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04510, México, 3Departamento de Biologı́a Celular y Genética, Facultad de Ciencias Biológicas, Universidad
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ABSTRACT

Gene essentiality estimation is a popular empirical
approach to link genotypes to phenotypes. In hu-
mans, essentiality is estimated based on loss-of-
function (LoF) mutation intolerance, either from pop-
ulation exome sequencing (in vivo) data or CRISPR-
based in vitro perturbation experiments. Both ap-
proaches identify genes presumed to have detri-
mental consequences on the organism upon mu-
tation. Are these genes constrained by having key
cellular/organismal roles? Do in vivo and in vitro
estimations equally recover these constraints? In-
sights into these questions have important implica-
tions in generalizing observations from cell models
and interpreting disease risk genes. To empirically
address these questions, we integrate genome-scale
datasets and compare structural, functional and evo-
lutionary features of essential genes versus genes
with extremely high mutational tolerance. We found
that essentiality estimates do recover functional con-
straints. However, the organismal or cellular context
of estimation leads to functionally contrasting prop-
erties underlying the constraint. Our results suggest
that depletion of LoF mutations in human popula-
tions effectively captures organismal-level functional
constraints not experimentally accessible through
CRISPR-based screens. Finally, we identify a set of
genes (OrgEssential), which are mutationally intoler-
ant in vivo but highly tolerant in vitro. These genes
drive observed functional constraint differences and
have an unexpected preference for nervous system
expression.

INTRODUCTION

Understanding the patterns and phenotypic consequences
of genetic alterations is a fundamental problem in evolution
and development (1–4). A popular empirical approach to
link genotypes to phenotypes is by estimating the degree of
essentiality of a gene. A gene is considered ‘essential’ if it is
required to sustain life in cells or whole organisms, and this
requirement is often estimated by experimental perturba-
tions (5,6). The study of essential genes was originally con-
ducted on prokaryotes, due to their accessibility to genetic
manipulation. More recently, however, gene essentiality has
been estimated in multicellular eukaryotes, including mam-
mals (7). Despite the absolute character of the ‘essential’
gene denomination, data from multiple studies in model or-
ganisms have shown strong context dependency: genes are
required or not for survival depending on environmental
conditions and developmental stages (5,8,9).

The advent of sequencing technologies and gene edit-
ing techniques enabled the estimation of gene essentiality
in humans (6). The problem has been addressed follow-
ing two approaches. On one hand, systematic testing of
gene silencing effects on human cell cultures identifies genes
that affect cell viability or optimal fitness upon perturba-
tion (10–13). On the other hand, population-level statisti-
cal estimates of unexpected mutational depletion identifies
genes presumed to be subjected to functional constraints
(14). Both approaches aim at ranking genes according to
their effect on the organism (or cell) upon loss-of-function
mutations. However, given the context dependency of gene
essentiality, and the differences in the organizational level
at which the effects of genotypic changes are assessed, the
parallels of the two types of essentiality approximations are
unclear.

In vitro screens of mutation tolerance identify genes
with an immediate effect on cell proliferation and viabil-
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ity; consequently, the corresponding essentiality estimates
depend on the specific cell line and culture conditions be-
ing tested. Furthermore, cell culture experiments do not
capture developmental and functional constraints intrinsic
to the organism. In vitro estimation of gene essentiality is
thus inevitably tailored to cell viability. On the other hand,
‘in vivo’ measures of mutational tolerance estimated from
population-level genetic variation score genes according to
the prevalence/depletion of loss-of-function (LoF) muta-
tions. Genes under mutational constraint are assumed to
be consistent with a scenario where purifying selection fil-
ters out protein-altering mutations with detrimental effects,
thus eluding fixation within the population. In this sense,
in vivo estimates of mutational tolerance are considered a
proxy for the effect of mutations on organismal fitness. Such
effect, in turn, mirrors to some extent the notion of essen-
tiality in the context of population dynamics (5). Both es-
timation types (in vitro and in vivo) have been discussed
within the context of human gene essentially, nonetheless
(6). Hereafter we use the terms cellular viability (CV) and
organismal fitness (OF) to refer to the context in which
human gene essentiality is estimated: by means of in vitro
perturbation experiments (CV), or in vivo population-based
mutation tolerance estimates (OF).

Notably, in both the CV and the OF context, a subset of
mutational intolerant genes has been identified, leading to
the idea of defining an ‘essential genome’ containing genes
that do not tolerate mutations, and a ‘dispensable genome’
including mutation-tolerant genes (6,14). Intolerant genes
(essential) are commonly of interest due to their potential
detrimental effect on phenotype and disease association;
however, highly tolerant genes (nonessential) might be rel-
evant for evolvability, due to the plasticity they confer to
the system at longer time-scales––for example, as sources of
cryptic genetic variation (4) or possible editable links that
integrate subsystems (15). Hereafter we will use the terms
tolerant and intolerant to refer to human nonessential or es-
sential genes as estimated by the degree of LoF mutation
tolerance.

Despite the potential functional relevance of tolerant and
intolerant genes, an understanding of the molecular deter-
minants that discriminate between the two groups has been
only partially explored for humans (6). Moreover, an un-
derstanding of the dependency of molecular determinants
of gene essentiality on the differences between the opera-
tional context of estimation (CV, in vitro versus OF, in vivo)
is lacking. To address these problems, here we systemati-
cally defined groups of human tolerant and intolerant genes
and performed an integrative and comparative analysis of
the structural, functional, and evolutionary features asso-
ciated with gene essentiality. We analyzed the particulari-
ties and commonalities between genes that show extreme
(in)tolerance to LoF mutation in a given context: CV, OF
or both (Figure 1).

MATERIALS AND METHODS

Gene essentiality

Human gene essentiality estimations based on measures of
tolerance to LoF mutations were taken from (6). Estimates

include the following scores based on the Exome Aggrega-
tion Consortium (ExAC) sample of 60 706 human exomes
(14): residual variation intolerance score (RVIS) (16), Evo-
Tol (17), missense Z-score (18), LoFtool (19), probability of
haploinsufficiency (Phi) (20), probability of loss-of-function
intolerance (pLI) (14) and selection coefficient against het-
erozygous loss-of-function (shet) (21). Scores based on cell
culture perturbation-based experiments include data from
KBM7, Raji, Jiyoye, HCT116 and K562 cell lines (12);
the KBM7 cell line (10), and RPE1, GBM514, HeLa and
DLD1 cell lines (22).

Intrinsic structural disorder

Disorder predictions for each protein in the human pro-
teome were generated at residue resolution using IUPred
(23). A gene intrinsic disorder score was calculated by av-
eraging the predicted residue scores over the corresponding
protein. Scores range from 0 to 1, with higher scores indi-
cating a higher propensity toward intrinsic disorder.

Haploinsufficiency

A predictive genome-wide haploinsufficiency score (GHIS)
was obtained from (24).

Gene expression specificity

Reference RNA-seq data for human tissues was down-
loaded from the Genotype-Tissue Expression project
(GTEx.v7) (25) (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-5214/), and the Human protein
atlas (HPA) (26) (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-2836/). The GTEx dataset includes
53 tissues profiled from 961 donors. The HPA dataset
includes 32 tissues profiled from 122 control subjects. For
both datasets the median expression over replicates was
considered as the expression value of the tissue. Expression
breath values for each gene were calculated as the fraction
of tissues in which the gene is expressed, using an arbitrary
cut-off value of 2 RPKM to determine expression. Expres-
sion specificity was measured using the Tau statistic on the
same tissue-median matrix as computed in (27). Briefly, the
Tau statistic is calculated as follows:

τ =
∑n

i=1(1 − x̂i )
n − 1

; x̂i = xi

max1�i�n(xi )
,

where xi is the expression of gene x in tissue i and n is the
number of tissues. From this definition, Tau varies from 0
to 1, with ubiquitously expressed genes having 0 value and
extremely specific genes a value of 1.

Protein classifications

Proteins were classified as transcription factors (TF),
transporters, receptors, enzymes, peptidase, kinase, cancer-
related, and RNA-binding proteins (RBP) based on com-
bined curated annotations extracted from the Human Pro-
tein Atlas (https://www.proteinatlas.org/humanproteome/
proteinclasses) (26), TF reference in (28), RBPs reference
from (29), and transporters and receptors reported in (30).

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5214/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/
https://www.proteinatlas.org/humanproteome/proteinclasses
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Figure 1. Overview. (A) Mutational tolerance scores used to categorize human (in)tolerant genes. (B) Consensus mutational tolerance score derivation
(mean rank distribution) and corresponding (in)tolerant gene sets. (C–F) Features considered as potential determinants of mutational constraint and gene
essentiality, including structural and functional features (C), evolutionary (D), protein functional characterization (E) and expression enrichment (F).

Evolutionary conservation

Comprehensive gene homology information for each hu-
man gene with respect to 187 species was extracted from
Ensembl comparative genomics resources (31). Only one-
to-one orthology relationships were considered to build a
binary gene-species matrix. A gene conservation index was
calculated for each human gene as the fraction of species
having a corresponding ortholog (31). Gene duplication
data were extracted from (32,33).

Developmental annotations

Developmental expression classes and developmental pro-
cess gene annotations were downloaded from the On-
line Gene Essentiality database (OGEE.v2) at (http://ogee.
medgenius.info/downloads/) (33).

Mutational tolerance gene group definition

Mutational tolerance groups were defined based on con-
sensus tolerance scores estimated by averaging gene ranks
across available tolerance measures (OF, n = 6; and CV, n
= 10 measures). For all measures, as reported in (6), values
increase with the degree of intolerance to mutation: intol-
erant genes have high values. Tolerant genes were defined
as the bottom 20% genes in the consensus score rank (low-
est constraint) and Intolerant genes as the top 20% (highest
constraint). The choice of cut-off values captures extreme

values from a long-tailed distribution, which approximates
the cut-off proposed in (14) to define the widely used LoF-
intolerance metric pLI (cut-off pLI>0.9). Four additional
subgroups were defined based on the patterns of overlap
between intolerant and intolerant groups (Figure 2C): con-
sistent tolerant genes (n = 714 genes classified as tolerant in
both conditions), consistent intolerant genes (n = 771 genes
classified as intolerant in both conditions), organismal in-
tolerant but cellular tolerant genes (OI-CT) (n = 567 genes
classified as OF intolerant and CV tolerant), and cellular
intolerant but organismal tolerant genes (CI-OT) (n = 351
genes classified as OF tolerant and CV intolerant).

Analysis of gene set aggregation and centrality in the PPI
network

A reference human protein-protein interaction (PPI) net-
work was obtained from (34). Briefly, the network is based
on experimentally supported protein–protein interactions
from different sources that through a stringent orthology
mapping scheme recover 625 641 interactions among 17 530
human proteins.

The degree to which a set of genes is aggregated forming a
neighborhood within the PPI network was quantified using
three complementary approaches: (i) estimating the devia-
tion of the size of the subnetwork produced by genes within
the set and their interactions (module size) from expecta-
tion, (ii) estimating the strength of association among genes

http://ogee.medgenius.info/downloads/
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Figure 2. Mutational tolerant and intolerant groups definition. (A) Corre-
lation plot of mutational tolerance measures, adapted from (6). (B) Muta-
tional tolerance measures mean rank distribution. Tolerant and intolerant
gene sets are defined as the bottom and top 20%, respectively. (C) Venn di-
agram of the defined gene sets. Group intersections are highlighted to rep-
resent tolerant (714 genes) and intolerant (771) genes found consistently
in both OF and CV groups, and inconsistent genes found in contradictory
groups depending on the context.

within the set by clustering enrichment and (iii) contrast-
ing observed pairwise gene network distances with expec-
tation. Subgraph module size was calculated by counting
the number of nodes (Sc) and edges (Cc) of the largest con-
nected subgraph formed by proteins belonging to a given
gene set. Clustering enrichment was measured using spatial
analysis of network association, as implemented in SANTA
(35). Pairwise shortest distance between every protein pair
was measured using the igraph R package (36). The distance
distribution of each gene set was characterized by calculat-
ing its minimum (Ds) and mean (Dsm) distances. Network
centrality was calculated using three complementary mea-
sures: degree, betweenness and coreness. These measures
were quantified for every node using the igraph R package
(36). For each gene set and aggregation statistic, enrichment
was calculated by estimating the deviation of the observed
gene set average from that expected in a distribution ob-
tained from 10 000 randomly sampled gene sets of the same
size. Deviation was quantified with a z-score.

Network structural robustness analysis

Network robustness was characterized by measuring the ef-
fect on network structure of targeted removal of nodes ac-
cording to mutational tolerance ranking and estimating its
deviation from random expectation. Network structural re-
sponse was assessed by calculating the number of nodes (Sf)

and edges (Cf) in the perturbed largest connected compo-
nent after removing a fraction (f) of nodes relative to the
unperturbed measures. For each measure, random expecta-
tion was estimated by removing fractions from 0.01 to 0.99
of randomly selected nodes 10 000 times.

Functional enrichment and protein class distribution

Over-representation of gene functional features (GHIS, ID,
expression specificity, expression breadth, earliest stage ex-
pression and developmental process annotation) was esti-
mated by contrasting the gene set average and the random
expectation obtained from measuring the given feature in
10 000 randomly sampled same-sized gene sets. Deviation
in protein class distribution among gene sets was assessed
by quantifying the deviation of the percentage of genes be-
longing to each protein class from its random expectation as
estimated from 10 000 randomly sampled same-sized gene
sets.

Gene set evolutionary analysis

Starting from a binary gene-species matrix based on one-to-
one orthology relationships, species were classified by tax-
onomic group resulting in: Archaea (21 species), Bacteria
(99 species), Protozoa (16 species), Fungi (8 species), Plants
(9 species), Invertebrates (24 species) and Vertebrates (10
species). Percentage of orthologs was calculated for each
taxonomic group and mutational tolerance gene group. Or-
thology relationships were extracted from homologies re-
ported in Ensembl Compara v101 (37).

Tissue specific and expression enrichment

Patterns of preferential expression across tissues were as-
sessed using transcriptomic data (RNA-seq) from the
Genotype-Tissue Expression Project (GTEx) (51 tissues)
(25) and from the Human Protein Atlas (HPA) (32 tissues)
(26). Gene expression enrichment was estimated by pair-
wise differential expression analysis across all tissue pairs.
Differential expression was calculated using voom and lm-
Fit functions from the limma package in R (38). Expres-
sion enrichment scores are defined as the sum of the differ-
ential expression coefficients across comparisons, discard-
ing genes with a Bonferroni corrected P-value >0.05. Tis-
sue specificity of mutational tolerance groups was estimated
by quantifying per tissue and gene groups the deviation
from random expectation of expression enrichment scores.
Random expectation was estimated by randomly sampling
same-sized gene sets 10 000 times.

Gene set enrichment analysis

Gene ontology enrichment analysis was performed using
DAVID (https://david.ncifcrf.gov/summary.jsp) (39,40).

GWAS trait associated genes enrichment

Genome-wide association studies (GWAS) data were
downloaded from the NHGRI-EBI Catalog of human

https://david.ncifcrf.gov/summary.jsp
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genome-wide association studies (41). Significant asso-
ciations and mapped genes as reported by the Cata-
log were for the following traits were considered: can-
cer (EFO 1000654), type 2 diabetes (T2D, EFO 0001360),
Alzheimer disease (AD, EFO 1001870), amyotrophic lat-
eral sclerosis (ALS, EFO 0001357), Parkinson’s disease
(PD, EFO 0002508), schizophrenia (EFO 0004609), ma-
jor depression (EFO 0009854), cognition (EFO 0005229),
intelligence (EFO 0004337) and bipolar disorder (BP,
EFO 0009963). Over-representation of trait associated
genes among the (in)consistency mutational tolerance
classes was measured using Fisher’s exact test as imple-
mented in the R package SuperExactTest (42). Gene set en-
richment analysis was performed using fgsea package (43)
using GWAS associated genes, mutational tolerance mean
ranking scores for OF and CV measures, and the rank dif-
ference between OF and CV measures as input. A func-
tional classification of the top/bottom 15 genes in the rank
difference distribution associated with any trait was defined
using information from Uniprot (44).

Code and data availability

Code and data to reproduce results and all figures
are available through GitHub: https://github.com/jlcaldu/
Gene-essentiality-analysis.

RESULTS

Context-dependent mutational tolerance categorises human
genes

To define genes with extreme (in)tolerance to detrimental
mutation, as estimated from patterns of mutational deple-
tion in exome sequencing data (OF) or fitness effects in
CRISPR-based cell culture perturbation experiments (CV),
we first calculated for each gene and context a consen-
sus tolerance score by averaging gene ranks across avail-
able tolerance measures (OF, n = 6; and CV, n = 10 mea-
sures). The high pairwise correlation (average Pearson cor-
relation = 0.59, 0,42; OF, CV) between individual measures
within each context justifies the use of the proposed consen-
sus score (Figure 2A). We then defined a set of mutation-
intolerant (tolerant) genes based on the distribution of con-
sensus tolerance scores. We used the 80th percentile of the
distribution as arbitrary cut-off value, a choice that cap-
tures the extreme values observed in the long tailed distri-
bution of the measures, and which approximates the cut-off
proposed in (14) to define the widely used LoF-intolerance
metric pLI (cut-off pLI>0.9). In addition, we defined a con-
trasting, similar-sized set of mutation-tolerant (intolerant)
genes by selecting the 20% bottom ranked genes of the con-
sensus score distribution (Figure 2B). The size of the result-
ing gene sets are 3028 genes for both intolerant and tolerant
OF groups and 3139 genes for both intolerant and tolerant
CV groups. Exploring the intersection between gene sets, we
identified 714 tolerant and 771 intolerant genes with con-
sistent tolerance behavior across contexts. In contrast, we
identified 918 inconsistent genes, whose tolerance behavior
depends on the context (OF/CV) (Figure 2C).

Structural and functional constraints predict mutational tol-
erance classes

We next tested whether the different gene groups are dis-
tinctively associated with network structural, and with func-
tional molecular properties. Following previous studies that
point to a central role of essential genes in the interactome
(45–48), we first asked if (in)tolerant genes have contrast-
ing positions in the interactome and whether such pattern
is consistent in genes affecting both organismal and cellu-
lar fitness. From a network perspective, in the context of
the present study, we hypothesized that (i) mutational tol-
erance estimation may allow to identify evidence of a core
constrained neighborhood within the human interactome,
which is separated from a more peripheral, scattered layer
formed by mutationally tolerant genes and (ii) given the cen-
tral role of the intolerant neighborhood, perturbations af-
fecting the corresponding genes are more likely to confer
structural fragility to the entire system.

By measuring network features associated with node cen-
trality and aggregation (Figure 3A, see Materials and Meth-
ods section), we confirmed that irrespective of the context
of estimation, intolerant genes are aggregated and central
in the interactome (P values < 0.001, two-sided z test);
while tolerant genes consistently show the opposite behav-
ior: loose aggregation and peripheral positioning (Figure
3C and Supplementary Figure S1). To test the vulnerabil-
ity of the interactome to perturbations targeting tolerant or
intolerant genes, we analyzed the network’s behavior as a
function of the progressive removal of nodes in decreasing
order of mutational intolerance score (Materials and Meth-
ods section). This analysis further confirmed that there is
a strong association between mutational patterns and the
global structural properties of the interactome, revealing
that intolerant gene removal produces a higher structural
damage than random node removal (Figure 3B).

Our results suggest that global structural properties of the
interactome are related to mutational tolerance classes. We
reasoned that molecular properties suggestive of functional
constraint might discriminate tolerance groups as well.
By analyzing the degree of estimated haploinsufficiency
(GHIS), protein intrinsic disorder (ID), expression breadth
and specificity, we similarly found contrasting patterns be-
tween tolerant and intolerant genes. Intolerant genes are
more likely to be haploinsufficient, to have more intrinsic
disorder in protein structure, and to be more broadly ex-
pressed across tissues; while tolerant genes show exact op-
posite behavior (Figure 3D and Supplementary Figure S1).
Together, our results confirm that mutationally tolerant and
intolerant genes can be consistently discriminated by fea-
tures indicative of structural and functional constraints, and
that this property is independent of the context in which tol-
erance is estimated (OF or CV).

Evolutionary history of tolerance gene classes

Gene essentiality and interactome centrality have been
previously related to evolutionary conservation, with a
tendency for topologically central and essential genes to
be conserved (evolutionarily old) (49,50). We analyzed
whether the tolerance gene groups identified here similarly
have contrasting evolutionary conservation patterns, and

https://github.com/jlcaldu/Gene-essentiality-analysis
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Figure 3. Structural and functional constraints. (A) Network features mea-
sured in the PPI. (B) Structural robustness of the PPI after random removal
of nodes (gray lines) and directed removal of genes ranked by mutational
intolerance score (inset shows the pattern around the 20% of nodes re-
moval, corresponding to the intolerant gene sets). (C) Deviation (z score)
of every network feature. (D) Deviation (z score) of the functional features
measured for every gene set (significance: P < 0.05 = n.s., 0.001 < P < 0.05
= *, 0.0001 < P <0.001 = **, P < 0.0001 = ***).

whether associations are consistent in genes affecting or-
ganismal or cellular fitness. We analyzed two features of
evolutionary conservation: gene orthology and paralogy.

First, we evaluated the degree of gene conservation by
calculating a gene conservation index (CI) that measures
the proportion of species in which a human gene has a one-
to-one ortholog (Figure 4A). We considered a total of 187
species from 7 taxonomic groups (archaea, bacteria, pro-
tozoa, fungi, plants, invertebrates and vertebrates) (Materi-
als and Methods section). Intolerant genes are significantly

more conserved than tolerant genes in both OF and CV
contexts (pval < 0.0001, two-sided z test) (Figure 4B and
Supplementary Figure S2). Notably, however, the conser-
vation of intolerant genes that affect cell viability is consid-
erably higher than that of genes affecting organismal fitness.
To further explore the difference in conservation, we calcu-
lated the proportion of genes having a one-to-one ortholog
by taxonomic and tolerance group (Figure 4C). This anal-
ysis revealed a clear difference between CV and OF gene
groups. In particular, CV intolerant genes are more rep-
resented in every taxonomic group except for vertebrates,
while the behavior of OF intolerant genes does not deviate
from random expectation, presenting only a marginal en-
richment among Plants and Fungi and depletion in Bacte-
ria (Figure 4C). This result demonstrates deep conservation
of intolerant genes affecting cellular viability in humans,
possibly reflecting the relevance of such genes in core cell-
autonomous functions.

We next analyzed the association between tolerance
groups and copy number variation, considering the number
of gene duplication events represented in each gene group.
The number of duplication events is consistently depleted
among intolerant genes in both OF and CV. In contrast, tol-
erant genes show over-representation of duplication events,
but only in the OF context. These results are consistent with
a scenario in which paralogs might be buffering phenotypic
effects of gene deletion (51) (Figure 4D). The evolutionary
pattern of reduced duplication events in intolerant genes is
also consistent with a reduction in gene family size distri-
bution for intolerant relative to tolerant genes (Supplemen-
tary Figure S2). Together, these results confirm that there
is a marked difference in the evolutionary history of tol-
erant versus intolerant genes. Within tolerant classes, we
also found differences between genes that affect cell viabil-
ity (CV) or organismal fitness (OF): CV intolerant genes are
evolutionarily older than OF genes, and only OF but not
CV tolerant genes tend to keep multiple gene copies in evo-
lutionary history, suggesting that only organismal but not
cellular fitness captures a role for paralogs on phenotypic
buffering––organismal.

Molecular classes predict context-dependent mutational tol-
erance

Our previous results revealed differences in the evolutionary
history of tolerance gene classes that affect CV or OF, sug-
gesting that the deep conservation of intolerant genes with
effect in cellular viability possibly stems from their role in
core unicellular functions. To further explore this associa-
tion and unravel the differences between OF and CV gene
sets, we analyzed the differential over-representation of tol-
erance gene groups within protein classes and gene ontology
terms.

We again found differences in the protein class distribu-
tion of (in)tolerant genes, depending on the context of in-
fluence CV or OF (Figure 5A). Protein kinases, receptors,
transcription factors (TF) and cancer associated proteins
show an unexpected contrasting pattern in CV versus OF
context, with enrichment of OF intolerant genes but deple-
tion of CV intolerant genes, and a reverse pattern for toler-
ant genes: enrichment for CV and depletion for OF. Thus,
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Figure 4. Genes evolutionary features. (A), Presence of gene orthologs among taxa, each row shows the presence (black) of an ortholog in the given taxon.
(B) Deviation of mean gene C.I. (C) Percent of genes with an ortholog in each taxon (random expectation is shown in black). (D) Deviation in the number
of singleton and duplicated genes per set. (significance: P < 0.05 = n.s., 0.001 < P < 0.05 = *, 0.0001 < P <0.001 = **, P < 0.0001 = ***).

Figure 5. Protein class distribution and gene ontology term enrichment. (A) Percent of genes belonging to each protein class distribution, dashed horizontal
lines indicate the random expectation, deviation from expectation is shown on top of each bar (significance: P < 0.05 = n.s., 0.001 < P < 0.05 = *, 0.0001
< P <0.001 = **, P < 0.0001 = ***). (B) Top five enriched terms from functional cluster enrichment (DAVID) for each gene set.



8 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 3

these four protein categories, which together have a key role
in developmental processes and associated signaling path-
ways, tend as a group to not tolerate LoF mutations in the
human population, yet are not strongly required for human
cell viability.

Gene ontology enrichment analysis further supports the
difference between tolerance groups depending on CV or
OF context, with distinct over-represented terms (Figure
5B). Consistent with the previous result, OF intolerant
genes show over-representation of gene ontology terms re-
lated to development and cell communication, such as tran-
scription regulation, kinases and synapse. CV intolerant
genes, on the contrary, show over-representation of core cel-
lular processes related to cell energetics, replication, tran-
scription and translation. Consistent with contrasting func-
tional properties of mutational gene tolerance classes de-
pending on context, human genes that tolerate LoF muta-
tions in cell culture are over-represented in processes related
to cell adhesion and communication, i.e. in processes that
do not tolerate mutations in the human population context
(OF) (Figure 5B).

Contrasting tissue-specificity and developmental activity of
(in)tolerant genes

While global network structural and molecular functional
properties provide evidence of consistent strong functional
constraint on genes that do not tolerate LoF mutations in
either human populations (OF context) or in human culture
experiments (CV context); more detailed analyses of evo-
lutionary history, protein classes and gene ontology terms
suggest that the two contexts (OF and CV) capture distinct
functional roles of intolerant genes in the organism. To fur-
ther explore the hypothesis of contrasting functional con-
straints, we gathered and interrogated data informative of
developmental involvement and tissue-specific expression.

First, we evaluated the distribution of developmental
stages in which genes are first expressed. Intolerant genes
are expressed earlier in development than tolerant genes in
both OF and CV contexts (Figure 6A), with at least 98% of
the genes already expressed in prenatal stages. On the con-
trary, tolerant genes are depleted in prenatal stages and pref-
erentially expressed after birth. This similar pattern of early
expression is consistent with the high involvement of both
TF-mediated specification, cell-attachment and core cellu-
lar replication in embryogenesis and organogenesis. How-
ever, when considering curated gene sets involved in spe-
cific developmental processes, we found a contrasting pat-
tern between OF and CV gene sets, consistent with previous
results. In OF context, intolerant genes are over-represented
in every developmental category, while tolerant genes are
depleted in all categories. In sharp contrast, in CV context,
tolerant genes are over-represented in developmental pro-
cesses, while intolerant genes are depleted (Figure 6B). This
result further supports the view that genes intolerant of LoF
mutations in the human population are preferentially in-
volved in organismal development, and that the same con-
straint is not captured by in vitro screens of gene essentiality.

In addition to developmental-stage associations, we next
explored whether (in)tolerant gene classes of CV or OF
context recover distinct preferential behavior in adult tis-

sues. We used RNA-seq data from the Genotype-Tissue Ex-
pression (GTEx) project (25) to analyze patterns of tissue-
specific expression. First we performed gene expression
specificity analysis to compute for each tissue and gene a
quantitative measure of specific expression relative to all
other tissues (Materials and Methods section). We then
used the specificity values to estimate the degree to which a
gene tolerance group shows unexpectedly high preferential
expression in a given tissue relative to random expectation.
We performed these calculations independently for each tis-
sue and tolerance group, and for each context (CV or OF).
We found both common and particular patterns of behavior
among OF and CV contexts. We found consistent opposite
behavior in tissue preference in tolerant versus intolerant
genes: in both contexts tissues with preferential expression
of intolerant genes show depleted preferential expression of
tolerant genes, and vice versa (Figure 6C).

Next, to contrast the tissue-preference behavior of toler-
ance groups in each context, we ordered the tissues by their
relative preference to preferentially express intolerant ver-
sus tolerant genes. We measured this preference by the ratio
of how each tissue ranks in intolerant versus tolerant pref-
erential expression. Using this approach, tissues that tend
to preferentially express intolerant genes and not tolerant
genes appear on top (Figure 6C). Notably, this analysis un-
covered a contrasting behavior between OF and CV con-
texts: tissues from the central nervous system as a group (n
= 12 brain regions) show the largest relative preference of
intolerant gene expression in the OF context and the least
preference in the CV context. In other words, we found that
the adult human brain tends to preferentially express genes
that do not tolerate LoF mutations in the human popula-
tion while preferentially repressing both OF tolerant genes
and genes required for cell viability (CV intolerant genes)
(Figure 6C). The other tissues do not show any clear pattern
distinguishing CV and OF measures. We corroborated the
reproducibility of these results by using independent gene
expression reference data form the human protein atlas (26)
(Supplementary Figure S3).

Genes with inconsistent mutational tolerance behavior

The contrasting patterns found in OF versus CV gene
groups suggests that genes with an inconsistent toler-
ance behavior across contexts might be driving the ob-
served functional differences. To test this hypothesis and
to identify specific genes that capture the differential func-
tional constraints accessible through population-based ver-
sus CRISPR-bases essentiality estimations, we defined
(in)consistency mutational tolerance classes and repeated
all association analyses for the new groups (Figure 7A).
We identified a group of 567 genes that do not tolerate
LoF mutations in human populations, but that are not re-
quired for survival in human cells (organismal intolerant
but cellular tolerant genes, OI-CT). Similarly, we identified
a group of 351 genes that are cellular intolerant but organ-
ismal tolerant (CI-OT). Consistent with our previous re-
sults, OI-CT genes include major TF regulators of early cell
lineage specification (e.g. SOX1, PAX6 and OLIG1), mem-
bers of signaling pathways regulating these TFs (NOTCH1,
NOTCH3, SMAD1), and genes encoding proteins relevant
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Figure 6. Gene set enrichment in tissue-specific expression, temporal stage expression and developmental processes. (A) Cumulative distribution of gene
set percentage of genes first expressed by developmental stage. (B) Number of genes per gene set associated with a developmental process. (C) Expression
enrichment deviation by tissue, tissues are ordered according to rank log ratio. Tissues highlighted with a star are part of the central nervous system (sig-
nificance: P < 0.05 = n.s., 0.001 < P < 0.05 = *, 0.0001 < P < 0.001 = **, P < 0.0001 = ***).

for noncell autonomous physiological integration (e.g. ion
channels CACNA1C, CLCN3, GABRA1) (Supplementary
Data S1).

As expected, association analyses revealed clear differ-
ences in these two inconsistent groups (OI-CT and CI-
OT), in particular with respect to categories with contrast-
ing behavior in OF versus CV gene sets. OI-CT genes are
associated with gene ontology terms related to transcrip-
tional regulation and neuronal communication, while CI-
OT genes are associated with unicellular functions (Fig-
ure 7B). Similarly, protein classes with contrasting behav-
ior in OF versus CV (i.e., TFs, receptors and kinases) are
highly over-represented in OI-CT (Figure 7C). Notably, the
same enrichment patterns are not observed when consider-
ing (in)tolerant genes with consistent behavior in both OF
and CV contexts.

We similarly identified discrepancies in the evolutionary
history of the new gene groups. OI-CT genes have less or-
thologs than expected within every taxonomic group ex-
cept for Vertebrates, suggesting that many of these genes
emerged relatively late in evolution, in pair with the emer-
gence of vertebrates (Figure 7D). To further explore this ob-
servation, we calculated the number of genes in each tol-
erance gene subgroup that have one-to-one orthologs only
within vertebrates, and not in other taxonomic groups. This
analysis confirmed that >80% of OI-CT genes are exclu-
sive to the vertebrate branch, in sharp contrast with both
consistently intolerant genes and with CI-OT genes (Figure
7E). Lastly, OI-CT genes are also highly over-represented
within every developmental process considered (Figure 7F)
and are preferentially expressed in adult human brain tis-
sues (Figure 7G). The evolutionary and functional patterns
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Figure 7. Consistent and inconsistent subgroups analyses. (A) Subgroups definitions based on the overlap between OF and CV gene sets. (B) Ontology
term enrichment for each subgroup. (C) Protein class distribution enrichment. (D) Percent of orthologs in each taxon, color of the column indicates
subgroup, black column shows the expected values. (E) Percent of genes that only have orthologs among vertebrates. (F) Enrichment of gene presence in
developmental processes. (G) Brain tissues expression enrichment (significance: P < 0.05 = n.s., 0.001 < P < 0.05 = *, 0.0001 < P < 0.001 = **, P <

0.0001 = ***).

associated with the OI-CT group suggests that the genes in
this group are relevant for organismal physiology.

Mutational intolerant genes nonessential for cell survival are
associated with brain disease and cognitive traits

Because OI-CT genes are evolutionarily novel, involved in
development, preferentially expressed in the brain, and do
not tolerate deleterious mutations in the human popula-
tion; we hypothesized that their function might be associ-
ated with phenotypic traits characteristic of humans. To test
this hypothesis, we compiled genes associated with cogni-
tive traits (cognition and intelligence), psychiatric disorders
(schizophrenia, depression and bipolar disorder BD) and
neurodegenerative diseases (Alzheimer’s disease [AD], amy-
otrophic lateral sclerosis [ALS] and Parkinson’s disease
[PD]). These and related traits and diseases have been con-
sidered either of particular relevance for human biology or
human-specific (52–54). For contrast, we included cancer
and type 2 diabetes (T2D), diseases not directly associated
with cognitive traits. In support of our hypothesis, we found
that every disease gene set is over-represented in the OI-CT
genes, with the psychiatric/cognitive traits having higher

fold enrichment (FE > 2 for every gene set) than the other
traits (Figure 8A). In almost every other tolerant class dis-
ease associated genes are underrepresented, the only excep-
tion being consistently tolerant genes, where cancer genes
are over-represented. This pattern is consistent with the rel-
evance of OI-CT gene function in organismal physiology,
and in cognitive functions and human brain neurophysiol-
ogy in particular. We further explored these associations by
investigating more globally the degree to which large differ-
ences in the degree to which genes tolerate detrimental mu-
tation in the human population versus in cell culture con-
ditions tend to recover physiologically relevant genes. To
this end, we scored every gene by the rank difference be-
tween its OF and CV tolerance scores and tested whether
GWAS trait associated genes tend to have unexpectedly
large rank differences (Figure 8B and C). We found that, in-
deed, GWAS genes have large OF-CV rank differences, with
stronger enrichment than that obtained when considering
OF or CV tolerance scores alone, with the latter lacking
any significant association. Among GWAS traits, cognitive
and psychiatric traits showed the highest association with
OF-CV rank differences, indicating that genes associated
with these traits are particularly intolerant of detrimental
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Figure 8. Subgroups association with psychiatric disorders and cognitive traits. (A) Over-representation of GWAS associated genes and (in)consistent
tolerance groups. Fold enrichment (FE) of observed over expected overlap. Gene sets are colored according to the trait classification. (B) Cumulative
sum of genes belonging to each GWAS set, genes sorted by the difference in OF and CV mutational tolerance rank. (C) Normalized enrichment score
(NES) from gene set enrichment analysis (GSEA) performed test over-representation of GWAS genes with respect to CV, OF, rank difference scores. (D)
Top/bottom 15 genes with extreme difference in OF and CV mutational tolerance scores and their traits and functional annotations. (significance: P >

0.05 = n.s., 0.001< P <0.05 = *, 0.0001< P <0.001 = **, P < 0.0001 = ***).

mutation in the human population and yet nonessential for
cell survival (Figure 8C). To examine whether gene function
might help explain such a pattern, we looked more closely
at the GWAS genes having the most extreme top/bottom
OF-CV rank differences (Figure 8D). Genes with high OF
and low CV ranking, and thus mutationally constrained in
humans but not in cells, tend to be involved in neurode-
velopment and signal transduction, and to function as ion
channels; processes relevant for multicellular communica-
tion and proper brain structure/function. On the other ex-
treme, genes with high CV and low ranking, and thus muta-
tionally constrained in cells but not in humans, are associ-
ated with cell autonomous functions like cell replication and
transcription. This evidence demonstrates that genes with
contrasting mutational tolerance behavior are indeed asso-
ciated with cognitive traits, which are biologically relevant
functions with a more recent evolutionary history.

DISCUSSION

We examined the degree to which measures that rank hu-
man genes according to their degree of tolerance to LoF
mutations capture functional constraints. We considered

tolerance estimations based on either in vivo exome-based
population data or in vitro CRISPR-based perturbation ex-
periments. To interpret evidence of differences in functional
constraint in essential versus mutational tolerant genes, we
integrated genome-wide data related to gene function, in-
cluding structural, functional and evolutionary features.
Our results indicate that intolerant genes (i) form a core
network neighborhood in the human protein interactome,
(ii) are enriched in molecular properties suggestive of func-
tional constraint, (iii) are evolutionarily conserved and (iv)
show preferential expression in specific tissues and develop-
mental stages (Figure 9). The molecular and network prop-
erties that consistently discriminate intolerant from toler-
ant genes suggest that essentiality estimates based on muta-
tional tolerance inference do recover functional constraints,
irrespective of estimation context (OF or CV). However, we
also found differences in the discriminatory properties of
genes depending on whether their tolerance to mutation was
estimated at the organismal or cellular level.

Consistent with previous observations (6,14), we found
that structural network properties consistently discriminate
tolerance/essentiality classes. Intolerant genes are central
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Figure 9. Results summary. Enrichment patterns of the main features found associated with genes essentiality. Top panel: Structural and functional features
distinctive of tolerant/intolerant genes irrespective of the context. Bottom panel: Distinctive features that show a divergent pattern depending on the context
in which mutational tolerance is defined.

and localized in the human interactome, while tolerant
genes are dispersed in the periphery. This relative organi-
zation predicts preferential vulnerability of the cell to in-
tolerant gene failure, a principle that we confirmed by sim-
ulated network perturbation analysis. Both centrality and
perturbation results provided results consistent with the hy-
pothesis of a dominant role of intolerant genes in influenc-
ing cell behavior. Molecularly, intolerant genes also show
properties often associated with gene functional relevance.
We observe a significant tendency (FDR<0.01) for intol-
erant genes to be haploinsufficient, to have structural dis-
order and to be broadly expressed. In contrast, tolerant
genes show under-representation of these properties. These
observations further support the functional relevance of
intolerant genes, as similar to broadly expressed (55), in-
trinsically disordered proteins are highly pleiotropic given
their structural flexibility and interaction promiscuity (56),
while dosage alteration of haploinsufficient genes is simi-
larly prone to be detrimental (57).

From an evolutionary perspective, we also observe a clear
distinction between tolerant and intolerant genes, consis-
tent with previous reports (48,50). Genes intolerant to LoF
mutations have an older evolutionary history, with deep
one-to-one orthology across species. Notably, we found that
this evolutionary pattern is accentuated in intolerant genes
estimated at the cellular-level compared to those measured
at the organismal-level, suggesting that CV intolerant genes
are more prone to be involved in basic cell-autonomous
processes shared among all taxa, with prominent presence
in unicellular organisms. In contrast, OF intolerant genes

are either not enriched in unicellular groups (Archaea and
Protozoa) or are underrepresented in Bacteria, suggesting
that these genes emerged more recently in evolution and ac-
quired a central role at a higher level of multicellular orga-
nization.

The idea that the context at which mutational tolerance
is estimatimated discriminates genes operating at different
levels of organization is reinforced when considering the
differences we found in molecular classes among tolerance
groups. The ontology terms associated with CV intolerant
genes (e.g. mitochondria, RNA processing, ribonucleopro-
tein and cell cycle) relate to core functions required for cell
survival, such as cellular metabolism and replication. On
the contrary, CV tolerant genes relate to intercellular ad-
hesion and communication (glycoprotein, cell junction and
protein kinase). In sharp contrast, OF intolerant genes are
enriched in functional features key to multicellularity, such
as organismal development and cell–cell communication,
as evidenced by over-representation of transcriptional reg-
ulators, synapse genes, kinases and receptors. These results
suggest that OF measures recover functional constraints
stemming from multicellularity and organismal regulation,
a property not readily captured by CV estimations. Consis-
tent with this view, by considering curated gene annotations
for developmental processes, we found that genes involved
in developmental processes are enriched for OF intolerant
genes and CV tolerant genes, and depleted in OF tolerant
genes and CV intolerant genes.

Contrasting behaviors also manifest in tissue-specificity.
We found that OF intolerant and CV tolerant genes are
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preferentially expressed in the adult human brain, in con-
trast with the underexpression of both OF tolerant genes
and genes required for cell viability (CV intolerant genes).
The over-representation of OF intolerant genes in the adult
brain requires a careful explanation, considering additional
functions of these pleiotropic genes in the organism and
close relatives, and potential reasons why they might be
structurally constrained, a study beyond the scope of the
current paper. From the current results, we speculate that,
in addition to multicellular functional constraints, the de-
pletion of LoF mutations estimated in human populations
might capture constraints stemming from functional prop-
erties of species-specific relevance, such as higher cognition
and associated traits grounded on the complexified human
brain (54).

Although essentiality estimates from both cellular and
organismal contexts do recover functional constraints, we
found that a subgroup of 567 genes estimated as essen-
tial at the organismal level, yet nonessential at the cellu-
lar level, is responsible for the contrasting functional pat-
terns found between OF and CV intolerant genes. These
genes, which we refer to as (OrgEssential), are enriched
in developmental processes, transcriptional regulation and
neuronal communication and are preferentially expressed
in the human brain. Furthermore, these genes are also as-
sociated with cognitive and psychiatric traits, underscoring
the functional relevance of human-specific constraints re-
covered only from the organismal level of mutational in-
tolerance. Despite being evolutionary younger than other
essential genes, sharing one-to-one orthologs mainly with
Vertebrates, OrgEssential genes seem to have developed a
central role in the organism, providing an example of how
during evolution novel genes can acquire essential proper-
ties by acting at levels of biological organization beyond
core cell functionality.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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