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Abstract

Recent studies of interactions between hosts and their resident microbes have revealed important ecological and evolution-

ary consequences that emerge from these complex interspecies relationships, including diseases that occur when the inter-

actions go awry. Given the preponderance of these interactions, we hypothesized that effects of the microbiota on gene

expression in the developing gut—an important aspect of host biology—would be pervasive, and that these effects would be

both comparable in magnitude to and contingent on effects of the host genetic background. To evaluate the effects of the

microbiota, host genotype, and their interaction on gene expression in the gut of a genetically diverse, gnotobiotic host

model, the threespine stickleback (Gasterosteus aculeatus), we compared RNA-seq data among 84 larval fish. Surprisingly,

we found that stickleback population and family differences explained substantially more gene expression variation than the

presence of microbes. Expression levels of 72 genes, however, were affected by our microbiota treatment. These genes,

including many associated with innate immunity, comprise a tractable subset of host genetic factors for precise, systems-level

study of host–microbe interactions in the future. Importantly, our data also suggest subtle signatures of a statistical inter-

action between host genotype and the microbiota on expression patterns of genetic pathways associated with innate

immunity, coagulation and complement cascades, focal adhesion, cancer, and peroxisomes. These genotype-by-environ-

ment interactions may prove to be important leads to the understanding of host genetic mechanisms commonly at the root of

sometimes complex molecular relationships between hosts and their resident microbes.
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Introduction

Over the past two decades, the importance of the microbiota

to the biology of their associated hosts, including humans, has

become abundantly clear (Dethlefsen et al. 2007; McFall-Ngai

et al. 2013). However, causal relationships between microbial

variation and host traits like gene expression and disease are

difficult to infer in descriptive human microbiome studies due

to the presence of covariates such as host genetic variation

and a number of environmental variables (Mai et al. 2016).

Controlled gnotobiology experiments using inbred animal

host models have been the most recent answer to these lim-

itations. For example, a comparison of larval zebrafish with

mouse transcriptional responses to microbes in the gut re-

vealed molecular patterns shared among vertebrates

(Rawls et al. 2004). Specifically, microbe-induced changes in

expression for dozens of genes related to innate immune

function, metabolism of nutrients, epithelial tissue prolifera-

tion, and xenobiotic metabolism are consistent in presence

and direction between zebrafish and mouse (Hooper et al.

2001; Backhed et al. 2004; Rawls et al. 2004; Semova et al.

2012; Kanther et al. 2014). Unfortunately, inbred models like

mouse and zebrafish are in turn limited in their ability to eval-

uate the sensitivity of microbiota-induced gene expression

across the mélange of ecologically relevant host genetic vari-

ation observed in nature. Indeed, understanding how genet-

ically heterogeneous hosts such as humans respond to their

gut microbiota is key to one major objective of host–microbe
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systems biology: identification of complex host genetic regu-

latory programs that variably shape the interaction landscape,

in the context of disease or otherwise (Ko et al. 2009;

Goodrich et al. 2014; Huttenhower et al. 2014). For example,

knowing whether host responses are dependent on struc-

tured genetic variation among families or populations, and

whether key gene expression phenotypes sensitive to mi-

crobes have a simple or polygenic basis, may influence

perspectives on disease treatment and/or host–microbe co-

evolutionary dynamics. Despite these motivations, to our

knowledge, no controlled experiment has addressed the

extent to which transcriptional responses to microbes in the

digestive tract vary among animal hosts with naturally hetero-

geneous genetic backgrounds. Such studies are necessary for

the reasons above and to provide perspective on the relevance

of inbred model systems to the genetic complexity within and

among human populations.

We surveyed transcriptional responses to the microbiota

across large scale (population-level) and small scale (family-

level) genetic variation using an especially promising alterna-

tive host model, the threespine stickleback fish (Gasterosteus

aculeatus). Evolved genetic diversity among natural popula-

tions, often a product of adaptation to diverse environments,

has successfully been leveraged to map the genetic basis of

many complex traits in stickleback (Colosimo et al. 2004;

Cresko et al. 2004; Kimmel et al. 2012; Glazer et al. 2015).

This naturally occurring form of genetic variation, in contrast

to induced variation among laboratory animal lines, com-

monly bears a historical signature of environmental influences,

both abiotic and biotic. In addition to a rich assortment of

genetic and phenotypic variation among countless popula-

tions throughout the Northern Hemisphere (Bell and Foster

1994), stickleback, like other popular fish models such as zeb-

rafish and medaka, are amenable to well-replicated, con-

trolled studies in the laboratory. The term “evolutionary

mutant model” was coined to describe systems like stickle-

back, in which naturally occurring genetic variation may be

linked to phenotypes that mirror aspects of human disease

(Albertson et al. 2009). These natural systems have advan-

tages over traditional, induced mutant models, including phe-

notypes that are less severe, are later onset, or are products of

complex genetic and environmental contributions, properties

shared with many human diseases. Evolutionary mutant

models are especially compatible with systems biology

approaches, which translate the diffuse effects of many ge-

nomic differences among individuals to phenotypic differ-

ences through gene expression variance and covariance

patterns. High levels of standing genetic variation within and

among stickleback populations, the ability to cross individuals

from diverse populations, and amenability to manipulative

studies in the laboratory all enable stickleback as promising

models for systems biology. In addition, the recent develop-

ment of a protocol to generate gnotobiotic individuals

(Milligan-Myhre et al. 2016) and identification of significant

variation in the gut microbiota among stickleback populations

in the wild (Smith et al. 2015), places the stickleback model in

a rare position to address systems-level questions about host

genetic variation and host–microbe relationships.

Global transcriptional profiles offer comprehensive, system-

atic insights into multi-level processes such as microbe-sensi-

tive gene regulatory cascades (Morgan et al. 2015) and are

therefore useful for evaluating the relative contributions of

host and environmental factors to variation in the behavior

of gene regulatory networks. Also, because a transcriptomic

profile is itself a composite of co-varying complex traits, it is

ultimately a useful framework for establishing connections

between gene regulatory networks and quantitative traits

such as morphological, physiological, and disease variants

(Hodgins-Davis and Townsend 2009; van Nas et al. 2010).

Indeed, in many cases, only through systems biology

approaches are we able to understand how nucleotide-level

variation among individuals mechanistically affects these

traits, because measurements of gene regulatory variation

provide missing pieces of predictive information about the

structure of gene-gene and gene-environment interactions

(Civelek and Lusis 2014; Albert and Kruglyak 2015). This

framework has been applied successfully to both confirm

the involvement of known developmental pathways and

reveal novel gene regulation patterns that explain how genetic

variation translates to host-specific responses. For example,

Orozco et al. (2012) revealed macrophage-specific biology

during inflammation by measuring genome-wide transcrip-

tional responses of macrophages from 92 genetically diverse

mouse strains to chemical stimuli associated with acute and

chronic inflammation (Orozco et al. 2012). Through the map-

ping of genetic variation among the mouse lines to variation in

transcriptional responses, the authors were able to identify

novel regulatory connections between cholesterol transport

and Toll-like receptor signaling during acute inflammation,

among other insights.

To understand the robustness of microbiota-mediated var-

iation in gene expression across different host genotypes and

to identify specific microbe-associated genes and gene path-

ways in stickleback, we measured transcript abundance in the

guts of 84 larval stickleback using RNA-seq. The study fish,

derived from two genetically divergent source populations

separated in nature for as long as 15,000 years (Cresko

et al. 2004) were experimentally exposed or unexposed to

microbes in an otherwise uniform environment. We also en-

deavored to identify genes that demonstrate conserved mi-

crobe-sensitive gene expression across stickleback and other

vertebrates, as these may be of importance in a biomedical

context. To this end, we identified dozens of stickleback genes

differentially expressed by microbial treatment, and confirmed

their overlap with microbe-sensitive orthologs in zebrafish. To

contrast the magnitude of microbiota effects on gene expres-

sion with those of host genetic background, we compared

two populations evolutionarily adapted to very different
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environments: a freshwater lake and the ocean. Because our

previous work documented innate immune responses to the

microbiota contingent on these two genetic backgrounds

(Milligan-Myhre et al. 2016), we also tested for a statistical

interaction between these two experimental factors in the

current study. We expected pervasive Genotype-by-

Environment (G-by-E) interactions, though the transcrip-

tome-wide evidence for G-by-E interaction was unexpectedly

subtle. Our findings point to host-genotype-specific transcrip-

tional sensitivities to the presence of microbes across a small

subset of the gastrointestinal transcriptome, including genes

associated with focal adhesion, coagulation and the comple-

ment system, and other innate immune system components.

The relatively small number of affected genes points to the

tractability of this experimental system for deciphering the

effects of natural host genetic variation on the microbiota

and associated traits. Broadly, this work sets the stage for

future studies of the genetic underpinnings of variation in

the host response to microbes, and it makes the case for

careful consideration regarding design of gnotobiology exper-

iments and fundamental sources of phenotypic variance in

these studies.

Materials and Methods

Generation of Gnotobiotic Stickleback Larvae and
Experimental Design

We derived germ-free threespine stickleback embryos from

multiple laboratory crosses using methods described by

Milligan-Myhre et al. (2016). Briefly, we fertilized ova from

each lab-reared female in vitro using sperm from dissected

testes of a lab-reared adult male from the same source pop-

ulation. Fertilized eggs were incubated in sterile stickleback

embryo medium (SBEM, 4 g/L Instant Ocean, sodium-bicar-

bonate-buffered to pH 7) with ampicillin (100 ug/ml), kana-

mycin (5 mg/ml) and amphotericin (250 ng/ml). Four hours

post fertilization, we surface-sterilized all embryos using

filter-sterilized 0.2% Polyvinylpyrrolidone-iodine (PVP-I, diluted

in sterile SBEM and filter sterilized) and 0.003% bleach (di-

luted in SBEM and filter sterilized), followed by three rinses

with filter-sterilized SBEM. At this point we transferred subsets

of 20 embryos to 250 mL sterile polystyrene flasks with filter

caps (Techno Plastic Products AG) containing 50 mL of sterile

SBEM.

We included three crosses (different families) derived from

a freshwater (FW) Alaskan population stock (Boot Lake), and

two crosses (also different families) derived from an oceanic

(OC) Alaskan stock (Rabbit Slough). These stocks have been

maintained in the laboratory for at least eight generations,

effectively controlling for maternal and paternal effects related

to the original environments in which the populations evolved.

Initially we inoculated two flasks for each family with 500 mL

of water from our recirculating stickleback system to

approximate a “conventional” (CV) microbiota and left an-

other two flasks for each family “germ-free” (GF). In all cases,

rearing flasks were maintained at a constant temperature of

18 �C until 14 days post fertilization (dpf), at which point all

surviving larvae were counted, euthanized with a lethal dose

of tricaine, and either dissected immediately to obtain the gut

for bacteria plating, or tail-clipped for sex genotyping and

fixed individually in RNAlater (Life Technologies). We also col-

lected water samples on filter disks for PCR with bacteria-

specific 16S rRNA gene primers to detect bacterial

contamination.

To ensure balanced sampling of males and females for the

RNA-seq analysis, we amplified a sex-specific region of the

genome using the “GA1” PCR primer pair described by

Griffiths (2000). Briefly, we isolated DNA from each tail clip

using a 5% chelex solution, exactly as described in Rose et al.

(2014) and amplified the sex-specific marker for each sample

using the following PCR reagent cocktail: 1 mL DNA isolate,

7.5 mL 2X PCR buffer, 0.015 mL GA1 primer mix (50 mM),

0.078 mL Taq polymerase (2U/mL), 6.27 mL nuclease-free

water. Each 15 mL PCR reaction underwent an initial denatur-

ation at 94 �C for 5 min, 44 cycles of denaturation, primer

annealing, and extension (50 s at 94 �C, 50 s at 44 �C, 80 s

at 72 �C, respectively), and a final extension at 72 �C for

10 min. We determined sex by visualizing the presence or

absence of the male-specific amplicon on a 2% agarose gel

(0.5X Tris-Borate-EDTA running buffer) stained with SafeView

(abm).

Validation of Conventional Microbiota and Germ-Free
Treatments

We confirmed the effectiveness of the microbial treatments in

our experiments with three methods. (1) Flasks were directly

visualized for microbial contamination using phase optics at

40X magnification. (2) Water from rearing flasks and the con-

tents of individual, homogenized stickleback guts were plated

on standard LB-agarose media in petri dishes and incubated at

20�C. Bacterial and fungal growth was noted 1 day and 4

days post plating. (3) Water from each flask was collected

on a filter, DNA was isolated from the filter, and the 16S

ribosomal RNA gene was amplified by PCR via the method

described in Bates et al. (2006). Briefly, 0.1 mm zirconia beads

were added to the tube containing the filter and SDS lysis

solution (10% SDS, 0.5M Tris/HCl pH 8.0, 0.1M NaCl), fol-

lowed by bead beating for 2 min. The supernatant was treated

with lysozyme for 30 min at 37�C, and the DNA was precip-

itated with ammonium acetate and isopropanol and washed

with ethanol. The 16S ribosomal RNA gene was amplified

from 5 ml of DNA template per sample, following the details

described in Bates et al. (2006). Negative controls included

sterile SBEM, and positive controls contained DNA isolated

from several CV larval intestines. Three of the ten GF flasks

tested positive for bacteria via plating or PCR and were
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excluded from the study. To maintain balance with respect to

the microbial treatment, we randomly excluded one of the CV

flasks from each of the families for which a contaminated

germ-free flask existed. In total, six individuals were sampled

from each of the 14 remaining flasks, for a total of 84 indi-

viduals. Figure 1 depicts these flasks and their treatments in

our experimental design, upon which all analyses for the study

were based.

To assess effects of the experimental factors on normal

development within flasks included in the study, we counted

the number of dead and abnormally developed fish per flask.

We used log-linear modeling to test for dependence of ab-

normal development on microbiota treatment and host geno-

type (family and population levels).

Preparation of RNA-Seq Libraries from Individual
Stickleback Guts

We dissected whole guts from three male and three female,

normally developed larvae per flask and flash-froze in liquid

nitrogen each gut in 200 ml TRIzol reagent (Life Technologies).

We thawed and homogenized each sample by bead beating

with a 0.5/1.0 mm mix of zirconia oxide beads in a Bullet

Blender Storm homogenizer (Next Advance) for three minutes

at maximum speed. After homogenization we added an ad-

ditional 800 ml TRIzol reagent, froze again at �80 C, then

isolated total RNA using a protocol adapted from Leung and

Dowling (2005). Briefly, homogenate was spun through a

Qiashredder centrifuge column (Qiagen), two rounds of

phase separation after the addition of chloroform were per-

formed with the assistance of 2.0 mL phase-lock gel tubes

(5prime), and total RNA was washed and eluted by centrifuge

column using the RNeasy Minelute Kit (Qiagen). We quanti-

fied each RNA sample using a Qubit fluorometer (Life

Technologies) and confirmed high RNA integrity for a subset

of samples using a Fragment Analyzer (Advanced Analytical

Technologies).

To construct RNA-seq libraries we used the TruSeq mRNA

v2 Kit (Illumina) according to manufacturer recommendations,

but with several modifications. We scaled reaction volumes

down to one third of the suggested value, used 200 ng of

total RNA as starting material, incubated reactions for 5 min

at 94�C during the RNA fragmentation step, and applied 10

cycles of PCR during the library amplification step. We quan-

tified all samples by fluorometry and multiplexed between 12

and 22 libraries per Illumina HiSeq 2500 lane to achieve raw
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FIG. 1.—Experimental design. An illustration of the factors and their levels included in our experiment. In total we generated 84 RNA-seq libraries (6 fish

each from 14 flasks), each using mRNA isolated from the entire gut—posterior esophagus to anus—of individual fish. The two stickleback lines (“OC” and

“FW“) were derived from natural Alaskan populations, as indicated. Two OC families and three FW families (FW family 3 not shown, but referenced by

brackets), were represented in the study. Note that for one OC family and one FW family, conventional and germ-free treatments were duplicated to

examine housing (“flask“) effects.
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sequencing coverage of approximately 8.9 million 100 nt

single-end reads per sample. To avoid confounding “batch”

effects with experimental variables of interest, we adopted a

stratified library preparation and sequencing scheme, in which

each bout of library preparation and sequencing included bal-

anced representation from experimental factor level combina-

tions. All sequencing was performed by the University of

Oregon Genomics and Cell Characterization Core Facility

(GC3F).

RNA-Seq Data Processing, Normalization, and Differential
Expression Analysis

For all sequencing reads we demultiplexed, trimmed Illumina

adapters, and performed base quality filtering using process_

shortreads from the Stacks software suite (Catchen et al.

2013). The splice-aware aligner GSNAP (Wu and Nacu

2010) was used to align processed reads to the Ensembl three-

spine stickleback reference genome and annotation (version

80). We used default GSNAP parameters, except that we set

the proportion of each read length allowed to mismatch the

reference at 0.1, we enabled novel spice site detection, and

we used the split_output flag to produce different alignment

files for different alignment types. For each sample we

counted the number of uniquely-mapped reads per exonic

region of each annotated gene using HTSeq-count (Wu and

Nacu 2010). Counts of uniquely aligned reads per gene model

for each sample were merged into a single text file for all

subsequent analyses, which were performed using the R

statistical language and programing environment (R Core

Team 2015).

We limited differential expression analysis to only those

genes represented by at least two reads per million mapped

(“copies per million,” CPM) in at least 12 of the 84 libraries

(see supplementary fig. S1, Supplementary Material online).

We normalized read counts for these 15,847 genes using

TMM normalization (Robinson and Oshlack 2010) as imple-

mented by the calcNormFactors function of the R/

Bioconductor package edgeR (Robinson et al. 2010). In

order to perform gene-wise differential expression analyses

in a general linear model framework (Law et al. 2014), we

supplied the TMM normalization factors to the voom function

of the R/Bioconductor package limma (Ritchie et al. 2015),

which generated appropriately weighted log2CPM expression

values for all observations. We then fit a linear model for each

gene including the fixed effects of factor levels for host pop-

ulation, host family (nested within host population), sex, and

microbiota treatment using the limma lmFit function. We did

not include a library “batch” effect in the model because ini-

tial nMDS ordination did not suggest batch as a major source

of transcriptional variation, and our stratified assignment of

samples to batches controlled for any confounding effect of

batch with respect to other factors of interest. To account for

variation between replicate flasks we incorporated flask as a

random effect in the model using the limma

duplicateCorrelation function. Each hypothesis of interest

was tested, for each gene, using one or more contrasts via

moderated t-tests applied by the limma function eBayes. To

evaluate the effect of our microbiota treatment we performed

a within-OC contrast, a within-FW contrast, and an overall

contrast. Genes expressed differentially in any of these three

contrasts were interpreted as being associated with the pres-

ence of microbes. We performed a single contrast to test for

an overall effect of host population, and a single contrast to

test for an interaction between host population and micro-

biota, both of these accounting for family differences nested

within population. Finally, we performed contrasts to test for

an effect of sex and a sex-by-microbiota interaction. For each

of these seven contrasts, we controlled the false discovery rate

(FDR) at 0.1 using the approach of Benjamini and Hochberg

(1995), as implemented by the limma topTable function.

Given the reduced power to detect real interaction effects

relative to main term effects in general linear models, and

given that effects of the microbiota alone were subtle, we

adopted a second, more sensitive regression-based approach

to identify genes and regulatory pathways likely subject to an

interaction between host population and microbiota treat-

ment. We identified extreme residuals based on deviations

from a null linear model (y-intercept = 0, slope = 1) of identical

CV-GF log2 fold changes between genes in OC and FW

groups. Genes falling in the upper and lower 1.25% of the

distribution of residuals were considered to deviate substan-

tially from OC-FW unity regarding the effects of the micro-

biota treatment and were therefore likely subject to

population-specific effects of microbial presence. This ap-

proach was based on the distribution of effect sizes (log2

fold changes) alone, and not on individual hypothesis tests

for differential expression, enabling the identification of G-

by-E interaction effects across the transcriptome without rely-

ing on thousands of under-powered, individual tests.

To characterize multivariate patterns of gene expression

among the 84 gut transcriptomes, and subsets when appro-

priate, we performed non-metric multidimensional scaling

(nMDS) using TMM-normalized CPM expression values for

all 15,847 gut-expressed genes. We calculated Bray-Curtis

dissimilarity, performed the nMDS ordinations, and tested

multivariate differences for the fixed effects of microbiota

treatment, population, family, and relevant interactions,

using permutation-based multivariate analysis of variance

(perMANOVA), as implemented by the R package vegan

(Oksanen et al. 2016),

Comparison of Microbiota-Specific Gene Expression
between Zebrafish and Stickleback

Using Ensembl’s BioMart data mining tool we endeavored to

assign Ensembl IDs (release 80) to 212 EST-derived microarray

probes identified by Rawls et al. (2004) as differentially

Gene Expression in Gnotobiotic Stickleback GBE
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expressed between germ-free and conventional-microbiota

zebrafish. For the non-redundant, Ensembl zebrafish se-

quences from this set we attempted to find putative three-

spine stickleback orthologs using Ensembl orthology

assignments, or BLASTp. Specifically, in the infrequent event

that no or multiple orthologs were identified based on the

Ensembl database, we considered any top BLASTp hit (with

sequence identity� 60%) as a putative ortholog. We used

these stickleback orthologs, and their expression patterns

with respect to the microbiota treatment, as a basis for com-

parisons between the two fish species. We assessed the

strength of the relationship between zebrafish and stickleback

CV-GF log2 fold changes via Kendall’s Tau nonparametric tests

of correlation. We tested whether the number of ortholog

pairs demonstrating the same CV-GF log2 fold change direc-

tion in stickleback and zebrafish (CV-enriched in both species,

or GF-enriched in both species) was greater than that ex-

pected by chance using chi-squared tests.

Gene Ontology and KEGG Pathway Analyses

We obtained Gene Ontology descriptions for stickleback

genes via Ensembl BioMart, formatted the information

using the R/Bioconductor databases AnnotationDbi

(Pages et al. 2016) and GSEABase (Morgan et al. 2016)

and conducted GO term overrepresentation tests using

hypergeometric tests implemented by the R/

Bioconductor package GOstats (Falcon and Gentleman

2007). We tested for GO terms enriched among the 72

genes differentially expressed between GF and CV micro-

biota treatments, relative to all gut-expressed genes. We

also tested for GO terms enriched among the 398 genes

most likely subject to genotype-by-microbiota interaction,

relative to all gut-expressed genes.

To associate KEGG Pathways with stickleback genes we

first identified putative Ensembl human orthologs using the

approach described above for zebrafish. We then extracted

KEGG Pathway assignments via the human orthologs using

the R databases AnnotationDbi (Pages et al. 2016) and

org.Hs.eg.db (Carlson 2016). We identified KEGG Pathways

enriched for stickleback genes with extreme CV-GF log2 fold

change values using the general gene set enrichment analysis

framework of the R/Bioconductor package GAGE (Luo et al.

2009). We performed these KEGG Pathway enrichment anal-

yses separately for the OC and FW data sets, and as previously

we controlled the false discovery rate at 0.1 in both cases. To

identify KEGG pathways most likely subject to genotype-by-

microbiota interaction, we performed a similar enrichment

test based on residual values from the regression approach

described above. To visualize stickleback gene members of the

coagulation and complement cascade KEGG pathway, and

their scaled CV-GF log2 fold change values in both OC and

FW data sets, we used the R/Bioconductor package Pathview

(Luo and Brouwer 2013).

Results

Microbial Influences on the Gastrointestinal
Transcriptome of Larval Stickleback Are Subtle Relative to
the Effects of Host Genotype

One concern regarding our experimental design was whether

the microbial treatment, host genotype (family and popula-

tion), or both, might affect normal fish development and sur-

vival, potentially limiting our inferences about direct effects on

gene expression. We first fitted and compared full and re-

duced log-linear models to evaluate the dependence of

whether fish developed normally on microbial treatment

and family. The proportion of surviving, normally developed

fish depended on family (Analysis of Deviance: G2=24.32,

P = 0.002), but neither on microbiota treatment (Analysis of

Deviance: G2=7.59, P = 0.18) nor their interaction (Analysis of

Deviance: G2=7.24, P = 0.12). Importantly, we evaluated sim-

ilar models at the population level and found no evidence for

dependence of normal development on population (Analysis

of Deviance: G2=0.66, P = 0.72), treatment (Analysis of

deviance: G2=0.49, P = 0.78), or their interaction (Analysis

of Deviance: G2=0.16, P = 0.68). Therefore, while some fam-

ilies demonstrated significantly higher or lower rates of normal

development, there was no systematic effect of treatment or

population of origin on normal development. This suggests

that neither the microbiota treatment, nor population-specific

sensitivity to a rearing salinity of 4 g/L, affected normal devel-

opment in our experiment.

To measure the relative contributions of the microbiota and

host genotype to gene expression, we generated RNA-seq

data from 84 larval stickleback guts collected from families

of freshwater and oceanic fish reared in the presence or ab-

sence of microbes (fig. 1). On average we obtained 8,932,868

high-quality reads per individual, of which nearly 5.5 million

per individual could be aligned uniquely to exons annotated in

the stickleback reference genome. Over 70% (15,847 out of

22,456) of genes annotated in the stickleback reference

genome were expressed consistently among gut libraries,

based on a threshold of 2 reads per one million aligned (to

exons) or greater, in at least 12 of 84 libraries. For a summary

of the proportion of annotated genes expressed across various

coverage thresholds, see supplementary figure S1,

Supplementary Material online.

Contrary to expectations, host population and family dif-

ferences explained substantially more gene expression varia-

tion than the presence of the microbiota. The germ-free state

did not induce gross, global transcriptional changes in the gut,

as overall transcriptome composition did not differ signifi-

cantly between CV and GF fish in a multivariate sense (fig.

2A; perMANOVA: F1,80=1.36, P = 0.17), and the treatment

explained only 1.45% of the total dissimilarity among fish. In

contrast to effects of the microbiota, host population signifi-

cantly differentiated individual guts in transcript space, ex-

plaining 11.59% of the total dissimilarity (fig. 2B;
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perMANOVA: F1,80=10.84, P = 0.001). Restricting inferences

to oceanic (OC) fish, microbiota explained 3.93% of the total

dissimilarity (fig. 3A; perMANOVA: F1,32=1.48, P = 0.12),

while family explained 9.04% of the total dissimilarity, a sig-

nificant effect (fig. 3B; perMANOVA: F1,32=3.41, P = 0.001).

Likewise, within freshwater (FW) fish, microbiota explained

2.56% of the total dissimilarity (fig. 3C; perMANOVA:

F1,42=1.32, P = 0.20), while family explained 9.61% of the

total dissimilarity, a significant effect (fig. 3D; perMANOVA:

F2,42=2.44, P = 0.009).

Because previous work in mice has shown that cage effects

on the gut microbiota are large relative to other sources of

variation (Hildebrand et al. 2013), we thought rearing flask

might be a significant factor explaining stickleback gene ex-

pression, especially for flasks with a conventional microbiota.

For instance, if microbial effects on gastrointestinal gene ex-

pression were contingent on the immediate housing environ-

ment, it might suggest stochastic variation between flasks in

microbial community structure and/or host colonization dy-

namics. We included replicate rearing flasks for both CV

and GF treatments in the case of one oceanic and one fresh-

water family (fig. 1), so we made an effort to assess relative

contributions of flask and microbial effects to variation in tran-

scriptome dissimilarity among individual fish. Flask-level repli-

cation was low, so the following results should be interpreted

with this caveat. In general, effects of co-housing environment

on global transcriptional variation were weak, but greater

than those of the microbiota. In a multivariate sense, flask

explained more overall gut transcriptome dissimilarity among

fish than did microbiota, with neither factor explaining a sta-

tistically significant proportion. (FW perMANOVA:

R2
flask(microbiota)=0.094, R2

microbiota=0.066; OC perMANOVA:

R2
flask(microbiota)=0.110, R2

microbiota= 0.051; also see supple-

mentary fig. S2C and F, Supplementary Material online).

Individual transcriptomes from duplicate flasks were as dissim-

ilar as those compared between CV and GF flasks (supplemen-

tary fig. S2A, B, and D–E, Supplementary Material online). Fish

across duplicate CV flasks were not significantly more dissimilar

than fish across duplicate GF flasks (FW dispersion test:

F1,22=0.0001, P = 0.991; OC dispersion test: F1,22=0.099,

P =0.756), although there was a trend in this direction

within the OC family.

We did observe significant effects of the microbiota on

expression for a targeted subset of genes, particularly those

belonging to innate immunity pathways. Seventy-two genes

were differentially expressed between CV and GF fish, based

on our linear model contrasts (see Methods) and a false dis-

covery rate controlled at 0.1 (see supplementary table S3,

Supplementary Material online). Table 1 includes information

regarding the top ten (by fold change) CV-enriched and top
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FIG. 2.—Effects of the microbiota on global gene expression in the 14 dpf stickleback gut are weak relative to effects of host population. An nMDS

ordination of the 84 stickleback guts in multivariate transcript space labeled by (A) microbiota treatment and (B) stickleback population. The “plus” symbols

denote group centroids, and ellipses mark 95% confidence intervals about the centroids. In panel (A), open circles represent germ-free individuals and closed
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Note the clearer separation of population groups in panel (B), relative to microbiota treatment groups in panel (A).
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ten GF-enriched genes. Of the dozens of stickleback genes

subject to a pronounced transcriptional effect of the micro-

biota, many were associated with innate immune processes,

including a number of granulocyte-specific genes.

The adaptive immune system is unlikely operative in larval

fish of this age, based on knowledge from zebrafish (Lam

et al. 2004), so we expected few, if any, adaptive immune

responses. The group of 72 differentially expressed genes

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

OC Samples by Microbiota

n
M

D
S

 D
im

en
si

o
n

 2

+
+++++++++

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

+

+

−0.2 0.0 0.2 0.4

−0
.3

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

++++++++++

−0.2 0.0 0.2 0.4

+
+
+

OC Samples by Family

FW Samples by FamilyFW Samples by Microbiota

nMDS Dimension 1

A B

C D

FIG. 3.—Effects of the microbiota on global gene expression in the 14 dpf stickleback gut are weak relative to effects of host family. (A and B): An nMDS

ordination of the 36 stickleback guts from OC fish in transcript space labeled by (A) microbiota treatment and (B) stickleback family. (C and D): An nMDS

ordination of the 48 stickleback guts from FW fish, labeled by (C) microbiota and (D) stickleback family. In panels (A) and (C) open circles represent germ-free

individuals and closed circles represent conventional individuals. In panels (B) and (D), different colors represent the two different OC families and three

different FW families, respectively, included in the study. Note the clearer separation of transcriptomes by family, relative to separation by microbiota

treatment.
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demonstrated overrepresentation of a number of Biological

Process GO terms, relative to all genes expressed in the 14-

dpf stickleback gut, including “response to external biotic

stimulus,” “innate immune response,” “arginine metabolic

process,” “endopeptidase activity,” “lipid binding,” and

others (see supplementary table S4, Supplementary Material

online). In contrast to the effects of the microbiota, and con-

sistent with the multivariate transcriptome analysis (see

above), influences of host population on gene-wise expression

patterns in the gut were much more extensive; we identified

3,451 genes differentially expressed between OC and FW fish,

nearly 22% of the annotated genes expressed at appreciable

levels in the gut (see supplementary table S5, Supplementary

Material online).

To identify known gene regulatory pathways responsive to

the microbiota in stickleback, we tested whether certain

KEGG pathways were enriched for stickleback orthologs

with high or low CV-GF log2 fold changes. Ten KEGG path-

ways were significantly enriched (FDR = 0.1) for genes tran-

scriptionally sensitive to microbes in both FW and OC

stickleback populations, including those associated with

JAK-STAT signaling, chemokine signaling, Toll-like receptor

signaling, leukocyte transendothelial migration, and rheuma-

toid arthritis (see supplementary table S6, Supplementary

Material online). An additional 34 KEGG pathways were

significantly enriched for microbiota-sensitive transcription in

either, but not both stickleback populations (see supplemen-

tary table S6, Supplementary Material online).

Microbiota-Sensitive Gene Expression Patterns Are
Conserved between Zebrafish and Stickleback

We identified unique zebrafish Ensembl gene annotations for

191 of the microarray features considered differentially ex-

pressed between germ-free and conventional-microbiota

6-dpf zebrafish by Rawls et al. (2004). Of these we were

able to assign putative stickleback orthologs with

Ensembl annotations to 173. Of these stickleback ortho-

logs, 166 were expressed at detectable levels based on our

RNA-seq data. Fifteen of these 166 (9.04%) were charac-

terized by at least one GF-CV contrast p-value less than

0.05 from our RNA-seq experiment (see supplementary

table S7, Supplementary Material online), including the

neutrophil-specific gene myeloperoxidase, inflammatory

cytokine-responsive genes, and metabolism-related

genes such as cell death-inducing DFFA-like effector c

and carnitine palmitoyltransferase 1Ab.

The magnitude of CV/GF log2 fold change co-varied signif-

icantly between zebrafish and FW stickleback (see supplemen-

tary fig. S8A, Supplementary Material online, Kendall

Table 1

Top Genes Expressed Differentially by Microbiota Treatment

Ensembl Gene ID Gene Description Direction of Diff. Expr. Fold Change

ENSGACG00000008429 myeloperoxidase-like protein* CV-enriched 5.35

ENSGACG00000010234 cathepsin Bb CV-enriched 3.99

ENSGACG00000017166 myeloid-specific peroxidase CV-enriched 3.52

ENSGACG00000011676 BPI fold containing family C CV-enriched 3.47

ENSGACG00000006045 zymogen granule protein 16B CV-enriched 3.23

ENSGACG00000006706 tumor necrosis factor receptor superfamily, member 11b CV-enriched 2.99

ENSGACG00000010404 interleukin 22 receptor, alpha 2 CV-enriched 2.65

ENSGACG00000010912 deleted in malignant brain tumors 1 protein* CV-enriched 2.18

ENSGACG00000001729 interleukin 8* CV-enriched 2.13

ENSGACG00000014415 low choriolytic enzyme precursor* CV-enriched 2.11

ENSGACG00000001881 leukocyte elastase inhibitor* GF-enriched 1.67

ENSGACG00000014112 developing brain homeobox 1 GF-enriched 1.65

ENSGACG00000012888 heat shock protein 90, alpha (cytosolic),

class A member 1, tandem duplicate 2

GF-enriched 1.50

ENSGACG00000006375 serpin peptidase inhibitor, clade H (heat

shock protein 47), member 1b

GF-enriched 1.47

ENSGACG00000014099 mucin 5f GF-enriched 1.34

ENSGACG00000020294 V-set and immunoglobulin domain containing 1 GF-enriched 1.33

ENSGACG00000018013 protease, serine, 12 (neurotrypsin, motopsin) GF-enriched 1.31

ENSGACG00000010026 ankyrin repeat and death domain containing 1B GF-enriched 1.28

ENSGACG00000008795 inositol-trisphosphate 3-kinase A GF-enriched 1.25

ENSGACG00000011569 transient receptor potential cation channel,

subfamily M, member 6

GF-enriched 1.24

NOTE.—Ten top-ranked (by fold change) conventional-enriched and germ-free-enriched stickleback genes, of 72 total differentially expressed. In cases where no Ensembl
gene description was available (marked by an asterisk), descriptions were obtained from top BLASTp hits of searches against the NCBI nr database.
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T = 0.133, z = 2.497, P = 0.013), as well as between zebrafish

and OC stickleback (see supplementary fig. S8B,

Supplementary Material online, Kendall T = 0.192, z = 3.596,

P<0.001). Furthermore, the direction of fold change for

orthologs was consistent between zebrafish and each stickle-

back line, more so than expected by chance. Specifically, 102

of 166 genes were consistent in log2 fold change sign be-

tween zebrafish and FW stickleback (X2
1=8.699, P = 0.003),

and 111 of 166 were consistent between zebrafish and OC

stickleback (X2
1=18.892, P<0.001).

In both zebrafish and stickleback data sets a greater pro-

portion of the microbiota-sensitive genes were expressed at

higher levels in CV relative to GF fish. In zebrafish, for exam-

ple, approximately 63% of differentially expressed genes were

expressed at higher levels in CV fish, relative to GF fish (Rawls

et al. 2004). In stickleback, 52 (72.22%) were expressed at

higher levels in CV fish, and 20 (27.78%) were over-expressed

in GF fish. This cross-species pattern suggests a directional bias

toward positive, as opposed to negative, microbe-induced

gene regulation in fish hosts.

Microbe-Associated Transcriptional Responses of Innate
Immunity Pathways and NLRC3-like NOD-like Receptors
Depend on the Genetic Background of the Host

Considering global, multivariate patterns of gene expression,

the interaction between host population and microbiota treat-

ment was not statistically significant (fig. 4; perMANOVA:

F1,80=1.28, P = 0.21), meaning transcriptome disparity be-

tween CV and GF fish did not differ by host population.

Furthermore, we detected no individual genes subject to a

statistical interaction between stickleback population and

microbiota treatment based on the gene-wise limma-voom

tests for differential expression (FDR = 0.1, see supplementary

table S9, Supplementary Material online). Using an alternative

analysis of log2 fold change residuals (see Methods), we iden-

tified 398 genes in the extreme upper and lower quantiles

(1.25% per tail) of the residual distribution. The 40 genes in

the outer most tails of the residual distribution may be found

in supplementary table S10, Supplementary Material online.

Among those more strongly CV-enriched in FW fish relative to

OC fish were genes associated with innate immunity: a

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05
0.

10
0.

15

Stickleback Guts in Transcript Space
(By Population and Microbiota)

nMDS Dimension 1

n
M

D
S

 D
im

en
si

o
n

 2

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
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paralog of myeloperoxidase, complement component C3, and

toll-like receptor 5. Those that were more strongly CV-en-

riched in OC fish relative to FW also included immune re-

sponse genes: the T-cell-expressed mal, and five genes that

encode NLRC3-like (NOD-like receptor family CARD domain-

containing 3) proteins. We analyzed this subset of 398 genes

and found overrepresented GO terms including “regulation of

body fluid levels,” “blood coagulation and fibrin clot forma-

tion,” “response to wounding,” transmembrane transport,”

and more (see supplementary table S11, Supplementary

Material online).

We also tested whether certain KEGG pathways were en-

riched for genes with extreme residual values from the above

analysis. Using this approach, we identified four significantly

enriched KEGG pathways (FDR = 0.1): “complement and co-

agulation cascades” (P = 0.0001), “pathways in cancer”

(P = 0.0003), “focal adhesion” (P = 0.0007), and “peroxi-

some” (P = 0.005). For an illustration of the population-

specific responsiveness of components of the “complement

and coagulation cascades” pathway to the microbiota, see

supplementary figure S12, Supplementary Material online.

Specifically, FW fish responded to the presence of microbes

mostly via increased transcript abundance, while the OC fish

transcriptional response was minimal.

Sex Biases in Gene Expression Are Concentrated on
Stickleback Chromosome 19 and Do Not Depend on the
Presence of Microbes

We identified 703 genes differentially expressed between fe-

males and males, based on our linear model contrasts (see

Methods) and a false discovery rate controlled at 0.1 (see

supplementary table S13, Supplementary Material online), of

which 530 (75.39%) corresponded to annotations on stickle-

back linkage group 19. This chromosome corresponds to the

stickleback sex chromosomes (Peichel et al. 2004). Nearly

68% of these sex-biased genes were female-enriched, and

over 32% were male-enriched. A previous study of sex-

biased gene expression in threespine stickleback reported

1268 sex-biased genes, of which 23% localized to chromo-

some 19 (Leder et al. 2010). Leder et al., however, examined

adult liver tissue gene expression, so our finding of fewer

overall sex-biased genes, but a larger chromosome 19 bias,

suggests that sex-biased gene expression in undifferentiated

larval stickleback guts most likely reflects lack of dosage com-

pensation for X and Y-specific gene expression.

Ward clustering of normalized expression values for a

subset of 314 genes on chromosome 19—located between

6 and 12 Mb and corresponding to high sex-biased gene ex-

pression according to Leder et al. (2010)— revealed two major

clusters of individuals that corresponded perfectly with our

PCR-based sex genotypes (supplementary fig. S14A,

Supplementary Material online). A randomly selected subset

of 314 genes from the genome at large showed no such

clustering by sex (supplementary fig. S14B, Supplementary

Material online), confirming the high incidence of sex-biased

gene expression on chromosome 19 and the reliability of our

PCR sexing assay.

We also tested for a statistical interaction between sex and

microbiota treatment with respect to gene-wise differential

expression but found no strong evidence for this after con-

trolling the false discovery rate at 0.1. Other specific details

regarding patterns of sex-biased gene expression are beyond

the scope of this study and will be addressed, using these and

additional data, in a future report.

Discussion

Understanding the landscape of molecular interactions from

which healthy and dysbiotic relationships between hosts and

their resident microbes emerge is a major, ongoing research

endeavor (Morgan et al. 2015). Several valuable studies have

addressed host-specific components of this landscape by mea-

suring cellular and transcriptional responses to microbes using

gnotobiotic vertebrate host models (Rawls et al. 2004;

Kanther et al. 2011; Camp et al. 2014; Sommer et al. 2015;

Milligan-Myhre et al. 2016). We advanced this fundamental

objective of host–microbe systems research using RNA-seq in

larval threespine stickleback, a powerful new model system

for the influences of host genetic diversity. By incorporating

population- and family-level genetic variation as well as hous-

ing environment replicates into our experimental design, we

were able to contrast the relative influence of these factors

with that of the microbiota on gene expression in the gut,

putting into context the potential significance of host genetic

variation in human-microbe interactions.

Microbe-Sensitive Gene Expression Patterns in Stickleback
Align with Inferences from Other Vertebrate Host–
Microbe Model Systems

The first major objective of our study was to characterize the

transcriptional response of larval stickleback hosts to the gut

microbiota. We found that while over 70% of the 22,456

genes annotated in the stickleback genome were expressed

in the guts of 14 dpf fish, a surprisingly small number—72—

responded robustly to the presence of microbes. Global mul-

tivariate transcriptome dissimilarity between CV and GF fish

was also very low, perhaps reflecting a select group of mod-

ular regulatory networks influenced by the microbiota. A pre-

vious study of genome-wide transcription patterns in the

whole guts of larval zebrafish reported 212 genes (of

16,228 tested) differentially expressed between CV and GF

treatments (Rawls et al. 2004). Recent studies in mouse con-

sidered CV versus GF gene expression differences for various

intestinal cell types separately, and reported 261 (of 26,900

tested) (Camp et al. 2014) and 2,256 (of 33,648 tested)

(Sommer et al. 2015) microbe-sensitive genes, regardless of

cell type.
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Direct, between-study comparisons of the number of

microbe-sensitive genes are made difficult by fundamen-

tal differences among the studies with respect to technol-

ogy (i.e., microarray vs. RNA-seq), tissue type,

experimental design, statistical analysis, and host genetic

diversity (see below). For example, cell type-specific ex-

pression differences in the presence versus absence of mi-

crobes may be numerous, but undetectable when

averaged across an entire gastrointestinal tract. Host de-

velopmental stage may also explain discrepancies among

studies, as there is evidence that gut transcriptional ef-

fects of the microbiota become more pronounced with

age of Drosophila melanogaster hosts (Broderick et al.

2014). The age of fish in our experiment was limited to a

maximum of 14 dpf, because beyond this age the yolk sac

no longer provides nutrition, feeding is necessary, and it is

not currently practical to maintain a quality, germ-free

food source for juvenile stickleback. The 14 dpf fish in

our study were not likely starving, or affected differently

between treatments from a nutritional standpoint, given

our tests for developmental differences (see Results). It is

possible, however, that sampling fish at such an early

stage of microbial colonization reflects more variation in

community structure (and possibly less stable microbe-

related gene expression) than would be observed at later

stages. Future stickleback studies in which later develop-

mental stages can be included, and in which both meta-

genomic and host transcriptomic data are collected from

the same individuals, will address this potential source of

gut community and transcriptome variability.

Despite these technical differences across studies, we

found significant similarities regarding identity and general

expression direction of microbe-sensitive genes in the zebra-

fish study (Rawls et al. 2004) and our stickleback data set (see

supplementary fig. S8, Supplementary Material online). For

instance, as in zebrafish, we observed a marked signature of

the innate immune response based on the identity of genes

differentially expressed between GF and CV stickleback, such

as the granulocyte-specific gene mpx (myeloid-specific perox-

idase). Genes involved in the recruitment of these cells such as

Il8 (interleukin-8) and stat4 (signal transducer and activator of

transcription 4) were also among those differentially ex-

pressed. Gene Ontology terms associated with innate immu-

nity were overrepresented in the subset of stickleback genes

sensitive to the microbiota, and KEGG pathway analysis re-

vealed that pathways associated with innate immunity were

enriched for genes transcriptionally responsive to the micro-

biota in stickleback (see supplementary table S6,

Supplementary Material online). Also similar to zebrafish,

genes associated with nutrient metabolism were differentially

expressed between CV and GF stickleback. Examples from our

study include dao.3 (D-amino-acid oxidase, tandem duplicate

3), the fatty acid transporter slc27a2, and the sulfotransferase

sult5a1. These concordances between zebrafish and

stickleback confirm a conserved system of responses to mi-

crobes among vertebrates, as inferred from past comparisons

between zebrafish and mouse (Rawls et al. 2004).

Furthermore, our relatively small list of stickleback genes ro-

bustly influenced by the microbiota provides a manageable

subset of host genetic factors for future, manipulative studies

aimed at perturbing host–microbe interactions in gnotobiotic

stickleback.

A number of recent studies have identified regions of the

host genome at which genetic variation maps to variation in

microbial community structure and/or microbe-related disease

traits (reviewed in Goodrich et al. 2016). Candidate genes

near the genomic regions identified by this work, mostly in-

ferred using quantitative trait locus (QTL) mapping and

genome-wide association (GWA) approaches in humans and

inbred mouse lines, align with some genes and pathways we

identified as microbe-sensitive in stickleback. For example,

Benson et al. (2010) identified Ifng (interferon-gamma) and

Il22 (interleukin-22) as belonging to a genomic interval

strongly associated with the fraction of Gram-positive bacteria

in the mouse gut microbiome. As mentioned, stickleback

stat4, whose mammalian ortholog is a known regulator of

Ifng (Nguyen et al. 2002) and the inflammatory cascade in

general (Good et al. 2009), was expressed at higher levels in

CV stickleback. Also, isoform-specific expression patterns of

human STAT4 are associated with Inflammatory Bowel

Disease (Jabeen et al. 2015). There is currently no annotation

for an Il22 ortholog in stickleback, but one of its receptors

(il22ra2), which is regulated by the inflammasome and con-

trols colon epithelial cell proliferation in mammals (Huber et al.

2012), was expressed 2 to 3.5 times higher in CV relative to

GF stickleback.

Several mouse studies based on QTL and/or eQTL data

(Benson et al. 2010; McKnite et al. 2012; Leamy et al.

2014; Org et al. 2015) have reported that genetic variants

near genes in the Toll-like receptor (TLR) and T cell receptor

signaling pathways are associated with microbiota traits, with

gene expression patterns within the pathways, or with both.

Of the 72 stickleback genes that we found most influenced

transcriptionally by the microbiota in the larval gut, at least 13

have likely human orthologs represented in the TLR signaling

pathway or those directly linked (see supplementary table S3,

Supplementary Material online). These fundamental similari-

ties justify use of the gnotobiotic stickleback model in research

aimed at understanding how genetic variation maps to

human disease states related to host–microbe interactions.

Studies using stickleback offer advantages because experi-

ments in which control over environmental conditions

such as the microbiota, diet, housing conditions (and

others) are possible. To illustrate this potential, we evalu-

ated multiple sources of variation in stickleback gene ex-

pression by incorporating several additional factors into

our experimental design.
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Extensive Population-Specific Gene Expression in the
Stickleback Gut Reflects Evolutionary Divergence
among Hosts

The experimental factor that explained most of the global

variation and co-variation in transcriptional patterns of the

14 dpf stickleback gut was host population (fig. 2). Our find-

ing that 22% of the genes expressed in the larval stickleback

gut are differentially expressed between the two populations

is perhaps not surprising, given that the populations used in

our study have been isolated from one another for at least

9,000, and perhaps as many as 15,000 years (Cresko et al.

2004). These populations also show substantial genetic diver-

gence across the genome (Hohenlohe et al. 2010), and they

differ with respect to a number of morphological phenotypes

(Cresko et al. 2004; Kimmel et al. 2005). It should be noted,

however, that our study was restricted to three FW and two

OC families, largely due to logistical constraints. Although we

accounted for family-level variation in our analyses of popula-

tion differences in gene expression, larger samples of genetic

variation within populations (i.e. inclusion of many, unrelated

families) in future studies will provide less biased, more general

estimates of population divergence.

Recent studies of gene expression variation among other

threespine stickleback populations have focused on non-gas-

trointestinal tissues such as the liver (Nikinmaa et al. 2013;

Leder et al. 2015), and those associated with immune func-

tion, particularly the head kidney and spleen (Lenz et al. 2013;

Stutz et al. 2015; Huang et al. 2016). In these studies, the

magnitude of population-specific gene expression, and expla-

nations for its occurrence, has varied. Nikinmaa et al. (2013)

identified 1698 liver genes differentially expressed among

populations of F2 individuals reared under controlled labora-

tory settings, and Leder et al. (2015) inferred from similar data

that 1411 liver transcripts have diverged in expression pheno-

type among populations owing to directional selection alone.

Lenz et al. (2013) found a significant effect of population on

global head kidney gene expression in adult fish, but only for

those fish exposed to helminth parasites. Stutz et al. (2015)

provided strong evidence for environmental effects on head

kidney expression via qPCR for seven immunity-related genes,

by finding that fish experimentally transplanted to waters in-

habited by genetically distinct populations resembled the

unrelated resident fish more than related fish reared in their

native waters. Huang et al. (2016) demonstrated extensive

population differences in head kidney and spleen gene expres-

sion among wild-caught fish, while highlighting similarity

among different populations occurring in the same type of

environment (i.e. river versus lake).

More generally, few well-replicated, controlled laboratory

studies have measured population-level, genome-wide diver-

gence in gene expression. In those that have, insights regard-

ing the fraction of a transcriptome differentially expressed

range extensively, for example 0.41% for two hybridizing

crow species (Poelstra et al. 2014), 7.64% for two

Coregonus whitefish populations (Nolte et al. 2009), and

31.7% between African and European Drosophila melanoga-

ster populations (Hutter et al. 2008). The neutral and/or

adaptive accumulation of genetic differences in cis- and

trans-regulatory regions of genomes in diverging populations

could explain the expression disparities we observed in larval

stickleback, but the relative contributions from these different

mechanisms depend on time since divergence and on the taxa

being studied (Coolon et al. 2014). Future studies, including

assessments of allele-specific expression in between-popula-

tion crosses, for example, should address some of these out-

standing questions.

Developmental differences at 14 dpf between FW and OC

fish may at least partially explain the expression differences, as

both body size and the degree of gut epithelial fold complexity

are known to differ subtly in stickleback at this age (Milligan-

Myhre et al. 2016). Future studies that measure transcriptional

divergence at multiple developmental time points will be nec-

essary to address this possibility. For example, a valuable com-

parison would be to measure gene expression in adult

stickleback guts from multiple populations raised in the

same environment, as others have shown that microbial com-

munity structure in wild-caught adult guts differs substantially

among stickleback populations from Vancouver Island (Smith

et al. 2015). Assuming these differences in the gut microbiota

are at least in part explained by genetic variation, which has

been demonstrated in other vertebrate hosts (Goodrich et al.

2014; Davenport et al. 2015; Org et al. 2015; Sullam et al.

2015), widespread, evolved differences in digestive tract gene

expression among populations are a potential mechanism

connecting host genotype to microbial phenotype in

stickleback.

Sources of Global Transcriptional Variation in the Gut
Highlight Considerations for Future Host–Microbe
Systems Research

Given our conclusion that substantial divergence in host tran-

scription within the digestive tract can evolve on relatively

short timescales, studies of host–microbe interactions in ge-

netically heterogeneous host species deserve special consider-

ation. On the one hand, systems like stickleback are extremely

promising with respect to genetic mapping studies in which

variation for microbe-relevant traits such as gut transcription

or the microbiota are the focus. Especially diverse recombinant

phenotypes are expected in F2 progeny owing to the marked

genetic and phenotypic differences between parents in initial

between-population crosses. In mapping studies that use such

diverse populations, statistical power to detect QTLs should be

high. On the other hand, experimental inferences about host

or microbial biology made using a single host population may

not be extendable to other populations. In general, studies of

host–microbe relationships should include multiple host
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populations if possible, or at least be consistent in using the

same host population over multiple experiments, if results

from the experiments are to be interpreted together.

Variation in gut transcriptome dissimilarity among fish in

our experiment was also explained by family-level effects

nested within each population (fig. 3). Effects of family ex-

plained more than 9% of the total transcriptome dissimilarity

within each population, suggesting that segregating genetic

variation contributes significantly to gene expression patterns

in the stickleback gut. Authors of a recent quantitative genetic

study of transcriptional variation among livers of adult three-

spine stickleback (Leder et al. 2015) reported that narrow-

sense heritability for transcript abundance was, on average,

quite high (h2=0.23). The detectable family-level effects we

observed are consistent with larval gut gene expression pat-

terns being heritable, although our experimental design was

not intended to estimate quantitative genetic parameters like

heritability. This insight is again relevant to experimental

design for studies of host–microbe biology, as experimenters

should take care not to confound family with treatments of

interest. Furthermore, to understand host population- or spe-

cies-level effects on host–microbe traits, it is necessary to ad-

equately sample the genetic variation within these higher

levels by including individuals from multiple, unrelated families

when possible. Any treatment factors should be applied in a

randomized block framework, allowing for treatment levels to

be compared within groups of varying genetic structure.

We attempted to evaluate the effect of housing environ-

ment, as compared to the microbiota, on transcriptome dis-

similarity for a very limited subset (one OC and one FW family)

of individuals in our experiment. Unlike the clear influences of

host population and family on transcriptional patterns in the

full data set, the effects of housing and microbiota were weak

within these two families (see supplementary fig. S2,

Supplementary Material online), although our sample was

small. Rearing flask explained 10.98% and 9.37% of the var-

iation in gut transcriptome dissimilarity within the OC and FW

families, respectively, but we could not reject the null hypoth-

esis of no average flask effect in either case. The effect of

microbiota, for which we also could not reject the null hypoth-

esis, explained 5.15% and 6.57% of the variation, respec-

tively. One unanswered question regarding gnotobiology

experiments is whether conventional or experimentally con-

trolled microbiota treatments lead to more variance in host

traits relative to germ-free treatments. Such a pattern seems

likely for cases in which environmental or within-host commu-

nity structure is expected to be largely stochastic, for example

when communities are in early stages of assembly (Gillilland

et al. 2012), when host selective agents like the immune

system are ablated via mutation (Kubinak et al. 2015), or

when the immune system is immature (Burns et al. 2016).

Although this pattern would seem especially likely in very

young stickleback, we did not observe statistically significant

flask effects or greater transcriptome dissimilarity in CV

relative to GF flasks in our study. However, trends from the

data suggest that the effect of flask is greater than the effect

of the microbiota, and that transcriptome dissimilarity may be

greater among CV flasks. Given these tentative results and

other work demonstrating strong housing effects on the

microbiota (Hildebrand et al. 2013; McCafferty et al. 2013),

we strongly recommend that multiple rearing vessel replicates

- more extensive than those included in this study—should be

included for each factor or factor level combination in gnoto-

biology experiments to account for this potentially important

source of variation.

Interaction between Host Population and the Microbiota
Influences Specific Transcriptional Patterns in the Larval
Stickleback Gut

Stickleback have advantages over other experimental verte-

brate models such as mouse and zebrafish, given the ability to

sample a vast reservoir of host genetic variation in a tractable,

gnotobiotic experimental system (Milligan-Myhre et al. 2016).

In fact, the intersection of genetic variation and control over

key environmental variables is where stickleback promise to

offer novel insights into non-additive effects of host genotype

and environmental factors on traits related to microbes and

host health, a feature directly relevant to the notion of “per-

sonalized medicine.” Motivated largely by this potential for

the stickleback system to reveal statistical interaction between

host genotype and the microbial environment, we assessed

the phenomenon using our transcriptional data. The afore-

mentioned study by Lenz et al. (2013) provided evidence for

effects of an interaction between stickleback population and

parasite infection status on gene expression. In our previous

study (Milligan-Myhre et al. 2016), we documented a clear G-

by-E interaction, wherein the host response to microbes, as

measured by neutrophil abundance in the gut, was greater in

magnitude for stickleback from the OC population, relative to

fish from the FW population. We predicted that this host pop-

ulation-specific innate immune response to microbes might be

reflected in a parallel, widespread pattern across the larval gut

transcriptome.

We did not observe a significant, population-specific shift in

treatment-associated, global transcription patterns (fig. 4),

perhaps for the same reasons that we did not detect an

effect of the microbiota on multivariate gene expression pat-

terns in general (discussed above). Furthermore, after control-

ling the false discovery rate across gene-by-gene analyses, we

did not reject the null hypothesis of no interaction for any

gene. In general, statistical power of linear models is lower

for hypothesis tests of interaction terms, relative to those of

main effect terms, so higher replication at the family or indi-

vidual level may have changed this outcome.

We adopted a second, regression-based approach to iden-

tify genes and regulatory pathways most likely subject to an

interaction between host population and microbiota
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treatment. This approach has the advantage of revealing pat-

terns based on effect size (i.e. log2 fold change), as opposed to

FDR-adjusted interaction test p-values from many individual

differential expression tests, which are more likely to yield false

negative hypothesis tests. Both GO term overrepresentation

and KEGG pathway enrichment analyses based on this ap-

proach revealed that coagulation and complement cascades,

two closely connected pathways that underlie hemostasis and

innate immune responses, and are responsive to bacterial in-

fection in primates (Lupu et al. 2014), were positively regu-

lated by the microbiota in FW fish, but not in OC fish (see

supplementary fig. S12, Supplementary Material online).

Conversely, a suite of NOD-like receptors similar to mamma-

lian NLRC3, a negative regulator of inflammation in mice

(Schneider et al. 2012; Coutermarsh-Ott et al. 2016) and in

synovium from rheumatoid arthritis patients (Park et al. 2015),

showed the opposite pattern, as these NLRC3s were more

positively responsive to microbes in OC fish relative to FW

fish (see supplementary table S10, Supplementary Material

online). In mammals NLRC3 may reduce the activity of

NLRP3 inflammasomes—protein complexes that initiate

inflammatory cascades in response to both microbial and en-

dogenous signals (Levy et al. 2015) - by suppressing pro-

caspase-1 cleavage and interleukin 1ß maturation (Gultekin

et al. 2015). Inflammasomes have been shown to mediate

important host–microbe interactions (Wlodarska et al.

2014; Levy et al. 2015), and inflammasome dysfunction is

associated with inflammatory bowel disease (Levy et al.

2015; Opipari and Franchi 2015), so genotype-dependent,

microbe-sensitive gene expression of NLRC3 orthologs in

stickleback may be relevant in an evolutionary mutant

model context. Given the expression patterns for comple-

ment and NLRC3 genes, it is likely that multiple compo-

nents of stickleback innate immunity react to microbes in

fundamentally different ways depending on the genetic

background of the host.

One potential explanation for population-specific expres-

sion responses to the microbiota treatment in our study is

that the assemblage of microbes in the CV inoculum more

closely resembled the historical environmental microbiota of

wild OC ancestors relative to FW ancestors, or vice versa, re-

sulting in an asymmetric response. Currently we lack sufficient

information about the relative dissimilarities between the lab-

oratory microbiota, and the historical environmental micro-

biota of the two populations, to address this. Another

possibility is that, owing to genetic differences among host

populations, individuals select for different gut microbial as-

semblages, in turn affecting gene expression differently.

Exploring this explanation will require the characterization of

both microbial community structure and host transcription

from the same individuals, a strategy we were unable to

apply to the current study given limitations in the amount of

material from larval guts. Although the direct causes and eco-

logical and evolutionary implications of these “Genotype-by-

Microbiota” interactions are unclear at this stage, their exis-

tence warrants further investigation in stickleback and consid-

eration in other gnotobiotic models.

Because genetic variation among stickleback hosts influ-

ences the manner in which regulatory systems such as the

complement cascade and NOD-like receptor signaling re-

spond to the presence of microbes, and these conserved sys-

tems are relevant to disease in humans (e.g. Rittirsch et al.

2008; Saxena and Yeretssian 2014), stickleback may offer a

promising model for the study of microbiota-associated dis-

ease. Recent in vitro studies of human cellular responses to

microbes have revealed a clear importance of host genetic

variation (Quach et al. 2016; Richards et al. 2016). In vivo

systems like gnotobiotic stickleback, however, promise to

help inform on the genetic architecture of complex traits like

chronic inflammatory diseases, but in the context of the entire

host organism and its microbiota. Along these lines, the work

described here has set the stage for critical follow-up studies

that aim to identify specific regions of the genome underlying

variation in traits related to the immune response to and the

structure of microbial communities in the stickleback gut, in-

cluding GWAS, QTL, and eQTL mapping studies, approached

from a systems-level perspective. Through these approaches,

host models like stickleback, that leverage naturally occurring,

ecologically meaningful genetic variation, will make funda-

mental contributions to our understanding of interaction land-

scapes in host–microbe systems.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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