac output
by regulating inhibitory vagal control (45). Neurons in the
nucleus ambiguus first appear at 8–9 weeks of gestation, with
differentiation of neuronal subgroups appearing at 10 weeks of
gestation (46). The number of myelinated vagus fibers increases
rapidly from 24 weeks of gestation until the first year postpartum,
indicating maturation of the parasympathetic branch of the ANS
(47, 48). Advanced gestational age is accompanied by increased
fetal heart rate variability (HRV) (49); these findings are in line
with a rapid maturation of cardiac neuroregulatory activity and
especially increasing parasympathetic tone in the last prenatal
period (>32 weeks of gestation) (50).

ANS functioning is not solely mediated by the (un)myelinated
vagus nerve, autonomic state is also regulated by sympathetic
functioning. However, the maturation of the sympathoneural
branch is less well-described. It is theorized that the sympathetic
system develops before the NA, but after the DMNX (47). In line
with this, research does indicate a steady maturational increase
with growing fetal age from the late second into the early third
trimester [∼16–28 weeks of gestation (51, 52)].

Throughout most of gestation, the medulla (i.e., inner layer of
adrenal gland) is not recognized as a distinct structure. At a later
stage of development, after the first postnatal week, the adrenal
medulla starts to form. Importantly, it takes 12–18 months for
the medulla to become adult-like (53).

The fetal development of autonomic control is complex and
difficult to disentangle, and important maturational milestones
are reached during the transitional period from the second into
the third trimester (see Figure 1). It is likely that exposure
or experiences of stress during those important milestones
have a potent effect on ANS development and function, which
emphasizes the possible detrimental effects of preterm birth on
the programming of ANS and subsequent stress-regulation [see
paragraph on autonomic nervous system (ANS)].

Fetal Development of the
Hypothalamic-Pituitary-Adrenal Axis
(HPA-Axis)
Activation of the Hypothalamic-Pituitary-Adrenal axis (HPA-
axis) results in the secretion of glucocorticoids, i.e., cortisol in
humans, from the adrenal cortex (39), which acts on several
organ systems to mobilize energy reserves. The emerging fetal
HPA-axis undergoes large shifts in maturation and organization
during the prenatal period. The fetal hypothalamus could be
longitudinally subdivided into three zones, namely the midline,
core, and lateral zones (54, 55). Early gestation (9–14 weeks
of gestation) is distinguished by differentiation of the lateral
hypothalamic zone, leading to the formation of the lateral
hypothalamic area (LHA) and the perifornical hypothalamus.
The hypothalamic core is differentiated around the second
trimester, 18–33 weeks of gestation. The late second until third

trimester (24–33 weeks of gestation) is characterized by advances
in structural maturation of the periventricular (or midline)
zone, followed by differentiation in (1) the suprachiasmatic [i.e.,
circadian clock under the strong influence of light/dark input
(56)], (2) arcuate [i.e., sensor to modulate cortisol release (57)],
and (3) paraventricular nuclei [i.e., promotes corticotrophin
releasing hormone (CRH) and vasopressin (AVP) (58)]. These
maturational changes extend into the third trimester. Around the
postnatal period (immediate after birth), the major hypothalamic
structures are clearly differentiated and resemble an adult-like
form (54, 55).

The fetal pituitary gland seems to mature before the adrenal
cortex. More specifically, the kidney-shaped anterior lobe of the
pituitary gland, which is connected to the hypothalamus, starts
to form from Rathke’s pouch by 4–5 weeks of gestation. The
first 12 weeks of gestation are characterized by major cellular
differentiation (59), and by 21 weeks a further distinction can
be made between the long and thin stalk region of the pituitary
and the posterior lobe (60). Although the pituitary gland matures
until the third postnatal month, after which it appears to be
adult-like (61), fetal adrenocorticotrophin hormone (ACTH) is
detectable by 8–10 weeks of gestation, peaking between the first
and second trimester, after which it declines late in gestation (62).

Starting at the 4th weeks of gestation, the adrenal cortex (i.e.,
outer layer of adrenal gland) begins to form, and the morphology
remains relatively stable after 10–12 weeks of gestation. Research
suggests that the fetal adrenal cortex is unable to synthesize
cortisol between 16 and 22 weeks of gestation, as the 3ß -
hydroxysteroid dehydrogenase (3ß -HSD; converts pregnenolone
to progesterone) enzyme is not expressed before the start of
the third trimester (63). Hence, these findings indicate that the
fetus is able to adapt to environmental changes and to maintain
homeostasis, through glucocorticoid secretion, after 23 weeks
of gestation. However, there is not much consensus on when
exactly the fetal adrenal cortex is able to synthesize cortisol. More
specifically, at 30 weeks of gestation, the fetal adrenal cortex
resembles the elementary form of the adult adrenal cortex [(64),
see (65), for review], and some studies suggest that the fetal
adrenal cortex is unable to produce cortisol de novo until then
(66), but instead uses the abundant placental progesterone. This
would indicate that in absence of placental progesterone, the fetus
might be unable to produce cortisol before 30 weeks of gestation.

The developmental trajectories of the HPA-axis that
are established during the prenatal period could have
lifelong consequences for future development (see Figure 1).
Preterm-born infants are neuroendocrinologically immature,
and their NICU stay associated with (multiple) stressful
events might disturb the central regulation of HPA-axis.
Therefore, prematurity might be characterized by the inability
to maintain homeostasis in the face of acute stress [see
Hypothalamic-Pituitary-Adrenal axis (HPA-axis)].

Fetal Development of the Stress-Related
Neural Networks
There are three core neural networks that are implicated in the
central response of stress, namely the (1) default mode network

Frontiers in Psychiatry | www.frontiersin.org 4 January 2021 | Volume 11 | Article 531571

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Lammertink et al. Preterm Birth and Developmental Programming

[DMN; which includes the posterior cingulate cortex (PCC),
hippocampus, and parahippocampal cortex, amongst others
(67)], the (2) salience network [SN; which includes the dorsal
anterior cingulate cortex (ACC), frontoinsular cortex, amygdala,
and several other (sub)cortical structures (68)], and (3) executive
control network [ECN; which includes dorsolateral prefrontal
and parietal regions (69)]. The ability to dynamically shift
neural resources within these large-scale networks is theorized
to facilitate adaptive responses to stress, and alterations in
these networks possibly underlie phenotypic abnormalities (70).
Interestingly, nodes within these networks start to develop in the
fetal period, showing large morphological and functional changes
throughout gestation. Below we will give a short overview of the
typical maturational changes in the embryonic and fetal period
(see Figure 1).

Default Mode Network
The hippocampus, a core node of the DMN, plays an important
role in the regulation of the stress response due to its high
expression of glucocorticoids and mineralocorticoids, thereby
exerting negative feedback on the HPA-axis (71). As early as 9
weeks post-conception, four distinct hippocampal layers can be
distinguished: intermediate zone, ventricular zone, hippocampal
plate, and marginal zone (72). An unfolded hippocampus, along
the medial surface of the temporal lobe, is present at 13 weeks
of gestation. Throughout the following weeks, infolding of
the hippocampus into the temporal lobe start as the dentate
gyrus and cornu ammonis develop into an interlocking C
shape. By 18–21 weeks of gestation, the hippocampus shows
morphological maturity similar to that of the adult brain (73).
The absolute volumes increase linearly from 14 to 22 weeks of
gestation, with, relative to other brain regions, a faster growth
from 14 to 17 weeks, ]but a slower growth from 18 until
22 weeks (73, 74). The dentate gyrus develops latest, showing
a mature cytoarchitercute after 34 weeks of gestation (72).
Compared to other brain structures, the hippocampus seems
to be one of the earliest developing brain regions in humans.
Importantly, the morphological development of the PCC and
parahippcampal gyrus, both important components of the DMN,
are not well-documented.

Important connections of the adult DMN are already present
in the fetal period. For instance, some short-range pathways
between the hippocampus and cortico-cortical regions, i.e.,
entorhinal cortex, are established as early as 19 weeks of gestation
(75). Functional studies reported that from 19 weeks onwards,
connectivity of the PCC became increasingly negative, which
according to the authors, might serve a foundational role in
the establishment of large-scale neural networks (76). Similarly,
older (>35 weeks of gestation) but not younger fetuses showed
a more synchronized positive functional connectivity between
the PCC and medial PFC, and negative connectivity to the
lateral prefrontal and parietal regions (77). Although the DMN
becomes more synchronized across the first 2 years of life and
achieve adult-like structures at the end of the first year, including
increased connectivity between the PCC and hippocampus, the
network is still rather immature in neonates (78–80). In sum,
much of the foundation of the DMN is laid down in the

early fetal and neonatal period. With the unfolding of several
neuromaturational processes, disturbances in normative brain
development, including an adverse extra-uterine environment,
has likely far-reaching consequences. More studies are needed to
elucidate the structural and functional milestones of the DMN
and the impact of neonatal stress.

Salience Network
The amygdala, a core node of the SN, is a key component of
the limbic system and is commonly implicated in emotional and
behavioral regulation. This structure shows large morphological
changes during fetal development. Differentiation of the
amygdala nuclei continuous from the embryonic through the
fetal period and neurogenesis is completed by birth (7.5–34 weeks
gestation). More specifically, at 12 weeks of gestation migration
of the neurons to the lateral amygdaloid nucleus are visible (81),
and all major nuclei are formed by 15 weeks. The amygdala
appears to be fully mature and functional at birth (81–83), and its
connections are laid down early in gestation. Despite the absence
of myelin, at a very early stage (i.e., 13–22 weeks of gestation)
the amygdala establishes the first connections to several areas
of the cortex (84, 85) with the appearance of association white
matter fibers, such as the uncinate fasciculus [i.e., a major white
matter fiber tract connecting the anterior temporal lobe and the
amygdala to the lateral orbitofrontal cortex to the inferior frontal
cortex (86)], appearing at around 15 weeks of gestation.

Although structural amygdala connectivity appears early in
fetal development, these connections are predominantly short-
range, with long-range tracts becoming more evident by term
(87). Similarly, the functional connections of the amygdala
stabilize early in fetal development. Late second and early third
trimester (21st−26th weeks of gestation) are dominated by
occipital and temporal connections, with a substantial increase
in functional connectivity between the frontal and temporal lobes
later in gestation [29–37 weeks of gestation (88)].

The thalamus is another core node of the salience network,
which is a region that is strongly connected to the amygdala and
involved in the regulation of stress, amongst others (89). From
8th week on, thalamic neurons show intensive morphological
changes, with projection from the spinal cord to the thalamus.
From 10 to 14 weeks of gestation, neuronal differentiation into
several thalamic nuclei begins (90). Neurogenesis in the posterior
medial thalamus extends into the late first and early second
trimesters of pregnancy. By 26 weeks’ gestation, the characteristic
layers of the thalamus are visible, with obvious similarities
to the adult brain. Thalamocortical pathways to the subplate
neurons are evident at 17 weeks of gestation, but the thalamic
projections to the cortical plate continue to develop later during
the fetal period (24–32 weeks) (84, 85, 87, 91), reaching adult-like
connections at 34 weeks of gestation.

It is well-known that subcortical structures demonstrate
earlier maturation than the cerebral cortex. However, the insular
cortex, also described as the “center of salience processing” (92), is
among the first macroscopical structures that can be identified in
the human fetal cortical development. Afif et al. (93) described
the morphological stages of insular sulci and gyri maturation,
with the first sulcus appearing at 13–17 weeks of gestation.
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Around 27–28 weeks of gestation, all insular sulci and gyri are
in place and its structure is similar to its adult-like form. More
specifically, by the end of the third trimester, the insula can
be divided into two parts, the anterior insula (i.e., comprises
three short gyri), and the posterior insula (i.e., comprises two
long gyri). Radial migration pathways, between the ventricular
zone and superior temporal region, were observed at 15 weeks
of gestation, continuing to grow in number and thickness until
20 weeks of gestation (94). Further, by 26 weeks of gestation,
migration pathways are regressing, and by 31 weeks of gestation
the insular neuronal migration is fully completed. Importantly,
similar connectivity is observed between 31 and 40 weeks of
gestation, and it seems that several pathways observed in the fetal
period (e.g., insular-parietal and insular-temporal pathways) are
similar to those in adults.

The fact that several core nodes of the salience network
mature before birth emphasizes the importance of early fetal
development for functioning of the salience network. To
date, there are only a few studies directly investigating early
development of structural and functional connectivity within the
salience network. One study did report synchronous activity of
the anterior insula with anterior cingulate cortex in neonates,
although quite primitive (95). Interestingly, however, while the
neonatal brain consisted of large locally connected clusters, 1-
and 2-year olds demonstrated more sophisticated distributed
topology. Further, enhanced connectivity between the anterior
insular and long-range prefrontal cortices and anterior cingulate
cortex seemed adult-like in 1-year olds (with only a few changes
in 2-year olds) (95). In line with this, other studies do suggest
that connection strength increase with age, but only moderately,
leading to still premature network topologies at the end of the
first year (80) and second-year (96). Interestingly, recent studies
were able to identify so-called “hubs,” which are highly connected
regions, in the fetal period. Both the temporal lobe (97) and the
insular cortex (76, 98) were found to be already highly connected
before birth. In sum, key nodes of the salience network seem,
on a morphological level, adult-like at birth, but the topological
features of fetal brain network remain underdeveloped (see
Figure 1). Changes in typical fetal development, such as preterm
birth, might precociously impact the architectural characteristics
of the immature SN.

Executive Control Network
Brain regions that serve a high-order function, such as the
dorsomedial prefrontal cortex (DMPFC) and dorsal posterior
parietal cortex (DPPC), which are all core nodes of the ECN,
mature latest. The corticogenic events occur at different rates in
different regions, and some cortical areas start to differentiate
earlier in gestation than others. For instance, studies consistency
showed a maturational lag in the frontal cortical regions, as the
neural migration [i.e., as indicated by peak fractional anisotropy
[26–30 weeks of gestation]] of the frontal lobe is preceded
by the parietal lobe (21–25 weeks gestation) [e.g., (99, 100)].
Some studies suggest that the superior longitudinal fasciculus
(SLF), a white matter tract connecting the superior parietal and
superior frontal lobes and extending to the dorsal premotor and
dorsolateral prefrontal regions, is completely absent in the fetal

brain (84, 101). However, a recent study was able to reliably
visualize the SLF at 26 weeks, suggesting that the SLF may start
to develop in the second trimester, and continue to develop
throughout gestation (102). In line with this, short- and long-
range corticocortical association pathways could be observed at
22 weeks of gestation, and become more prominent throughout
gestation (103).

Short-range cortico-cortical tracts emerge prior to gyrification
in regions where sulci will later develop. The cortical plate starts
to form in the human telencephalon around 7–10 weeks of
gestation (104). The timing of the different types of sulci occurs
hierarchically. Primary sulci start to appear as early as 10 weeks of
gestation and continue to develop until the 28th week of gestation
(105, 106). This is followed by the development of secondary and
tertiary sulci. All the primary and most of the secondary sulci are
believed to be present by 34 weeks of gestation (106, 107), whilst
tertiary sulci appear around term [36–41 weeks of gestation
(108)]. A core node of the ECN, the superior frontal sulcus,
emerges between 22 and 24 weeks of gestation (109–111), and
become clearly visible from∼27 weeks onwards (105, 106, 112).

Although the ECN is observable in fetuses and neonates (see
Figure 1), it is still in a premature form at the end of the first
postnatal year (79). However, the fetal period constitutes a time
of vast development, and a study on functional connectivity
found large differences in the ECN between younger and older
fetuses. More specifically, they reported that older fetuses (i.e., 34
weeks of gestation) showed increased connectivity between the
prefrontal areas and the parietal cortex, compared to younger
fetuses (i.e., ∼27 weeks of gestation) (76). In sum, using
structural and functional connectivity and graph-theoretical
analyses, studies were able to provide preliminary evidence for
the emerging ECN in fetuses, highlighting the importance of
the establishment of ECN nodes to the effect of functional and
structural injuries typically sustained during premature birth.
Importantly, the large variability in spatiotemporal development
of nodes seem to indicate a developmental sequence starting from
the DMN, to the SN, and finally the ECN, as the (sub)cortical
nodes implicated in the DMN and SN appear to be maturing
during the beginning of the first trimester, as opposed to the
relatively delayed maturation of cortical nodes implicated in
the ECN.

NEONATAL STRESS AND BRAIN
DEVELOPMENT

More than 50 years ago, researchers expressed their concerns
regarding the possible detrimental effects of neonatal stress
on physiology and behavior, stating that early experience in
animals, such as handling or electric shock, lead to changes
in corticosterone response and emotionality [e.g., (113–115)].
Rodent studies gave rise to a large body of experimental
studies reflecting the importance of early neonatal stress in
regulating brain development (116, 117). The studies that have
been conducted thus far found quite consistently that, similar
to animal studies [e.g., (118)], exposure to neonatal stress is
associated with alterations in several structures. For instance,
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using the Neonatal Infant Stressor Scale [NISS; cumulative
stress score including physical and environmental stressors
(25)], researchers found an association between high stress
and decreased frontal and parietal brain volumes, as well as
alterations in white matter microstructure in the temporal
lobes in preterm born infants at term equivalent age (119).
Similarly, the number of invasive procedures was associated with
reduced white matter and subcortical gray matter maturation
in preterm neonates. Moreover, greater invasive procedures
were independently associated with reduced total brain volume,
white matter diffusivity, and maturation of subcortical gray
matter (e.g., thalamus, basal ganglia) (49, 120). Interestingly,
Brummelte and colleagues could distinguish a period of increased
vulnerability, namely early procedural pain [i.e., before scan 1
(median 32.1 weeks of gestation)] had a stronger association
with white matter maturation compared to later stress (around
term equivalent age), whereas subcortical gray matter showed
sustained sensitivity toward neonatal stress (120). These results
are in line with findings from another study, where they
reported that functional and structural connectivity patterns were
affected following exposure to early (i.e., from birth to scan
1), but not late neonatal stress [i.e., scan 1 to scan 2 [term-
equivalent age]]. More specifically, early neonatal stress (e.g.,
heel lances, central line insertion) was associated with weaker
structural (121) and functional (122) connectivity between the
right insula and limbic system, and in the thalamocortical
pathways. However, some inconsistencies remain, as researchers
also reported no association between neonatal stress and
hippocampal growth (123). With some ambiguity, these studies
converge to reveal a developmental period of increased sensitivity
to stress, subsequently affecting stress-regulatory networks.
However, there have been no further studies to confirm the
possible detrimental effects of postnatal stress on large-scale brain
networks, and the possible increased risk of future social and
affective functional impairment.

The adverse effects associated with exposure to postnatal
physical stress appear to extend beyond the relationships
observed in the neonatal period. For instance, a higher number
of invasive procedures during NICU admission was related
to abnormalities in white matter microstructure (e.g., superior
white matter), as reflected by an increase in radial diffusivity
at age 7 (124). Procedural pain was also observed to be
related to abnormal maturation of brain volumes at school
age, including the hippocampus, amygdala, thalamus, striatum,
globus pallidus, and cerebellum (125, 126), and lower cortical
thickness (127). Studies using magnetoencephalagraphy (MEG)
found that differences in spontaneous gamma- to alpha-band
oscillations in preterm-born school-age children were predicted
by the number of invasive neonatal procedures, which, as
suggested by the authors, might be attributed to alterations in
thalamorcortical connectivity (128, 129). Hence, the abnormal
maturation observed in the neonatal period seems to persist into
childhood, affecting brain regions implicated in the regulatory
capacity to future stressors (see Table 1 for an overview).

These findings are supported by evidence from fetal
stress models demonstrating that full-term and preterm
neonates exposed to prenatal stress showed alterations in

brain development. More specifically, prenatal stress (e.g.,
maternal anxiety/depression) was associated with reductions
in region-specific gray matter volume [i.e., PFC, temporal
lobe (140)], alterations in white matter microstructure (e.g.,
amygdala, limbic system) (141–143), and reduced functional
and structural connectivity between the amygdala, limbic, and
frontal regions in infants (144–146). The effects of prenatal stress
on brain development have been extensively reviewed elsewhere
[see (147–149)].

Although changes in previously described brain regions have
been consistently implicated in a wide range of behavioral
problems in preterm born individuals [e.g., (150–155)], it
remains elusive whether alterations in brain development might
modulate the relationship between neonatal stress and future
affective and social functioning.

MECHANISMS UNDERLYING LATER LIFE
RESILIENCE AND VULNERABILITY
FOLLOWING PREMATURITY

Autonomic Nervous System (ANS)
Ex utero third trimester development often leads to alterations
in normal autonomic development in extremely preterm infants,
which is essential for respiratory and cardiovascular homeostasis
(156). General maturation of the ANS is often assessed
using indices of heart rate, blood pressure, and respiratory
rate. Studies showed an impaired autonomic maturation in
preterm born neonates, as reflected by dampened sympathetic
(e.g., low-frequency HRV) and parasympathetic (e.g., high-
frequency HRV) tone (41, 50, 157, 158). Thus, far only
one study investigated the sympatho-adrenomedullary system
(SAM), with results indicating elevated sympathoadrenal tone
(as indicated by increased levels of catecholamines) in preterm-
born children (159). This increased release of catecholamines
could be attributed to the reduced parasympathetic inhibition, as
mentioned previously.

The autonomic development is altered during the neonatal
period. Accordingly, an increasing body of evidence suggests
that ANS dysfunction following prematurity persists into infancy
(160, 161), childhood [(162, 163); but not all (164)], adolescence
(165), and adulthood (166). This prolonged abnormalmaturation
of ANS functioning could be attributed to the amount of neonatal
stress. More specifically, research showed that greater exposure
to neonatal stress was related to dampening of ANS reactivity
(130, 131).

Changes in central autonomic regulation in typically
developing individuals limit the capacity to adequately respond
to environmental changes, and have previously been implicated
in psychiatric disorders (167–169). Consistent with this,
ineffective vagal modulation has been implicated in dysfunctional
emotion regulation in toddlers [e.g., (170)], children [e.g., (171)],
and adults [e.g., (172)]. Interestingly, similar findings were
observed in preterm infants, namely preterm born infants’
degree of respiratory sinus arrhythmia (RSA) was positively
associated with their social competence, whereas lower (mean)
heart rate was associated with less behavioral problems and
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TABLE 1 | Neonatal stress and neurobiological systems.

References Population Time of

assessment

Sample

size (N)

Stress measure Outcome

Brain development

Brummelte et al. (120) Infants (born 24–32 weeks) 32 and 40

weeks

86 Number of invasive procedures:

early (birth-scan 1) and late (scan

1-scan 2).

Greater invasive procedures: ↓ white

matter FA, ↓ subcortical gray matter

NAA/choline. Effects dependent on

timing stress.

Chau et al. (125) Children (born <32 weeks) 8 years of age 57 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures:

↓amygdala volume, ↓ thalamus

volume. Stress × COMT ↓

hippocampal subregional volume

Doesburg et al. (128) Children [born extremely preterm

[24–28 weeks], very preterm

[28–32 weeks], and full-term]

8 years of age 54 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures: atypical

spontaneous neuromagnetic activity

(only in extremely preterm born

children)

Duerden et al. (123) Infants [born very preterm [<33

weeks]]

32 and 40

weeks

138 Number of invasive procedures

during the stay in the NICU:

categorized into two groups

Greater invasive procedures: no

association with hippocampal growth

Duerden et al. (121) Infants [born extremely preterm

[24–28 weeks] or very preterm

[29–32 weeks]]

32 and 40

weeks

155 Number of invasive procedures:

early (birth-scan 1) and late (scan

1-scan 2)

Greater invasive procedures: ↓ lateral

thalamus volume, ↓ metabolic growth

(NAA/Cho), ↓ FA corpus callosum,

posterior white matter, cingulum, and

fornix. (only in extremely preterm born

children in combination with early

stress)

Kozhemiako et al. (129) Children [born extremely preterm

[24–28 weeks], very preterm

[29–32 weeks], and full-term]

8 years of age 100 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures: atypical

spontaneous neuromagnetic activity

(only in extremely preterm born

children)

Ranger et al. (127) Children [born very preterm

[27–32 weeks]]

8 years of

age.

42 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures: ↓ cortex

thickness (e.g., frontal, parietal, and

temporal regions)

Ranger et al. (126) Children [born very preterm

[27–32 weeks]]

8 years of age 42 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures: ↓

cerebellar volumes

Schneider et al. (49) Infants [born very preterm [<30

weeks]]

29, 31, and

40 weeks

51 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures: ↓

growth thalamus, basal ganglia, total

brain volumes

Smith et al. (119) Infants [born very preterm [<30

weeks]]

Term

equivalent

age

44 Neonatal Infant Stressor Scale:

during stay in the NICU or until

term equivalent age

Greater number of stressors: ↓ frontal

and parietal diameter, and ↓

interhemispheric connectivity

temporal lobes

Tortora et al. (122) Infants [born very preterm [<33

weeks]]

Term

equivalent

age

46 Number of invasive procedures:

categorized into four groups

Greater invasive procedures: ↓

connectivity thalami—bilateral

somatosensory cortex, ↓ connectivity

insular cortex—ipsilateral

amygdala/hippocampus

Vinall et al. (124) Children [born very preterm <33

weeks)

7 years of age 50 Number of invasive procedures

during the stay in the NICU

Greater number of stressors: ↓ white

matter FA

ANS function

Goffaux et al. (130) Children [born very preterm [<33

weeks], and full term]

7–11 years of

age

26 Total number of days spent in the

NICU and total numbers of days

spent under mechanical

ventilation: categorized into two

groups

Greater invasive procedures: no

changes in heart rate and pain

sensitivity in high-stress group in

response to conditioning cold

stimulation

Grunau et al. (131) Infants [born very preterm [<33

weeks]]

32 weeks 136 Number of invasive procedures

from birth until time of

assessment

Greater invasive procedures: ↓

autonomic reactivity in response to

blood collection

HPA axis function

Brummelte et al. (132) Children [born extremely preterm

[<28 weeks], very preterm [<32

weeks], full term]

7 years of age 129 Number of invasive procedures

from birth until term equivalent

age

Greater invasive procedures: ↓ basal

cortisol (study day and at home)

(Continued)
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TABLE 1 | Continued

References Population Time of

assessment

Sample

size (N)

Stress measure Outcome

Grunau et al. (133) Infants [born extremely preterm

[<28 weeks], very preterm [<33

weeks], and full term]

8 months 76 Number of invasive procedures

from birth until term equivalent

age

Greater invasive procedures: ↑

sustained basal cortisol (only in

extremely preterm born infants)

Grunau et al. (134) Children [born very preterm [<33

weeks] and full term]

7 years of age 128 Number of invasive procedures

from birth until term equivalent

age

Greater invasive procedures: ↓ hair

cortisol (stress×NFKBIA effect, only

in boys)

Provenzi et al. (135) Infants [born very preterm [<33

weeks] and full term]

3 months of

age

90 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures: ↓

cortisol reactivity to still-face

procedure

Epigenetics

Chau et al. (136) Children [born very preterm [<33

weeks] and full term]

7 years of age 111 Number of invasive procedures

during the stay in the NICU

Greater invasive procedures:

↓SLC6A4 methylation (only in children

with COMT Met/Met genotype)

Fumagalli et al. (137) Infants [born very preterm [mean

of 30 weeks]]

Birth and

NICU

discharge

56 Principal component analysis on

number of invasive procedures

Greater invasive procedures: ↑ delta

SLC6A4 methylation

Montirosso et al. (138) Infants [born very preterm [<33

weeks] and full term]

Birth and

NICU

discharge

78 NICU stay: difference score

between birth and NICU

discharge

↑ delta SLC6A4 methylation at

discharge than at birth

Provenzi et al. (139) Infants [born very preterm [<33

weeks] and full term]

Birth and

NICU

discharge

88 Number of invasive procedures

during the stay in the NICU:

categorized into two groups

Greater invasive procedures: ↑ delta

SLC6A4 methylation

↑ increase(d); ↓ decrease(d).

greater social competence (173). These findings indicate that
functional deficiencies of the vagus, and more specifically the
phylogenetically newer ventral vagal complex (VVC; i.e., part
of the nucleus ambiguus and suppresses robust emotional
reactions), might underlie difficulties in emotion regulation in
preterm-born individuals (see Table 1 for an overview).

Although no further studies investigate the relationship
between ANS functioning and outcome, these findings conform
to the framework of the polyvagal theory, proposed by Porges
(45, 174–176), which states that alterations in vagal tone and
reactivity, and thus parasympathetic regulation, possibly lead
to the development of psychiatric disorders in preterm-born
individuals. The framework articulates three phylogenetic stages
that underlie different behavioral responses, all associated with
a distinct autonomic subsystem: (1) social communication [e.g.,
emotion (via ventral vagal complex)], (2) mobilization [e.g.,
fight-flight responses [via sympathetic-adrenal system]], and
(3) immobilization [e.g., tonic immobility (via unmyelinated
vagus)]. Alterations in these distinct subsystems possibly underlie
the behavioral problems observed in preterm individuals.
However, further research is needed to delineate the effects of
preterm birth, and postnatal stress, on autonomic control and
subsequent longitudinal brain and behavioral development.

Hypothalamic-Pituitary-Adrenal Axis
(HPA-Axis)
A considerable array of research has found that neonatal
adversity impacts neuroendocrine development. Studies
reported, for instance, that more invasive procedures were
associated with lower cortisol responses to a stressor [below

33 weeks post-conception (133); for a review see (177)]. Also,
hyporeactivity to socio-emotional stress, as measured with
the Face-to-Face Still-Face (FFSF) procedure (i.e., assesses
socio-emotional regulation by rating negative emotionality,
social engagement, and avoidance behavior), has been linked
to the number of invasive procedures during NICU admission
in 3-month old preterm infants (135). In children born very
preterm, greater exposure to neonatal pain-related stress was
associated with higher basal cortisol levels at 8 months (133) and
18 months (178), but lower basal, diurnal (132) and cumulative
(hair) cortisol (134) at age 7–8 years. It is well-recognized
that chronic stress can lead to downregulation of cortisol
production [e.g., (179)], thereby reducing the detrimental effects
of glucocorticoids. These alterations in HPA-axis functioning
seem to persist into adulthood. More specifically, studies
showed both decreased and increased HPA-axis responses (i.e.,
cortisol and ACTH) following acute stress, when compared
to full-term controls (180, 181). These mixed results might
be due to the developmental timing at which neonatal
stress occurs, including age of onset, duration, and severity,
affecting the effects of concurrent stress on the dynamically
changing HPA-axis (see paragraph on fetal development of the
hypothalamic-pituitary-adrenal axis).

The different developmental stages seem to be mirrored by
a shift between hypo- and hyper-reactivity of the HPA-axis,
with postnatal stress possibly altering the set-point of HPA-
axis functioning in preterm-born individuals. This observation
highlights the fact that both the type and magnitude of the
stress-responses largely depends on the timing of the stressor.
Moreover, exposure to postnatal stress at different points in the
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development of the HPA-axis might exhibit a different impact.
Indeed, rodent studies showed that “early” maternal separation
(i.e., 3–4 postnatal days) was associated with a hyper-responsivity
to stress later in life, while “late” maternal separation (i.e., 7–
8 or 11–12 postnatal days) showed an effect in the opposite
direction (182, 183). These findings are in line with studies
indicating that synthesis of CRH receptors is regionally distinct
and age-specific. More specifically, CRH receptor density in
rodents is highest during early postnatal days (i.e., 2–9), with
CRHR1 mRNA levels increase to a maximal of 300–600% of
adult levels (184). Perturbation of the profound changes in
CRF system, due to extreme and chronic stress, might have
long-lasting consequences for development. Hence, these critical
developmental processes are extremely complex, and dependent
on the timing of exposure, postnatal stress might have differential
consequences. However, to date, this explanation for the mixed
results of HPA-functioning in preterm born individuals remains
speculative, and research is needed to delineate the possible
time-specific effects of postnatal stress following preterm birth.

Surprisingly, altered HPA-axis functioning and its impact
on (brain) development in ways that increase susceptibility to
later stress-related disorders have not been extensively studied
in preterm born individuals (see Table 1 for an overview).
Thus far, higher basal cortisol in preterm born infants has
been associated with poorer mother interactive behavior, as
well as more problems in terms of emotional reactivity,
anxiety, depression, and attention, amongst others (185). Similar
findings were observed in preterm-born children, that is,
increased HPA-reactivity was linked to more problems with
attention, emotional reactivity, anxiety, depression, and negative
mother-child interactions (186). Hence, converging evidence
does suggest that HPA-axis functioning is a key mediator
of developing psychopathology. Although the structural and
functional development of neural networks is tightly linked to
HPA-axis functioning, such that early life adversity sensitizes
hippocampal-amygdala responses to acute stress (187, 188), to
date, there are no studies that explored neural circuitry associated
with HPA-dysfunction in preterm born individuals.

In sum, postnatal stress following prematurity lead to long-
lasting changes in HPA-functioning, which, in turn, is associated
with problem behavior (e.g., emotional reactivity, anxiety).
Differences in HPA-functioning might be attributed to the
timing of postnatal exposure, although extensive research is
needed to disentangle the neurobiological mechanisms involved.
Importantly, there is currently little research as to whether
the altered patterns of HPA-axis functioning in the context
of prematurity and postnatal stress are permanent, what
epigenetic pathways might underlie the contradicting findings
(see paragraph on epigenetic pathways), and the potential of
prevention following postnatal interventions such as skin-to-skin
contact (see paragraph on possibilities for early intervention).

Epigenetic Pathways
There is increasing evidence for the role of genetic and epigenetic
variation in long-term effects of early life stress (189). It is
suggested that epigenetic markers are developmentally sensitive
to the quality of the pre- and post-natal environment and
that early adversity produces lasting epigenetic modifications

(190–192). Studies on the so-called “early-life programming”
of the epigenetic regulation of gene transcription, have mainly
focused on the serotonin transporter, due to its polymorphisms
and role in mediating early stress and later life mental health,
and glucocorticoids (GR), due to its negative feedback control
on stress responsivity [for a review see (193)]. Importantly, most
studies have focused on candidate genes related to serotonin
and glucocorticoid functioning. Below we will review evidence
from postnatal studies, but we will rely on prenatal studies where
investigation in preterm individuals is lacking.

There are a few studies that investigated the influence of
postnatal stress on SLC6A4 [i.e., a gene encoding the serotonin
transporter (5-HTT)] promoter methylation. Studies reported
an association between greater postnatal stress and lower
SLC6A4 methylation in preterm-born infants (138, 139) and
school-aged children with the COMT 158 Met/Met genotype
(136). Importantly, authors suggested that SLC6A4 promoter
methylation could not be attributed to preterm birth per se,
rather, high levels of postnatal stress exposure altered the
transcriptional functionality of 5-HTT (139, 194). In turn,
greater SLC6A4 methylation predicted poorer stress-regulation
in response to the still-face procedure at NICU discharge
(194). Additionally, methylation at discharge was associated with
greater negative emotionality and suboptimal socio-emotional
regulation (137, 194). Thus far, only one study investigated
the possible moderating role of SLC6A4 methylation on the
relationship between NICU-stress and later brain development.
More specifically, authors reported that preterm infants exposed
to greater stress showed higher SLC6A4 methylation, which in
turn was associated with reduced anterior temporal lobe (ATL)
volumes (137).

Extensive scientific literature has repeatedly reported that
changes in glucocorticoid receptor methylation (NR3C1) play
a pivotal role in the regulation of the HPA-axis and the
endocrine response to stress (195). Indeed, infants exposed
to third-trimester prenatal stress, as measured by maternal
emotional state, showed increased methylation of the NR3C1
gene (196, 197). Additionally, Oberlander and colleagues found
that increased methylation of the NR3C1 was in turn associated
with increased HPA-axis reactivity. Even thoughNR3C1 is tightly
linked to stress vulnerability and resilience, studies investigating
the epigenetic changes in NR3C1 following prematurity is
limited. Few studies did investigate the role of prematurity in
NR3C1 methylation, and findings were in line with studies on
prenatal stress [for a review see (193, 198)], that is, preterm
infants exposed to an adverse postnatal environment influenced
NR3C1 methylation (199). Specifically, increased methylation of
glucocorticoid receptor gene was observed in the first 4 days
following preterm birth. However, findings remain inconsistent
as studies demonstrated both decreased and increased DNA
methylation of NR3C1 in high-risk preterm infants [i.e., scoring
high on Neonatal Intensive Care Unit Network Neurobehavioral
Scale (NNNS) or more medical problems] compared to low-risk
preterm infants (200, 201).

Several other genes have been found imperative for the
regulation of HPA-axis function, including the FKBP5
gene, which exerts an inhibitory role on GR signaling by
modulating hormone-binding affinity (i.e., the strength of
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binding interaction) (202, 203), and the 11beta-hydroxysteroid
dehydrogenase type 1 and 2 (11β-HSD), functions as a
dehydrogenase which degrades cortisol to cortisone (11β-
HSD2), and catalyzing the conversion of inactive cortisone to
active cortisol (11β-HSD1) [for a review see (204)]. So far, only
one study investigated FKBP5 gene transcription in relation to
prematurity. Piyasena et al. (205) showed that preterm born
infants had markedly lower methylation at FKBP5 compared
to term-born infants. Importantly, these differences in FKBP5
methylation were resolved at 1 year of age. In line with this,
a longitudinal epigenome-wide association study (EWAS)
identified a total of 1,555 sites with significant differences in
methylation in preterm born infants, but the majority of these
differences did not persist into adulthood (206). Hence, these
studies question whether the effects of prematurity and postnatal
stress on DNA methylation persist across the life course.

11β-HSD1 is seen in the adult central nervous system and
has previously been shown to influence HPA-axis regulation
(207, 208), whereas 11β-HSD2 has a major central role in
developmental programming due to the high expression in
placenta and fetal tissue (209). As the function of 11β-HSD
seems to reflect protection from the deleterious consequences
of glucocorticoid overexposure, it has been suggested that
11β-HSD might function as a potential pathway in early life
stress exposure and later outcome (210, 211). Studies indeed
showed that prenatal stress was associated with downregulation
of placental 11β-HSD2 gene encoding (212, 213), as well as
lower and greater methylation of 11β-HSD2, respectively (214,
215). In turn, in rodents, 11β-HSD2−/− selectively determined
programming of anxiety and depressive-like adult behavior (204,
211, 216). Similarly, 11β-HSD1−/− mice showed elevated basal
corticosterone levels and exaggerated responses to stress (207,
208, 217). Increased levels of placental β-HSD1 mRNA were
observed inmothers exposed to prenatal stress (218, 219), leading
to increased glucocorticoid transport to the fetus. Although
these findings could theoretically be extrapolated to a preterm
population, as the assumed changes in 11β-HSD fail to protect
the immature neurons from premature stress exposure, further
investigation will be required to determine the degree to which
changes in 11β-HSD are prevalent in preterm born individuals.

Only recently studies began to enhance our understanding of
epigenetic changes following prematurity. Converging evidence
suggests that preterm born individual show profound changes
in glucocorticoid and serotonin transporter gene transcription,
with some studies suggesting that these alterations can
be specifically attributed to postnatal stress. Other genes
involved in the regulation of HPA-axis, such as FKBP5 and
11β-HSD, have not been studied extensively. Importantly,
epigenetic changes following prematurity might be non-
persistent. Nonetheless, more studies are needed to further
delineate the epigenetic changes following prematurity and the
specific role of postnatal stress. There are several theoretical and
methodological challenges in the field of behavioral epigenetics
in preterm born individuals, including heterogeneity of the
population (e.g., gestational age), lack of prospective longitudinal
and epigenome-wide studies, small sample sizes, and inadequate
control of confounders (e.g., race), amongst others.

Disruptions in the Neural Equilibrium
It is well-known that stress induces large-scale neural
modulations and that extreme and prolonged stress trigger long-
lasting changes in network balance. Both the salience network
(SN) and the executive control network (ECN) are implicated in
the adaptive regulation of stress, and these complex networks
already originate in the fetal period (see paragraph on Fetal
development of the stress-related neural networks). In the face of
environmental challenges, via increased catecholamines, the SN
is supposedly upregulated, facilitating increased vigilance and
attentional reorienting, and autonomic-neuroendocrine control
(220). On the contrary, the ECN, which is implicated in cognitive
control processes and decision-making, is downregulated
following stress (221). It is theorized that in the aftermath of
stress, resources are allocated to the ECN, downregulating the
SN (70). Disruptions in this neural equilibrium, possibly due to
morphological alterations in prefrontal (222) and hippocampal
(223) neurons following chronic stress, have been implicated
in the pathogenesis of Post-Traumatic Stress Disorder (PTSD)
(224, 225), depression (226, 227), anxiety (228, 229), bipolar
disorder and schizophrenia (230, 231), amongst others.

Emotion Processing and Executive Functioning
A large number of studies have described a behavioral
phenotype in preterm-born individuals constituting problems
in the area of socio-emotional and executive functioning [for
further details please see (232–234)], two higher-order cognitive
phenotypes implicated in stress regulation (235, 236). The neural
mechanisms underlying these behavioral phenotypes appear to
be altered in preterm-born individuals. Although there are
currently no studies investigating the role of postnatal stress on
these stress-regulatory neural mechanisms, a growing number
of studies does recognize the pivotal role of large-scale neural
networks, rather than region-of-interest (ROI) based approaches,
in preterm-born individuals.

Resting-state network studies showed an altered coupling
between the SN and default mode network (DMN). The
DMN comprises the medial prefrontal, posterior cingulate,
precuneus, and bilateral angular gyrus (237), and exhibits
low-frequency activity at rest, and has been proposed to
be related to self-referential mental activity, including task-
unrelated imagery and thoughts and self-reflection in preterm
born individuals (238). Studies consistently reported a hypo-
connectivity between the amygdala, mPFC, posterior cingulate
cortex (PCC), anterior insula (AI), and the precuneus (pC) in
preterm-born infants at term equivalent age (239), adolescents
(240), and adults (241, 242). As suggested by the authors, the
negative connectivity between the SN (i.e., AI/amygdala) and
DMN (i.e., PCC/pC) could indicate an overactive inhibitory
function of the PCC in modulating the left amygdala, greatly
affecting their emotion processing (241). In line with this,
a study reported that variability in the connectivity between
the amygdala and other regions was predictive of greater
internalizing symptoms at 2 years (239). Also, alterations in white
matter microstructure involved in the SN and other networks,
including the thalamus, inferior fronto-occipital fasciculus, and
inferior/superior longitudinal fasciculus have been associated
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with internalizing symptoms in preterm born children aged 9–
16 (243).

Preterm children also showed structural alteration in the
anatomical organization of the cortico-basal ganglia-thalamo-
cortical pathway (CBGTC). Especially connections between
the thalamus, putamen, globus pallidus and caudate nucleus
were weaker (151). These SN-specific nodes are disrupted
in psychiatric diseases [e.g., PTSD, obsessive-compulsive
disorder (OCD), schizophrenia (244)], dissociating multiple
interconnected mental operations, such as processing affective
content, decision making, and attention (245). Studies also
reported significant smaller amygdala volumes in preterm-born
infants at term equivalent age, compared to term born infants,
and this altered amygdala development has been linked to
maladaptive fear-processing (as measured by Unpredictable
Mechanical Toy episodes) (246). A key limbic tract, the uncinate
fascicle [i.e., temporo-amygdala-orbitofrontal network (247)],
critical for social-emotional functions (86, 248), showed
significant white matter reductions in preterm-born individuals
[children; (249); adolescents (250)]. At present, it would be
helpful to have a clearer understanding of how these neural
patterns vary as a function of postnatal stress.

These limbic-cortical pathways are not only involved in
socio-emotional behavior but also play a pivotal role in
higher-order behavioral control. Studies repeatedly reported
significant alterations in white matter microstructure, including
the cingulum (i.e., connection between anterior cingulate
cortex, dorsolateral prefrontal cortex, and inferior parietal
lobe), fronto-occipital fascicles (i.e., bridging frontal-temporal-
parietal-occipital lobe), fornix, corpus callosum, and superior
longitudinal fasciculus, amongst others (153, 251–255). These
white matter indices have been directly linked to alterations
in executive functioning, that is, lower executive functioning
was related to reductions in several white matter microstructure
(e.g., inferior-fronto-occipital fascicles, cingulum, and superior
longitudinal fasciculus) [Wisconsin Card Sorting Test (256);
Test of Everyday Attention for Children (TEA-Ch) (257); Child
Behavior Check List (CBCL) (153); Delis-Kaplan Executive
Function Systems (D-KEFS) (258)]. Importantly, one study was
unable to find an independent effect of preterm birth on white
matter microstructure, and authors emphasized that postnatal
factors, such as the degree of stress (i.e., days of mechanical
ventilation), grossly impact postnatal brain development (259).

The alterations in connectivity are also observed on a
functional level. Specifically, studies found that preterm born
adults, compared to controls, showed increased activity in the
middle temporal/occipital gyrus, posterior cingulate gyrus, and
precuneus [go-/no-go task; (260); verbal fluency task (261)],
which replicates previous findings (262). Additionally, during
oddball trials (i.e., “odd” stimuli to control for low-frequency
no-go stimuli), preterm-born young adults displayed attenuated
brain activation in a fronto-parietal-cerebellar network. More
recent studies disentangled the neural underpinnings of proactive
vs. reactive cognitive control in preterm-born adults. Using the
Not-X continuous performance test (CPT), authors reported (1)
hypo-activation between the frontal pole and anterior cingulate
gyrus, as well as the posterior cingulate gyrus and precuneus,

and (2) hyper-activation between the posterior cingulate gyrus
and precuneus, and the right lateral occipital cortex and angular
gyrus (255). In other words, authors showed that preterm born
adults exhibited more reactive behavioral control, rather than
proactive. Recent research started to reveal the importance of
these functional patterns, as well as the decoupling between the
ECN and DMN, for the development of cognitive control (263)
and emotion-regulation (264).

In sum, preterm born individuals show profound alteration
in large-scale brain networks involved in emotion regulation
and executive functioning, the SN and ECN, respectively.
These changes possibly underlie individual differences in stress-
sensitivity, as both large-scale networks, and its behavioral
phenotype, have been implicated in adaptive stress responses
(70). As mentioned previously, the DMN, SN, and ECN
start to develop during gestation. Although these networks
are still immature at birth, the formation of important
pathways during gestation gives rise to potential points of
vulnerability. The degree to which postnatal stress might underlie
these extensive network changes in preterm born individuals
remains elusive.

OPPORTUNITIES FOR EARLY
INTERVENTION

Inadequate treatment of stressors in preterm infants have
previously been associated with short- and long-term alterations
in brain and behavior, greatly impacting their ability to
maintain homeostasis (see paragraph on neonatal stress and
brain development). This highlights the importance of adequately
and promptly assessing stress in the newborn, and gave
rise to the Newborn Individualized Developmental Care and
Assessment Program (NIDCAP) (265, 266), which is a technique
that uses detailed observations of infant behavior to provide
caregivers and parents with recommendations on how to
minimize stress. Developmental care theories postulate that one
should actively observe the infant, during several caregiving
procedures (e.g., collection of a blood sample), to assess the
infant’s efforts of self-regulation in response to stress. Based
on such observations, both clinicians and families can make
adjustments to optimize and adapt the traditionally delivered
newborn intensive care to the infants’ current needs. These
adjustments can include interventions developed to increase
self-regulation in the preterm infant. In full recognition of
the fact that there are numerous interventions aimed at
preventing or reducing postnatal stress, including the possible
protective effects of fetal neurosteroids such as allopregnanolone,
and its inhibiting properties in relation to the HPA-axis
[(267, 268); for a review see (269)], for the purpose of
this review, we decided to focus on non-pharmacological
interventions as several analgesics have the potential to adversely
impact the developing postnatal brain by altering neuronal
processing [e.g., (270, 271)].

Skin-to-skin contact, also called kangaroo care, is a promising
intervention possibly reducing infants’ stress during NICU
admission. For instance, research showed that preterm born
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infants exhibited lower basal stress levels (i.e., autonomic
responses) during kangaroo care when compared to regular
care (272, 273), as well as lower stress reactivity when exposed
to physical stress (274–277), and improved white matter
microstructural development (278). Kangaroo care also seems
to affect HPA-axis functioning, as indicated by reduced saliva
cortisol levels when exposed to a period of kangaroo care
(279), as well as lower salivary cortisol reactivity at 1 month
(280). However, kangaroo care seems to not bring about
sustained reductions in salivary cortisol (280–282). Interestingly,
research did show sustained effects on autonomic control. More
specifically, one study found that kangaroo care accelerated
the maturation of vagal tone between 32 and 37 weeks
of gestation, as indicated by increased amplitude of RSA,
positively affecting autonomic control (283). As suggested by
the authors, kangaroo care might exert developmentally sensitive
effects and should be administered during an appropriate
developmental window to alter the maturational trajectories
of systems that are currently developing. In other words, the
timing of the intervention is pivotal for achieving optimal levels
of physiological maturation. Although kangaroo care showed
some positive effect on preterm infants’ physiological stability
and maturation, the degree to which these effects are long-term
remains elusive.

Although inconclusive, there is some evidence for the positive
effects of kangaroo care on attachment behavior and parental
stress levels. More specifically, kangaroo care positively affected
mother’s mood, reduced parental stress levels, increased parental
affiliative (e.g., touch) and attachment behavior when compared
to standard care [e.g., (177, 272, 284, 285)]. These changes in
parental care and behavior might, in turn, have positive effects on
the preterm infant’s stress-regulatory capacities [e.g., (286, 287)],
which provide preliminary support for changing the biological
organization of the stress system in preterm infants through
parental-driven interventions.

There is growing evidence to promote not only the use
of kangaroo care, but also the use of music, massage, co-
bedding, and Family Nurture Interventions in extremely preterm
infants (288–297). Despite the use of different measures to
assess stress and pronounced differences in intervention, results
from these studies largely indicated improvement in HPA-
axis functioning and autonomic control, as indicated by lower
cortisol levels and increase autonomic stability following the
intervention. These auditory and tactile interventions can
be viewed as environmental enrichment, possibly stimulating
cortical plasticity and attenuating the stress response in preterm
infants (298). Indeed, recent studies found encouraging, but
preliminary, evidence for increased microstructural maturation
at term-equivalent age for preterm infants exposed to music
during their NICU stay (299), as well as a greater maturation of
cardiac function (296). In the long-term, both Family Integrated
Care, i.e., infant care provided by families by enhancing
parental support and education (300), and Family Nurture
Interventions, i.e., promotes calming interaction betweenmother
and infants, seem to have a sustained positive effect of
behavioral outcome, with more robust self-regulation skills and
less negative emotionality at 18–21 months and 4–5 years

of age, amongst others (297, 301, 302). Further research is
warranted into the exact neurobiological pathways underlying
the relationship between tactile and auditory interventions and
preterm infant stress-regulation.

There are several reasons to hypothesize that single-family
rooms (SFR) will reduce infant and parental stress, increase
parental involvement, and subsequently improve infants’
outcome. Nonetheless, scientific evidence on the benefits
of SFR, vs. open bay, is at this point mixed and questions
whether the change from open bay to SFR is justified [for a
review see (24)]. Some studies reported positive benefits of
private rooms, including less physiological stress, improved
neurobehavioral development, and better long-term outcomes
in preterm infants (303–305). On the contrary, studies also
reported potential adverse effects in relation to SFR, that is,
increased maternal stress (306, 307), altered infant cerebral
development, and worse neurodevelopmental outcome
(308), and no effects on infant salivary cortisol reactivity
(309). Together, these findings suggest that consideration
of the design and environment is important for the health
and well-being of preterm infants admitted to the NICU,
including noise control, parent-infant closeness, and parental
involvement. However, much uncertainty remains regarding
the design of the NICU environment, how much or what type
of sensory stimulation would optimize brain development
in preterm infants. It is important to realize that both
neurosensory deprivation, a consequence of SFR, and
neurosensory overexposure, a consequence of open ward,
might be maladaptive (310).

In sum, a range of aspects of the physical environment
is pivotal for stimulating development of the preterm
infant. Research showed beneficial effects of parent-infant
bonding, sensory stimulation, and the use of private family-
rooms on mitigating postnatal stress in preterm infants.
Moreover, these interventions seem to promote infant self-
regulation, by adequately utilizing their neurophysiological
modulatory system to safeguard oneself from excessive
over-stimulation and arousal. Hence, appropriate tactile
and auditory stimulation seems sufficient to induce
improvement in self-regulation. Nonetheless, results are
not consistent, and the degree to which these improvements are
sustained remains inconclusive. Also, several methodological
challenges, such as lack of standardization, possibly introduce
confounding effects.

CONCLUDING REMARKS

In summary, the reviewed literature suggests that stress
has both proximate and long-lasting detrimental effects
on brain and behavior in preterm-born individuals. A key
question is whether there are, so-called, “sensitive” periods
of pre- and post-natal development during which stress-
regulatory mechanisms are established. Indeed, research
indicates that not only the HPA-axis and ANS are formed
during the embryonic, fetal, and postnatal period, also large-
scale brain networks implicated in the central response of
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BOX 1 | Unanswered questions.

1. Following premature birth, how do postnatal stressor type, timing, and duration translate to changes in neurobiological systems and subsequent outcome across

the life course?

2. Which (combination of) neurobiological mechanisms underlie vulnerability or resilience following postnatal stress?

3. Are neurobiological changes following premature birth (i.e., physiological, neural network, and epigenetic) indicative of maladaptive functioning or do they also

occur as a result of adaptive processes in stress-regulatory systems?

4. Can targeted and individualized neonatal interventions reverse morphological and functional remodeling of neurobiological systems and lead to improved

outcomes? Also, when are these interventions able to buffer the effects of postnatal stress on neurobiological development to mitigate long-term risk for affective

and social functioning?

5. What is the potential of identifying individual developmental trajectories, and the subsequent early identification of who is and who is not at risk following preterm

birth and chronic stress exposure?

stress including the DMN, SN, and ECN start to develop
early on. This window of increased vulnerability offers
an important clue for the cellular impairment that might
underlie stress-sensitivity and long-term outcome in preterm
born individuals.

A few studies have emerged to investigate the effects of
“early” vs. “late” stress. Postnatal work indeed demonstrated
that early stress has differential and long-lasting effects on
brain development, compared to stress experienced around
term-equivalent age. Importantly, some studies also suggested
an independent effect of postnatal stress on brain development,
rather than prematurity per se. The current review underscores
increasing evidence that postnatal stress might persistently
impact later functioning in part by affecting neurobiological
systems, including the HPA-axis, ANS, large-scale brain
networks, and gene expression. Also, an increasing number
of intervention studies found preliminary evidence for the
possible beneficial effects of parent-infant bonding, sensory
stimulation, and family rooms on mitigating the detrimental
effects of postnatal stress. However, the reviewed evidence is far
from conclusive and there is a paucity of clinical studies on the
subject of prematurity and stress resilience and vulnerability.
We have only started to investigate the role of postnatal stress in
resilience and vulnerability to developing psychiatric disorders
following prematurity. Therefore, our schematic presentations
of some proposed relations (see Box 1 and Figure 2) should
not be considered comprehensive, rather, it should guide
future research toward possible modulating factors between
postnatal stress and future resilience or vulnerability in preterm
born individuals.

To better understand and reduce the impact of postnatal
stress and prematurity on brain development, psychopathology,
and possible mechanisms, one should consider integrating
several additional issues into future studies (see Box 1

for unanswered questions). First, existing research has
predominantly focused on the effects of physical stressors,
such as skin-breaking procedures, rather than taking into
account different stressor types, including maternal care
and environmental stress. As pointed out previously, there
is a great dependence of stressor type in characterizing
risk factors. In other words, each stressor has distinct and

possibly cumulative effects on later development of brain
and behavior, and failing to account for stressor type might
greatly impact results. Hence, there is a great need for
systematic research on the possible detrimental effects of
postnatal stress. These investigations should particularly focus
on the possible long-term effects of postnatal stress on later
development of brain and behavior, including adolescence
and adulthood.

Second, it is important to note that only a minority of
preterm born individuals will develop a psychiatric disorder. It
has become clear that several neurobiological pathways might
react differently to neonatal stress in resilient and vulnerable
individuals. However, the specific factors that interact and
account for these differences are still undetermined. Behavioral
studies reported that positive parental behavior is favorable
and predisposes preterm individuals to stress resilience (297,
301, 302, 311, 312). On a neurobiological level, detailed
analyses of factors that account for and interact with variation
in several moderating and mediating factors (e.g., HPA-
axis, epigenetics), in both vulnerable and resilient individuals,
is lacking. Such research would benefit from prospective
longitudinal studies, with a systematic assessment of postnatal
stress, and the association with changes in neurobiological
systems and later affective and social functioning. For instance,
as stress has a global effect on brain functioning, investigating
large-scale brain networks gives a greater insight into the
reorganization of connectivity patterns, rather than limiting
analyses to predefined regions of the brain (313). To date,
it remains unclear whether and how acute stressors relate
to shifts in resource allocation between large-scale brain
networks, and whether specific neural patterns might underlie
resilience in preterm born individuals. Most importantly, how
these networks dynamically unfold as a function of stress,
and whether postnatal stress might alter these dynamics,
remains unanswered.

Third, the ability to “bounce-back” is not viewed as a
stable trait, rather, it is viewed as malleable and easily
modified by interventions (314). Certain postnatal interventions
appear to be beneficial in reducing the detrimental effects of
postnatal stress, particularly interventions increasing parent-
infant bonding (e.g., kangaroo care). However, considerable
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FIGURE 2 | Resilient functioning in preterm born individuals exposed to chronic postnatal stress might be facilitated by; the ability to regulate and dampen stress

responsivity; effective vagal modulation; homeostasis in large-scale neural networks underlying emotion processing and executive functioning; and adaptive regulation

of gene transcription. Middle panel: Postnatal factors influencing brain maturation and, in turn, the onset/development of stress-related disorders such as anxiety and

depression. ACTH, adrenocorticotropic hormone; Cort, cortisol; CRF, corticotropin-releasing factor; HPA-axis, hypothalamus–pituitary–adrenal axis; ANS, autonomic

nervous system; NA, Nucleus Ambiguus; 5-HTT, serotonin transporter; NR3C1, glucocorticoid receptor; FKBP5, FK506 binding protein 5 and acts as a co-chaperone

that modulates glucocorticoid receptor activity.

uncertainty remains as to whether these beneficial effects
persist over time, and what, if any, neurobiological systems
are remodeled.

Preterm born individuals have an increased risk for
developing psychiatric sequelae, and this heightened
vulnerability might have its origin in the postnatal exposures.
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Fortunately, research investigating the role of postnatal stress
on later development in preterm born individuals has gathered
momentum over the past two decades, and an increasing number
of studies have focused on ways to diminish the detrimental
effect of postnatal stress. Although the mechanisms that lead
to resilient phenotypes is far from being fully determined,
the current review identified several potential factors that
might facilitate an adaptive stress response in the face of
adversity. An increased understanding of the neurological,
physiological, and epigenetic circuitry underlying resilience
in preterm born individuals might be a starting point for the
development of targeted and individualized intervention and
prevention programs.
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