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Abstract: In this study, a double-walled and pomelo-like hierarchical shear thickening fluid (STF) is
successfully encapsulated using the simple and environment-friendly calcium alginate encapsulation
technique by instilling STF into sodium alginate (SA) and crosslinking by calcium chloride solution.
The encapsulated STF has a pomelo-like structure with a shell thickness of 2.9 µm and core pores
with a size of 21.43 µm. The effect of the size of STF capsules (2.10, 1.89, 1.86, 1.83, 1.73, and
1.63 mm) is explored in terms of thermal stability, swelling capacity, mechanical property, and
release performance. The buffering performance of different sizes of STF-containing capsules is
also investigated. The pomelo-like STF capsules can withstand a processing temperature of 250 ◦C.
With a decrease in particle size, the compression strain energy slowly increases first and then
rapidly enhances. The kinetic release of pomelo-like STF capsules conforms to Fickian diffusion.
STF-containing capsules with a diameter of 1.83 mm present the greatest thermal stability, the highest
STF amount, the maximum swelling coefficient, and the fastest kinetic diffusion. STF-containing
capsules also have an improved buffering performance in PU foam. This capsule has the best
comprehensive performance and can adapt to diversified applications, such as personnel armor and
other protective sports equipment.

Keywords: pomelo-like capsules; hierarchical structure; shear thickening fluid; size regulation;
compression response

1. Introduction

An increased demand for the quality of life and the increasing popularity of outdoor activities
have led us to require outfits that offer functionalities other than comfort and beauty. More people
additionally want their clothes to be impact resistant, especially extreme athletes and the elderly.
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Consequently, people and equipment should be protected from possible danger or risk. Considerable
studies on how to improve the impact resistance of materials have been performed. Preliminary studies
on natural objects have revealed that reverse engineering can synthesize superior impact-resistant
biomimetic composites with hierarchical multi-scaled structures similar to nacre. In addition to impact
resistance, flexibility is required for composites to protect users and facilities [1].

Shear thickening fluid (STF) is a non-Newtonian fluid that becomes viscous when the shear stress
rate increases. Its viscosity reaches the maximum at a critical shear rate [2–4]. STF is commonly used
in protective areas because of high viscosity, multiple components, and shear thickening effect [5,6].
Fu et al. added STF to carbon fibers to attain a combined surface with greater shock resistance and
energy absorption [7]. Majumdar et al. proposed STF-impregnated woven aramid fabrics to make
flexible body armor, which has greater stab resistance properties and strengths [8]. In many studies,
STF is added to foam materials to improve their buffering resistance property [9–12]. Nevertheless,
impregnating a matrix with STF is difficult, and removing STF from a substance is easy, resulting in a
poor stability. Products made of STF/substance materials are not comfortable and flexible for users.
Furthermore, silica (SiO2) particles in STF are easily removed from an impregnated substance, which
is harmful to human health. STF encapsulation, an effective and simple method, can improve the
comfort and prolong the life span of STF impregnated with a substance material.

The encapsulation of STF is rarely studied. Zhang et al. successfully encapsulated STF and yielded
double-layered capsules via interfacial polymerization, through which the cortex is polymerized
from polyethyleneimine (PEI), diisocyanate prepolymer, and toluene [13]. They used the two-step
aggregation method, thereby increasing the operability of STF [14]. However, this method is complex
and costly to operate. The selection of a cortex limits the application range of STF capsules. The orifice
coagulation bath method has been applied [15,16]. In our previous study, a shear thickener is
successfully encapsulated by using the orifice coagulation bath method [17]. As a common and simple
encapsulation method, orifice coagulation method has superior characteristics, such as simple device,
easy operation, low cost, and uniform particle size. In this method, polymers from a nozzle are formed
into capsules with sizes ranging from 500 µm to 1 mm by crosslinking and curing. In the present
study, the selected cortex was calcium alginate (sodium alginate) cross-linked by calcium chloride.
Calcium alginate, as a biocompatible and non-immunogenic polymer, is degradable, cheap, and easily
industrialized [18,19]. STF capsules which have a pomelo-like hierarchical structure, were prepared
via the orifice coagulation method. The effect of the size of STF capsules is explored in terms of thermal
stability, swelling capacity, mechanical property, release performance and buffering performance.
The determined optimal capsule size could be used as a reference for conducting further studies.

2. Experimental Section

2.1. Materials and Methods

PEG 200 has an average molecular weight (MW) of 190–210. Liquid paraffin has a relative density
of 0.835–0.855. Anhydrous ethanol, sodium alginate (SA), and calcium chloride have mass fractions of
≥99.7%, 90%, and ≥96%, respectively. SiO2 has a size of 500 nm, a mass fraction ≥99.5%, and a MW
of 60.08. Span 80 (MW = 428.61) and Span 20 (MW = 346.46) were purchased from Tianjin Sanjiang
(Serida) Technology Co., Ltd., Sanjiang, China.

2.2. Preparation of STF

PEG 200 (40 mL) was stirred in a beaker at 100 r/min, Afterward, 500 nm SiO2 (10 g) and anhydrous
ethanol (80 mL) were infused. The mixture was blended with an agitator at 600 r/min for 6 h. processed
with ultrasonic oscillation for 3 h, and dried in an oven for 24 h to remove the air bubbles. STF was
obtained after anhydrous ethanol completely evaporated.



Polymers 2019, 11, 1138 3 of 15

2.3. Preparation of STF Capsules

Figure 1a shows the process of producing STF capsules. Hydrophobic surfactant (Span 80) was
added to liquid paraffin and fully mixed. Next, STF was dropped into liquid paraffin, magnetically
stirred at 1000 r/min at 25 ◦C for 30 min. The final product was a water-in-oil (W/O) emulsion) called
colostrum, A hydrophilic surfactant (Span 20) was added to a sodium alginate solution, fully mixed,
and slowly added with colostrum. The mixture was mixed with a magnetic stirrer at a speed of
100 r/min at 25 ◦C for another 20 min, thereby forming a water-in-oil-in-water (W/O/W) multiple
emulsion [20,21]. W/O/W multiple emulsion was sucked into a 10 mL syringe with a specified orifice
diameter of 1.55 mm. The syringe was then fixed to a microinjection pump, which operated at a
driving speed of 10 µL/min, pushing multiple emulsion into a prepared calcium chloride solution to
form spherical droplets. Subsequently, the crosslinking between sodium alginate and calcium chloride
provides the STF capsule with a solid surface [22]. The collected capsules were rinsed thrice with
deionized water and dried on a water/oil absorbent paper at room temperature. The calcium-alginate
shells of STF capsules were formed as a result of the cross-linking of sodium alginate and calcium
chloride. Six kinds of particle size capsules (2.10, 1.89, 1.86, 1.83, 1.73, and 1.63 mm) were prepared in
this study, and the particle size distribution is shown in Figure A1.

In Figure 1b, sodium alginate containing STF and liquid paraffin was dropped into a calcium
chloride solution. Large Ca2+ concentrations from calcium chloride solution replaced Na+ from
sodium alginate and then cross-linked with –COO– to form calcium alginate. STF capsules have a
liquid STF core and a hierarchical pomelo-like shell structure because W/O/W drops were sealed in the
capsules during the crosslinking and curing of shells. Calcium alginate does not dissolve in water and
serves as capsule shells [20,22,23].
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Figure 1. (a) Preparation process of STF capsules and (b) the schematic diagram of reaction principle
for the shells of capsules.

2.4. Measurements and Characterizations

A Malvern rotational rheometer was used to measure the rheological properties of STF. Flat
plates (pp40) with a diameter of 4 cm were fitted 3 mm apart. The rheological rate range was
0.1–1000 r/min at 25 ◦C. The functional groups of STF, W/O/W multiple emulsion, and shells are
analyzed using a Fourier transform infrared (FT-IR) spectrometer (NICOLET iS10, Thermo Fisher
Scientific, Waltham, MA, USA). The wavelength range and resolution were 400–4000 cm−1 and 4 cm−1,
respectively. The morphological characteristics of surface and interior of the capsules were observed



Polymers 2019, 11, 1138 4 of 15

using a scanning electron microscope (SEM, TM3030, HITACHI, Tokyo, Japan). The diameter of
the cavity inside the capsule was measured with Image-Pro Plus (6.0, Rockville, Maryland, USA),
and the number of cavities counted was 100. The thermal stability of the capsules is measured
using a thermogravimetric analyzer (TG 209F3, NETZSCH, Bavaria, Germany) with nitrogen as the
shielding gas. The samples (5–10 mg) were heated from room temperature to 600 ◦C at a rate of
10 ◦C/min. The particle size of the capsule was observed using a stereomicroscope (Nikon SMZ-10A,
Taiwan, China).

The expansion degree of capsules was characterized by diameter expansion coefficient (DEC) and
weight expansion coefficient (WEC). The capsules were immersed in deionized water for 24 h, and
their diameter and weight were measured. The results before and after immersion were compared to
compute DEC and WEC. The employed equations were as follows [15]:

DEC =
Ds

Dd
, (1)

WEC =
ws

wd
, (2)

where Ds and Dd are the average diameter of swollen and dried microcapsules, respectively, while Ws

and Wd are the weight of swollen and dried beads, respectively.
The bearing load of STF capsules is used to characterize their application to the environment.

The inner and outer shells of the STF capsules were measured using an atomic force microscope (AFM,
Agilent 5500, AGILENT Company, Palo Alto, CA, USA). The elastic coefficient of microcantilever
of the probe had a constant force of 40 N/m, and the descending height of the probe was set to be
±1 µm as displayed in Figure A2. The static compression strength of capsule was measured at a rate of
5 mm/min by using a universal testing machine (HT-2402, Hong Ta Instrument, Taiwan, China) as
specified in ASTM D 3574-17.

The slow-release and kinetics of the capsules were measured using a UV–VIS spectrophotometer
(UH4150, Hitachi, Japan). The wavelength range was 200–800 nm. The characteristic wavelength of
STF was observed at 203.5 nm, which was consistent with that described in other references [24,25].
Different concentrations of STF solutions (0.1%, 0.2%, 0.3%, 0.4%, and 0.5%) were formulated to obtain
the standard curves of absorbance at 203.5 nm (Table A1 and Figure A3). The correlation of absorbance
(Y) and STF concentration (X) was displayed as Y = 4.10327X − 0.0397 (R2 = 0.98).

In the slow-release performance test, the capsules were soaked in deionized water and sealed for
storage for 1, 2, 4, 8, 12, 24, and 72 h. The soaking liquids are then removed and their absorbance was
measured. The absorbance with its standard curve could be computed to determine the concentration
of the soaking solution, Afterward, the amount of the released STF were compared and observed
in relation to different capsule sizes. A Korsmeyer–Peppas model was used to interpret the release
kinetics type of STF as follows [26,27]:

Mt/M∞ = K t n (3)

where Mt is the amount of STF at a specified time (t), M∞ is the total amount of STF in gel beads, K is
the release kinetic constants, and n is the release exponent.

After encapsulation was completed, STF was added to the PU foam for a drop-weight impact
tester. The foam was prepared in accordance with our previous study [28]. The drop-weight impact
tester was self-made by the Xinzhi Electronic Automation Company (Taichung, Taiwan). Different
sized STF capsules were filled into the PU foam to evaluate their buffering performance. The impactor
freely dropped from a constant height and impacted on the surface of the resultant STF capsule-filled
foam. The impactor head was circular and had a diameter of 32 mm. The impact energy was 20 J.
The sample had a size of 100 mm × 100 mm.
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3. Results and Discussion

3.1. Characterization of STF Capsules

Figure 2a,b show the SEM images of surface and cross-section of STF capsules, respectively. It is
found that STF capsules have a structure resembling the hierarchical pomelo peel. The surface of
the capsule is rough, indicating resembles the pomelo peel, which contains a compact shell layer
covering the internal micro-pores filled with liquid [29]. The outer dense shell has a thickness of
2.9 µm. Figure 2b shows that the surface is composed of numerous cured sodium alginate droplets that
seal liquid paraffin and STF. The interior of capsules was composed of many tubular cavities with a
structure comparable with that of pomelo peels [30]. During STF capsule preparation, calcium chloride
solution on the surface of the capsule and infiltrated into the capsule sphere is cross-linked with the
sodium alginate on the outermost layer of W/O/W, forming water-insoluble calcium alginate, which
has a dense layer on the surface of the capsule and the cavity wall inside the capsule. Calcium chloride
and the outermost layer of sodium alginate in W/O/W emulsion is cross-linked because the capsule
is composed of a large number of closely arranged W/O/W complex emulsion droplets, forming an
insoluble calcium alginate surface wrapped with W/O emulsion microspheres. The interior of STF
capsules is composed of many tubular cavities by the cross-section observation because the existence
of calcium alginate makes the microspheres adhere to one another. The average diameter of the cavity
is 15.94 µm as shown in Figure 2c.

Sealing STF in the capsules aims to maximize the advantage of its shear thickening feature as
shown in Figure 2d. The viscosity of STF decreases as the shear rate increases; when viscosity is the
lowest, it upsurges rapidly. This process is called shear thickening [7,31]. As a result, when the capsule
is subjected to an external force, STF rapidly increases and absorbs some impact energy to attain the
buffering efficacy.
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distribution in the inner of STF capsules; (d) rheological curve of STF; and (e) FTIR spectrum curves of
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The FTIR curves of STF and STF capsule were obtained to verify whether STF is encapsulated
(Figure 2e). The FTIR curve of the STF capsules had Si-OH characteristic peaks [32], and this observation
was consistent with a pure STF curve, indicating that STF was successfully filled. The peak at 3328 cm−1

corresponds to -OH anti-scaling vibration peak in constitution water. The presence of peaks at
1062 cm−1 and 932 cm−1 were due to Si-O-Si anti-scaling vibration and Si-OH bending vibration,
respectively. Si-O symmetric stretching vibration peak occurs at 480 and 814 cm−1 [33]. The four
characteristic peaks showed the existence of SiO2 in STF capsules. STF had similar FTIR spectra,
indicating that the STF was successfully sealed in the capsules, where all the required components
were present.

3.2. Effect of Capsule Size on Thermal Stability

The thermal stability of STF capsules can reflect the strength, stability in the application process,
and application temperature of capsules [34,35]. With TG analysis, the thermal stability of the capsules
is characterized effectively [36]. Figure 3 shows the TG behaviors of the capsules in relation to their
sizes. Initial weightlessness temperature (TInitial), first- and second-stage maximum mass loss (1st
Tmax, 2nd Tmax) and residual mass are displayed in Table 1. Other than STF, similar shape and
decomposition appears in the TG curves at two stages: 200 ◦C–300 ◦C (first stage) and 300 ◦C–400 ◦C
(second stage). The initial mass loss of the STF capsules began at 40 ◦C–200 ◦C, which is ascribed to the
evaporation of water and solvent from capsules [37]. In the first-stage loss, the mass loss is ascribed to
the dissolution of SA segments, the removal of SA lateral groups, the random depolymerization of SA,
and the decomposition of liquid paraffin, whose decomposition temperature is 234.8 ◦C. The second-
stage decomposition may be attributed to secondary degradation, including the cleavage and pyrolysis
of PEG chains at around 300 ◦C [38].
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Figure 3. TG curves of different sizes of STF capsules.

Table 1. TG results of STF capsules with different particle sizes.

Capsule Size/mm TInitial/◦C 1st Tmax /◦C 2nd Tmax /◦C Residual Mass Percentage/%

2.10 219.7 296.8 367.3 9.54
1.89 235.4 296.3 364.7 8.67
1.86 224.7 295.6 367.3 9.85
1.83 219.1 294.1 367.2 10.38
1.73 224.3 297.0 362.4 3.28
1.63 232.5 295.8 362.3 7.46
STF 214.8 285.2 / 25.77

PEG capsule 223.5 290.1 362.4 0
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The initial loss temperature and the first decomposition temperature of the STF capsules were
higher than those of pure STF, indicating that SA encapsulation improved the thermal stability of STF.
The initial loss temperature and the first decomposition temperature increases by 17.7 ◦C and 11.8 ◦C,
respectively. The residue represents the amount of SiO2. In Table 1, 1.83-mm capsule had a maximum
residual mass of 10.38%, indicating the maximum amount of STF in the capsules. In conclusion, the
pomelo-like hierarchical capsules containing STF fabricated in this study could resist temperatures
below 200 ◦C.

3.3. Effect of Capsule Size on Capsule Strength

Figure 4a shows the instantaneous force-displacement curve via AFM, involving the probe being
employed forward and backward, i.e., insertion and withdraw movements [39]. When the probe
tip came in contact with the STF capsules and reached the contact capsule point (point a), the force
gradually increases. As the probe tip pierced into the STF capsules reaching the cortical rupture point
(point b) and entered into foam-like pores, the compact surface wall of STF capsules was damaged,
and the force began to decline. After the probe tip penetrated the cavity (point c), the force increases
gradually again because of the interior of the capsules in the cavity. The withdraw force related to
probe tip displacement reflected the properties of the STF capsules after the damage. When point d was
reached, the probe tip was separated from the STF capsules. This displacement of the separation point
was earlier than that in the insertion curves. This finding may be caused by the adhesive attraction
between the probe tip and the capsule [39]. The observed AFM curves also suggested that the capsules
were composed of a core-shell structure. The capsule strength differed as a result of the continuous
increase in force possibly because of the fracture of small particles on the capsule’s surface and the
destruction of the multilayer structure of the capsules.

When the probe moves backward, strength increases as a result of the resistance of the capsule
shells. when the probe is removed from the capsules, strength decreases. Figure 4b shows the
stress-strain curves of STF capsules and PEG capsules. The strength and toughness of materials can be
determined by observing the stress-strain curve [40]. The inset shows that the capsules have stress that
is proportional to the strain regardless of capsules size. Stress decreases at a certain strain. Outer shells
are solidified into a hard outer shell because the droplets on the capsule surface undergo complete
crosslinking with calcium chloride. The outer wall of shells break under a certain pressure, and the
stress correspondingly decreases at the spot. As strain continuously increases, the stress enters a
platform region, indicating that solid droplets inside the capsules break and STF demonstrates that its
shear thickening efficacy achieves balance with stress. Afterward, the droplets inside the capsules
are completely broken and compressed into a concrete structure, Afterward, stress rapidly increases.
In general, stress drastically decreases as a result of the presence of completely ruptured capsules.

The slope of the stress–strain curve represents the modulus of elasticity. The greater the slope is,
the greater the capsule stiffness at initial compression will be. In the magnified image in Figure 4b,
when the capsules are being initially compressed, they show the slope from the highest to the lowest at
corresponding capsule sizes of 1.83, 1.86, and 1.63 mm. The 1.83 mm capsules are confirmed to have the
highest strength and stiffness, indicating that the capsules exhibit the highest degree of the outer shell
of crosslinking. Hence, the resulting calcium alginate dense shell is mechanically strengthened. When
the capsules are completely damaged, the maximum stress decreases when the capsule size increases.

PEG capsules (2.10 mm) were prepared to compare with STF capsules in terms of the mechanical
properties. The test results show that PEG capsules had the lowest stress, which verified that STF
capsules were effective in buffering efficacy. Figure 4c shows the histogram of strain energy base on
the stress strain curves of STF and PEG capsules. The strain energy of the capsules with a particle
size larger than 1.83 mm increased as the particle size increased. By contrast, the strain energy of the
capsules with a particle size smaller than 1.83 mm decreased as the particle size decreased. A small
capsule size indicated that the shell had a higher crosslinking degree and, thus, a higher stiffness.
Nevertheless, highly stiff shells fail to reflect the powerful buffering effect of STF when an external



Polymers 2019, 11, 1138 8 of 15

impact force is applied to small capsules. The buffering efficacy of capsules is exemplified by 60% of
the initial compressive stress-strain values. In particular, 1.83-mm capsules had a maximum stress
strain energy, which was 16.7 times higher than that of the STF capsule studied by Zhang H et al. [13].
The STF capsule in this study had a Pomelo-like hierarchical porous structure which increases its
compression energy. The 1.83-mm capsule contained the greatest amount of STF, which contributed to
cushioning efficacy, because of its excellent shear thickening performance.

Figure 5 illustrates the action mechanism of interior pores and STF when the capsules are under
a pressure. The capsules are also compressed into a round drum as a result of a deformation after
they are compressed for 20 s. In response to an increase in compression displacement, the ongoing
deformation of capsules extrudes more liquid from the capsules. When being totally compressed into
cuboids, the capsules lose the contained liquid. The diagrams beneath Figure 5 show the internal
mechanism when capsules are compressed.
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Figure 4. (a) Instantaneous force-displacement curves by AFM; (b) static compression stress-strain
curve, and (c) at 60% compression strain, compressive strain energy of a single capsule as related to
different capsule sizes.
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Figure 5. Schematic diagrams of compression deformation process of single capsule during ∆t = 20 s.

3.4. Effect of Capsule Size on Cavity Distribution

Figure 6 shows the SEM images of the cross-sections of interior capsules at different sizes,
suggesting that the size and number of the interior droplets vary. The average diameters of the capsule
cells with increasing capsule sizes are 15.94, 12.43, 12.00, 15.28, 12.58, and 10.48 µm. The swelling and
stability of the capsules at different sizes are dependent on the size of capsule cells. Subsequently, a
capsule size of 2.1 mm indicates that the capsules are composed of larger droplets that are more evenly
distributed. By contrast, the 1.89-mm capsules are composed of smaller droplets that are not evenly
distributed. Comparatively, the 1.83-mm capsules demonstrate a sharp increase in stability, which
may be described as larger interior cured pores that are evenly distributed and highly concentrated.
Thermal stability (TG) analysis shows that the 1.83-mm capsules encapsulate the greatest number of
STF. In the capsule soaking process, STF permeates through the capsules, causing the interior cavities
to swell. Water molecules penetrate the capsules, thereby increasing the swelling coefficient rapidly.
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Figure 6. SEM images and cavity distribution of capsules at different sizes (500×), (a) 2.10 mm;
(b) 1.89 mm; (c) 1.86 mm; (d) 1.83 mm; (e) 1.73 mm; and (f) 1.63 mm; respectively.

3.5. Slow Release Performance and Diffusion Mechanism

Figure 7a,b show the swelling test results, about the diameter and weight swelling and the
absorbance of STF capsules that are immersed in deionized water for different durations [26]. When
the average capsule diameters are 2.1, 1.89, and 1.86 mm, the diameter and weight swelling of the
capsules decrease to some degree. When the diameter of the capsule decreases to 1.83 mm, the diameter
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and weight of the capsules upsurge drastically, but gradually decrease when the capsule diameter
exceeds 1.83 mm (Figure 7a). Figure 7b shows that, the absorbance of the capsules from large to
small are 0.06392, 0.04868, 0.04341, 0.05376, 0.05464, and 0.06280 for 1 h of immersion. Specifically,
the 1.86 and 2.10-mm capsules have the lowest and the highest absorbances, respectively. A long
immersion time contributes to a rapid increase in absorbance regardless of capsule size. After 24 h of
immersion, the absorbance of the capsules increases more slowly, suggesting that capsules exhibit a
stable release performance. With an immersion time of 72 h, the absorbance of the capsules from a
large to small size are 0.15044, 0.12334, 0.09313, 0.19202, 0.10341, and 0.16723. In particular, 1.86 and
1.83 mm capsules have the lowest and the highest absorbance, respectively. The 1.83 mm capsules
have an absorbance that sharply increases between 8 and 12 h because they seal the maximum STF and
have evenly distributed large interior pores.

Table 2 shows the simulated results of the capsules at different sizes by using the Korsmeyer–Peppas
model. A greater R2 indicates that it fits the description of the release mechanism. At the same time, the
release exponent (n) illustrates the release mechanism of STF. As far as a spherical transmission system
is concerned, n between 0 and 0.5 confirms that it is Fickian diffusion that follows the Fickian’s law [41].
Moreover, k in the Korsmeyer–Peppas model represents the release kinetic constant. The higher k
is, the more efficient the diffusion velocity will be [42]. At R2 between 0.771 and 0.902, the 2.10-mm
capsules fit this specific release mechanism. n is between 0.140 and 0.289, suggesting that all capsules
have a release performance as stated in Fickian diffusion, regardless of capsule size, especially 1.63-mm
capsules, whose k corresponds to the most efficient diffusion.

Polymers 2019, 11, x FOR PEER REVIEW 10 of 16 

 

the average capsule diameters are 2.1, 1.89, and 1.86 mm, the diameter and weight swelling of the 
capsules decrease to some degree. When the diameter of the capsule decreases to 1.83 mm, the 
diameter and weight of the capsules upsurge drastically, but gradually decrease when the capsule 
diameter exceeds 1.83 mm (Figure 7a). Figure 7b shows that, the absorbance of the capsules from 
large to small are 0.06392, 0.04868, 0.04341, 0.05376, 0.05464, and 0.06280 for 1 h of immersion. 
Specifically, the 1.86 and 2.10-mm capsules have the lowest and the highest absorbances, 
respectively. A long immersion time contributes to a rapid increase in absorbance regardless of 
capsule size. After 24 h of immersion, the absorbance of the capsules increases more slowly, 
suggesting that capsules exhibit a stable release performance. With an immersion time of 72 h, the 
absorbance of the capsules from a large to small size are 0.15044, 0.12334, 0.09313, 0.19202, 0.10341, 
and 0.16723. In particular, 1.86 and 1.83 mm capsules have the lowest and the highest absorbance, 
respectively. The 1.83 mm capsules have an absorbance that sharply increases between 8 and 12 h 
because they seal the maximum STF and have evenly distributed large interior pores. 

Table 2 shows the simulated results of the capsules at different sizes by using the Korsmeyer–
Peppas model. A greater R2 indicates that it fits the description of the release mechanism. At the 
same time, the release exponent (n) illustrates the release mechanism of STF. As far as a spherical 
transmission system is concerned, n between 0 and 0.5 confirms that it is Fickian diffusion that 
follows the Fickian’s law [41]. Moreover, k in the Korsmeyer–Peppas model represents the release 
kinetic constant. The higher k is, the more efficient the diffusion velocity will be [42]. At R2 between 
0.771 and 0.902, the 2.10-mm capsules fit this specific release mechanism. n is between 0.140 and 
0.289, suggesting that all capsules have a release performance as stated in Fickian diffusion, 
regardless of capsule size, especially 1.63-mm capsules, whose k corresponds to the most efficient 
diffusion. 
 

0

1

2

3

4

5

6

Ex
pa

ns
io

n 
co

ef
fic

ie
nt

Diameter of capsule /mm

 Weight
 Diameter

2.10 1.89 1.86 1.83 1.73 1.63 0 10 20 30 40 50 60 70 80
0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8
0.04

0.06

0.08

0.10

0.12
 2.10  mm
 1.89  mm
 1.86  mm
 1.83  mm
 1.73  mm
 1.63  mm

C
on

ce
nt

ra
tio

n/
%

Time/h  

Figure 7. (a) Diameter and weight swelling coefficient and (b) The simulated absorbance value 
curves of STF-contained capsules at different sizes as related to the deionized water immersion time 
being 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, and 72 h. 

Table 2. Effect of capsule size on STF release kinetics. 

Diameter of Capsule/mm R2 Release Exponent (n) Release Kinetic Constant (k)  Release Mechanism 
2.10 0.902 0.202 0.069 Fickian diffusion 
1.89 0.825 0.185 0.062 Fickian diffusion 
1.86 0.771 0.141 0.056 Fickian diffusion 
1.83 0.774 0.289 0.063 Fickian diffusion 
1.73 0.848 0.140 0.062 Fickian diffusion 
1.63 0.856 0.208 0.076 Fickian diffusion 

3.6. Effects of Capsule Size on Buffering Performance of Capsule-Filled Foam Composites (CPUC) 

(b) (a) 

Figure 7. (a) Diameter and weight swelling coefficient and (b) The simulated absorbance value curves
of STF-contained capsules at different sizes as related to the deionized water immersion time being 1 h,
2 h, 4 h, 8 h, 12 h, 24 h, and 72 h.

Table 2. Effect of capsule size on STF release kinetics.

Diameter of Capsule/mm R2 Release Exponent (n) Release Kinetic Constant (k) Release Mechanism

2.10 0.902 0.202 0.069 Fickian diffusion
1.89 0.825 0.185 0.062 Fickian diffusion
1.86 0.771 0.141 0.056 Fickian diffusion
1.83 0.774 0.289 0.063 Fickian diffusion
1.73 0.848 0.140 0.062 Fickian diffusion
1.63 0.856 0.208 0.076 Fickian diffusion

3.6. Effects of Capsule Size on Buffering Performance of Capsule-Filled Foam Composites (CPUC)

The STF capsules were added to the PU foam, forming CPUC, to study the buffering performance
of STF capsules. The foaming process is similar to our previous study [28]. Figure 8a shows the three
stages of the time-contact force curves of different CPUC samples. In stage I, the contact force gradually
increases with time, and this procedure is similar to the plateau stage of static compressive curves.
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In stage II, the contact force rapidly increases with time, corresponding to the densification stage of the
static compressive curves of composites. In stage III, the contact force rapidly decreases. Comparatively,
PEG capsules and pure PU foam have the shortest plateau region, and their contact force reaches the
maximum at 11 ms. The length of the plateau region is followed by 1.73, 2.10, 1.86, 1.83, and 1.63 mm
CPUC successively from low to high, corresponding to the maximum contact force happening at 12,
13, 13, 13, 13, and 15 ms. The length of the plateau region expresses the speed of initial deformation of
CPUC, indicating that STF capsules prolong the deformation time which is positively correlated with
buffering performance and ascribed to the existence of STF and the pomelo-like hierarchical structure
of capsules. With small STF capsules, the maximum contact force initially decreases, subsequently
increases, and then decreases. The STF capsules with a size of 1.63 mm absorbed the highest impact
energy because smaller capsules reinforce the crosslinking density and increase the absorbed impact
energy [43]. The maximum contact force of 1.89 mm CPUC is lowered by 12.67% compared with that
of the PEG capsule (7.15 kN). CPUC with a size of 1.73 mm has the highest maximum contact force,
which is due to the low amount of STF. This observation was consistent with the TG results shown
in Figure 3. The tendency of the absorbed energy related to the STF capsule size is opposite to that
of the maximum contact force. Comparatively, the pure PU foam and the foam with PEG capsules
have the shortest plateau region, and their contact force reaches the maximum at 11 ms. CPUC filled
with 1.89 mm STF capsule absorbed the highest impact energy reaching 1.45 J at 3% mass fraction,
which is 3.4% higher than that of the PEG capsule and 4.57% higher than that of pure PU foam. This
improvement can be further increased by increasing the STF amount and the STF capsules content in
the foam composites.
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Figure 8. Impact signals at 20 J of CPUC. (a) Contact force-time curve of CPUC; (b) peak force of 
CPUC; and (c) energy absorption of CPUC. 

4. Conclusions 

In this study, sodium alginate is cross-linked with calcium chloride for curing as gel shells that 
encapsulate STF. The diameter of the syringe needle is adjusted to produce STF capsules with 
different capsule sizes. The STF capsules are characterized by SEM, rheological properties, and 
FTIR spectroscopy. The effects of the size of pomelo-like hierarchical STF capsules on thermal 
stability, swelling capacity, mechanical property, release kinetics, and buffering performance are 
explored in depth. 

SEM confirms that STF capsules have double-walled shells and porous core hierarchical 
structure, thereby assembling pomelo peel. The size of the STF capsule affects thermal stability, 
compression energy at 60% strain, slow-release speed, and absorbed impact energy. TG result 
shows that 1.83 mm capsules outperform other capsules because of the highest amount of STF and 
the ability to withstand a temperature of 200 °C. This finding corresponds to the tendency of 
compression resistance and release kinetic, that is, 1.83 mm STF capsules have the highest 
compression energy and slow-release speed. Comprehensively, the resultant pomelo-like 
hierarchical STF-containing capsules have superior thermal stability (<200 °C), compression energy, 
and absorbed impact energy, and STF diffusion conforms to Fickian diffusion. This study provides 
a preferable prospect for future STF applications. In the following study, we will focus on how to 
enhance the sealing efficiency of STF and the content of STF capsules to further improve the 
buffering performance of STF capsules-filled composites. 
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4. Conclusions

In this study, sodium alginate is cross-linked with calcium chloride for curing as gel shells
that encapsulate STF. The diameter of the syringe needle is adjusted to produce STF capsules with
different capsule sizes. The STF capsules are characterized by SEM, rheological properties, and FTIR
spectroscopy. The effects of the size of pomelo-like hierarchical STF capsules on thermal stability,
swelling capacity, mechanical property, release kinetics, and buffering performance are explored
in depth.

SEM confirms that STF capsules have double-walled shells and porous core hierarchical structure,
thereby assembling pomelo peel. The size of the STF capsule affects thermal stability, compression
energy at 60% strain, slow-release speed, and absorbed impact energy. TG result shows that 1.83 mm
capsules outperform other capsules because of the highest amount of STF and the ability to withstand
a temperature of 200 ◦C. This finding corresponds to the tendency of compression resistance and
release kinetic, that is, 1.83 mm STF capsules have the highest compression energy and slow-release
speed. Comprehensively, the resultant pomelo-like hierarchical STF-containing capsules have superior
thermal stability (<200 ◦C), compression energy, and absorbed impact energy, and STF diffusion
conforms to Fickian diffusion. This study provides a preferable prospect for future STF applications.
In the following study, we will focus on how to enhance the sealing efficiency of STF and the content of
STF capsules to further improve the buffering performance of STF capsules-filled composites.
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Appendix A

Figure A1 is the boxplot of capsule particle size distribution prepared with needles of different
diameters. On averagely, the diameter of the capsules is greater than that of the needles because
droplets merge to a certain volume when they are dropped. After the capsules are dropped into a
calcium chloride solution, the bulk droplets undergo crosslinking and subsequent curing and are
transformed into capsules with increasing diameter. The diameters of all the groups are normally
distributed regardless of capsule size. The normal distribution of capsule sizes has a relatively narrow
transverse span, suggesting that capsule size is relatively concentrated, especially the capsule size of
1.73 mm.

Figure A2 shows a schematic of the relationship between the probe and the capsule position
during the testing of the mechanical properties of the capsule by atomic force microscope (AFM).
Figure A2a shows that the probe is 1 µm away from the surface of the capsule when the probe begins to
descend, and the probe is driven downward by using a microcantilever. Figure A2b illustrates that the
tip of the probe is in contact with the surface of the capsule when the probe moves down to the surface
of the capsule. A displacement point where the force starts to increase in the force-displacement curve
may not be at zero. Figure A2c demonstrates that the probe continues to move down by 1 µm. The tip
of the probe penetrates through the capsule cortex, punctures the capsule cortex, and touches the
cavity wall inside the capsule.



Polymers 2019, 11, 1138 13 of 15

Polymers 2019, 11, x FOR PEER REVIEW 13 of 16 

 

Appendix A 

Figure A1 is the boxplot of capsule particle size distribution prepared with needles of different 
diameters. On averagely, the diameter of the capsules is greater than that of the needles because 
droplets merge to a certain volume when they are dropped. After the capsules are dropped into a 
calcium chloride solution, the bulk droplets undergo crosslinking and subsequent curing and are 
transformed into capsules with increasing diameter. The diameters of all the groups are normally 
distributed regardless of capsule size. The normal distribution of capsule sizes has a relatively 
narrow transverse span, suggesting that capsule size is relatively concentrated, especially the 
capsule size of 1.73 mm. 

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.6
3

1.7
3

1.8
31.8

6
1.89

0.340.510.751.261.55

Needle diameter/mm

D
ia

m
et

er
/m

m

1.60

2.1
0

 
Figure A1. Capsule size distribution as related to the needle diameter. 

Figure A2 shows a schematic of the relationship between the probe and the capsule position 
during the testing of the mechanical properties of the capsule by atomic force microscope (AFM). 
Figure A2a shows that the probe is 1 μm away from the surface of the capsule when the probe 
begins to descend, and the probe is driven downward by using a microcantilever. Figure A2b 
illustrates that the tip of the probe is in contact with the surface of the capsule when the probe 
moves down to the surface of the capsule. A displacement point where the force starts to increase in 
the force-displacement curve may not be at zero. Figure A2c demonstrates that the probe continues 
to move down by 1 μm. The tip of the probe penetrates through the capsule cortex, punctures the 
capsule cortex, and touches the cavity wall inside the capsule. 

 

Figure A2. Schematic diagram of atomic force microscope test process, probe (a) before puncture, (b) 
at the time of puncture, and (c) after puncture. 

Figure A1. Capsule size distribution as related to the needle diameter.

Polymers 2019, 11, x FOR PEER REVIEW 13 of 16 

 

Appendix A 

Figure A1 is the boxplot of capsule particle size distribution prepared with needles of different 
diameters. On averagely, the diameter of the capsules is greater than that of the needles because 
droplets merge to a certain volume when they are dropped. After the capsules are dropped into a 
calcium chloride solution, the bulk droplets undergo crosslinking and subsequent curing and are 
transformed into capsules with increasing diameter. The diameters of all the groups are normally 
distributed regardless of capsule size. The normal distribution of capsule sizes has a relatively 
narrow transverse span, suggesting that capsule size is relatively concentrated, especially the 
capsule size of 1.73 mm. 

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1.6
3

1.7
3

1.8
31.8

6
1.89

0.340.510.751.261.55

Needle diameter/mm

D
ia

m
et

er
/m

m

1.60

2.1
0

 
Figure A1. Capsule size distribution as related to the needle diameter. 

Figure A2 shows a schematic of the relationship between the probe and the capsule position 
during the testing of the mechanical properties of the capsule by atomic force microscope (AFM). 
Figure A2a shows that the probe is 1 μm away from the surface of the capsule when the probe 
begins to descend, and the probe is driven downward by using a microcantilever. Figure A2b 
illustrates that the tip of the probe is in contact with the surface of the capsule when the probe 
moves down to the surface of the capsule. A displacement point where the force starts to increase in 
the force-displacement curve may not be at zero. Figure A2c demonstrates that the probe continues 
to move down by 1 μm. The tip of the probe penetrates through the capsule cortex, punctures the 
capsule cortex, and touches the cavity wall inside the capsule. 

 

Figure A2. Schematic diagram of atomic force microscope test process, probe (a) before puncture, (b) 
at the time of puncture, and (c) after puncture. 

Figure A2. Schematic diagram of atomic force microscope test process, probe (a) before puncture, (b) at
the time of puncture, and (c) after puncture.

Table A1. Relation between concentration of SiO2 and absorbance.

STF concentration/% 0.1 0.2 0.3 0.4 0.5

Absorbance 0.393467 0.7453 1.232833 1.5341 2.0507
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