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ABSTRACT
Docynia delavayi (Franch.) Schneid is a plant used both as food and traditional folk
medicine. The leaves of D. delavayi are rich in polyphenols, plantswith phenolic content
are known to be extremely beneficial in terms of human nutrition. In the present
study, we used metabolome technology (UPLC-ESI-MS/MS) to examine the young
and mature D. delavayi leaves on metabolites changes, which were then analyzed and
compared. As a result, 477 metabolites (including 111 flavonoids, 47 others (consisted
of nine vitamin, 18 saccharides and alcohols, and 20 unassigned metabolites), 71
phenolic acids, 52 amino acids and derivatives, 18 alkaloids, 61 lipids, 24 terpenoids,
33 nucleotides and derivatives, 18 lignans and coumarins, 12 tannins, 30 organic acids)
were identified, of which 281 differentially accumulated metabolites, including 146 up-
regulatedmetabolites and 135 down-regulatedmetabolites. The result of clustering and
PCA analyses showed that young and mature leaves were separated, which indicated
that there was a great difference in metabolites between young and mature leaves.
Meanwhile, we also found that both young and mature leaves displayed unique
metabolites with important biological functions. KEGG enrichment analysis showed
that 90 of the differential metabolites were mainly concentrated in 68 KEGG pathways.
The result will greatly complement the existing knowledge on the D. delavayi leaves for
lays a foundation for subsequent development and utilization.

Subjects Agricultural Science, Biochemistry, Molecular Biology, Plant Science
Keywords Docynia delavayi, UPLC-ESI-MS/MS, Metabolites

INTRODUCTION
Docynia delavayi (Franch.) Schneid is an evergreen plant belonging to the Rosaceae family,
that is widely distributed throughout southwest China (Wu, 1987). Its fruits, leaves and
barks contain extensive benefits in terms of nutrients and are popular for its antioxidant
activity and extremely high-quality in medicinal uses (Bao, 2001). Currently, D. delavayi
has been made into a variety of foods, such as dried fruits, fruit wine, juice, and vinegar
(Han & Ren, 2014). In the local ethnic groups of southwestern China, Docynia leaves are
widely used as a medicine for fever, cancer, empyrosis, and rheumatism (Deng et al., 2014).
It has been reported (Liu et al., 2014b) that the leaves of D. delavayi are rich in polyphenols
and the content of polyphenol is 2-feature that of apple leaves. Moreover, D. delavayi has
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considerable leaf biomass, thus, the D. delavayi leaves have great potential for utilization.
So far, the study of D. delavayi mainly involves the conventional breeding, extraction of
active ingredients and functional analysis of secondary metabolites (Li, Li & Li, 2010; Liu
et al., 2014a; Tai, 2006; Zhao et al., 2012).

Metabolomics is the quantitative and qualitative study of low molecular weight
metabolites (Xu et al. 2020). Metabolites are the basic of biological models and enable us to
gain a visual and effective understanding of biological processes and mechanisms (Chu et
al., 2020). Metabonomics strategies can reveal the relationship between metabolic profiles
and recessive phenotypic traits (Han et al., 2015). Of the three sequencing technologies in
metabolomics, widely targeted metabolomics integrates the advantages of both targeted
and non-targeted metabolomics (Sun, 2019). For the past few years, UPLC-ESI-MS (Chen
et al., 2013) has been widely used as a popular technique for the analysis and identification
of plant metabolites because it saves time, uses less solvent, and provides an accurate
compound determination (Li et al., 2019; Wang et al., 2019a; Yang et al., 2020; Zhu, Yin &
Yang, 2020; Zou et al., 2020).

At present, the research on the D. delavayi is still in its initial stage, especially the leaves,
which have not been studied in depth. At the same time, the leaves of D. delavayi have a
high medicinal value, so it is important to comprehensive investigation of the metabolites
in D. delavayi leaves. To better understand the metabolic differences between the young
and mature leaves of D. delavayi, we performed UPLC-ESI-MS/MS analysis to identify and
quantify the metabolites of young andmature leaves ofD. delavayi. The results of this study
reveal the metabolic changes in the young and mature leaves of D. delavayi and afford vital
a theory basis for the utilization of D. delavayi leaves.

MATERIAL AND METHODS
Plant materials
D. delavayi leaves were collected from three uniform growth on trees and combined to
make one biological replicate in Nuozhadu, Puer City, Yunnan Province, China (100◦13′E,
22◦34′N). The selected trees were free of pests and diseases. The plant species were
identified by Assoc. Prof. Jianghua Liu (College of Forestry, Southwest Forestry University),
and collected from the Collaborative Innovation Center of Forest Resources Breeding
and Utilization in Yunnan, Southwest Forestry University, with the voucher specimen
DY202035. Young leaves (first and second healthy leaves at the top of the annual branches)
and mature leaves (first and second last healthy leaves at the base of annual branches) were
removed from each of the three trees and the collected leaves were immediately placed in
tubes and frozen in liquid nitrogen for use in subsequent experiments.

Sample preparation and extraction
The freeze-dried D. delavayi leaves were crushed to powder form using a mixer containing
zirconia beads for 1.5 min at 30 Hz. 100 mg weighed 100 mg of powder and added to 1.2 ml
of 70% aqueous methanol for overnight extraction at 4 ◦C (vortex mixing 6 times during
this period to improve the extraction rate). The mixed was then centrifuged at 12,000 rpm
for 10 min, filtered and analysed by UPLC-MS/MS.
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UPLC conditions and ESI-QTRAP-MS/MS
The analysis of the sample extracts was performed using a UPLC-ESI-MS/MS system. It
was performed by Metware Biotechnology Co., Ltd. (Wuhan, China) according to their
standard procedures, as previously fully described by Gao et al. (2020). The difference was
the UPLC gradient program, the flow rate and the injection volume. The gradient program
was: 95:5 V/V at 0 min, 5:95 V/V at 10.0 min, 5:95 V/V at 11 min, 95:5 V/V at 11.1 min,
95:5 V/V at 14 min. The flow rate was 0.35 ml/min and the injection volume was 5 µl.

Qualitative and quantitative determination of metabolites
Qualitative analysis of primary and mass-spectrometry data based on self-built database
MWDB (Metware database) and public metabolite information database. Meanwhile,
existing mass spectrometry databases (such as MassBank (http://www.massbank.jp),
KNAPSAcK (http://kanaya.naist.jp/KNApSAcK) and METLIN (http://metlin.scripps.edu/
index.php)) for Structural analysis of metabolites. Quantitative analysis of metabolites by
triple quadrupole mass spectrometry in MRMmode as described by Yang et al. (2019). The
obtained mass spectrum data were processed using Analyst software (V.1.6.2).

Data analysis
In this study, the data were examined and their peak areas were normalized using R
software. Next, the normalized data were submitted to a heatmap and the hierarchical
analysis, PCA, and OPLS-DA analysis were performed by the R software. In this study,
we used two screening criteria, FC (fold change) value of ≥ 2 or ≤ 0.5 and VIP value
≥ 1, to screen for differential metabolites. The significantly differential metabolites were
subsequently submitted to KEGG analysis.

RESULTS
Metabolic profiling
The total ion flow current (TIC) of the mass spectra obtained from the mass control
samples in positive and negative ion detection modes respectively, as detected by the
UPLC-MS/MS technique, were shown in Fig. S1. The high overlap of the spectra indicates
that the detection method has good signal stability and reliable data results.

The metabolites of the young and mature leaves of D. delavayi were studied on the basis
of UPLC-ESI-MS/MS and databases. Results showed that 477 metabolites were identified.
The various metabolites were classified into different categories, including 111 flavonoids,
71 phenolic acids, 61 lipids, 52 amino acids and derivatives, 47 others (consisted of 9
vitamin, 18 saccharides and alcohols, and 20 unassigned metabolites), 33 nucleotides and
derivatives, 30 organic acids, 24 terpenoids, 18 lignans and coumarins, 18 alkaloids and
12 tannins, as detailed in Table 1, Table S1. The analysis of the composition showed the
highest content of flavonoids, accounting for 23.27% of the total metabolites.

In the clustering heatmap (Fig. 1), it was shown by the expression levels of all metabolites
that most of them were different in young andmature leaves. Compared with young leaves,
most of the flavonoids and phenolic acids in the mature leaves were up-regulated. The
terpenoids, tannins, and lignans and coumarins contents in mature leaves were higher than
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Table 1 Classification of compounds in young andmature leaves ofD.delavayi.

NO. Metabolite class Quantity percentage

1 Flavonoids 111 23.27%
2 Phenolic acids 71 14.88%
3 Lipids 61 12.79%
4 Amino acids and derivatives 52 10.90%
5 Others 47 9.85%
6 Nucleotides and derivatives 33 6.92%
7 Organic acids 30 6.29%
8 Terpenoids 24 5.03%
9 Lignans and Coumarins 18 3.77%
10 Alkaloids 18 3.77%
11 Tannins 12 2.52%

total 477 100.00%

Figure 1 Clustering heat map of all metabolites. The horizontal axis represents the sample name and the
vertical axis represents all the metabolites. The color shade reveals the content level; blue indicates that the
metabolites content in the samples was higher; yellow shows that the metabolites content was lower.

Full-size DOI: 10.7717/peerj.12844/fig-1

those in mature leaves. However, most of the alkaloids, others, amino acids and derivatives,
organic acids and nucleotides and derivatives were down-regulated in expression in young
leaves. This finding showed that D. delavayi mature leaves were clearly distinguished from
the young leaves.
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Figure 2 Differential metabolite analysis on the basis of principal component analysis (PCA).
Full-size DOI: 10.7717/peerj.12844/fig-2

The PCA and OPLS-DA of young and mature leaves
In this study, we used PCA to perform multivariate statistical analysis of metabolites from
six samples and extracted two principal components, PC1 and PC2, respectively, which
had the cumulative contribution rates reached 92.62%. The PCA score plot show a clear
metabolic difference between young and mature leaves, and the biological replicates were
closely together (Fig. 2), suggesting that the experiment is reproducible and reliable.

In this research, samples were compared using the OPLS-DA model to evaluate the
differences between Y (young leaves) and O (mature leaves). The results were R2X= 0.881,
R2Y= 1, Q2= 0.998 (Fig. 3). The Q2 values for Y and O were 0.998, which is greater than
0.9 indicating that the model was excellent and could be used for further analysis.
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Figure 3 OPLS-DA permutation. R2X, R2Y represents the model interpretation rate; Q2 indicates the
model predictive ability; R2Y and Q2 closer to 1 indicates that the model more stable and reliable.

Full-size DOI: 10.7717/peerj.12844/fig-3

Differential metabolites screening
To better investigate the metabolic differences between young and mature leaves of D.
delavayi by metabolomic analysis. We screened for differential metabolites based on VIP
≥1 and FC ≥ 2 or ≤ 0.5. The significant differential metabolites among young and mature
leaves are listed in Table S2. The results of differential metabolite screening for young
and mature leaves were illustrated using a volcano plot (Fig. 4). Concisely, there were
281 significantly different metabolites (135 down-regulated, 146 up-regulated), the rest
were no-change metabolites. These significantly different metabolites between young
and mature leaves were classified into 11 different categories, including 79 flavonoid (55
up-regulated, 24 down-regulated), 38 phenolic acids (16 down-regulated,22 up-regulated),
31 amino acids and derivatives(25 down-regulated, 6 up-regulated), 19 nucleotides and
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Figure 4 Volcanomap of differential metabolites. Each point in the volcanic plot represents a
metabolite, the abscissa represents the logarithm of the quantitative difference multiples of a metabolite
in two samples, and the ordinate represents the variable importance in project (VIP) value. The larger
the abscissa absolute value is, the more significant the differential expression is, and the more reliable the
screened differential expression metabolites are. The blue dots in the figure represent down-regulated
differentially expressed metabolites, the yellow dots represent up-regulated differentially expressed
metabolites, and the gray dots represent metabolites detected but that are not significantly different.

Full-size DOI: 10.7717/peerj.12844/fig-4

derivatives(16 down-regulated, 3 up-regulated), 16 lignans and coumarins(1 down-
regulated, 15 up-regulated), 25 others (15 down-regulated,10 up-regulated), 11 alkaloids
(7down-regulated,4 up-regulated),12 organic acids(10 down-regulated,2 up-regulated), 25
lipids (21 down-regulated,4 up-regulated), 10 tannins and 15 terpenoids (all up-regulated).

Based on differential metabolite analysis of young and mature leaves, a total of 12 differ-
ential metabolites could only be detected in mature leaves. The 12 mature leaves specific-
metabolites were myricetin 3-o-galactoside, catechin-(7,8-bc)-4 β-(3,4-dihydroxyphenyl)-
dihydro-2-(3H)-pyranone, myricetin-3-o-(6’’’’-malony)glucoside’’, feruloylmalic acid,
hesperetin O-malonylhexoside, kaempferol-3-o-rhamnoside (afzelin)(kaempferin),
glutathione reduced form, feruloylsinapoyltartaric acid, aminopurine, epicatechin-
epiafzelechin, apigenin-c-rhamnoside, 3 β,19 α-dihydroxyolean-12-en-28-oic acid.
Syringin, n-acetyl-DL-tryptophan, quillaic acid, 4-methyl-5-thiazoleethanol, ligustilide
only exist in young leaves.
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Figure 5 Enrichment analysis of KEGG pathway. The horizontal axis represents the enrichment factor
and the vertical axis represents the pathway name. The dot color represents the p-value, and the dot size
represents the number of differential metabolites.

Full-size DOI: 10.7717/peerj.12844/fig-5

KEGG annotation and enrichment analysis
In the present study, we mapped the 90 differential metabolites to the KEGG database.
First, we focus on the information about metabolic pathways, and we found that most
metabolites are mapped to ‘‘metabolites’’. A few metabolites belong to other system
information categories, such as ‘‘Genetic Information Processing’’ and ‘‘Environmental
Information Processing’’. Results of the above annotation are enriched according to the
pathway types in KEGG, and the enrichment results are shown in the bubble plot in Fig.
5. A total of 68 pathways were involved in the analysis of differential metabolites between
young and mature leaves, among which the top four pathways in terms of the p-value
for metabolic pathway enrichment analysis were ‘‘Flavonoid biosynthesis’’, ‘‘Cysteine and
methionine metabolism’’, ‘‘Phenylpropanoid biosynthesis’’ and ‘‘C5-Branched dibasic
acid metabolism’’. Among these metabolic pathways, phenylpropanoid biosynthesis and
flavonoid biosynthesis contained more differential metabolites than other metabolic
pathways (9 and 10, respectively).

DISCUSSION
In recent years, a widely targeted metabolomics method based on UPLC-ESI-MS/MS and
multiple reaction monitoring (MRM) has been established as the technology has evolved.
Compared to targeted metabolite detection methods, UPLC-ESI-MS/MS is characterized
by high resolution, accurate characterization, short analysis times and high peak separation
capacity (Farag & Shakour, 2019). For these advantages, UPLC-ESI-MS/MS is widely used
for the metabolomic analyses in various plant species (Jeszka-Skowron, Zgoła-Grześkowiak
& Frankowski, 2018; Matsuda et al., 2012). At present, the utilization of D. delavayi is
mainly limited to its fruits, which are made into various food products, and the research
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on leaves is less, limited to the extraction of antioxidant components and determination of
polyphenol content (Liu et al., 2014a; Liu et al., 2014b). Thus, this study aimed to identify
the different metabolites in young and mature D. delavayi leaves, and the results could
provide the theoretical basis for the subsequent production and utilization of D. delavayi
leaves.

A total of 281 differential metabolites were screened by FC and VIP values. These
differential metabolites best represent the differences between young and mature D.
delavayi leaves and could provide a reference for future studies. Analysis of the differentially
accumulated metabolites between the young and mature leaves showed that flavonoids
are the main metabolites, of which 55 compounds were upregulated in mature leaves. It is
being increasingly believed that flavonoids in leaves can promote the physiological survival
of plants and protect them from fungal pathogens and UV-B radiation (Harborne & Baxter,
1999;Harborne & Williams, 2000). A previous study reported that flavonoids may function
as antioxidants in response to excessive light exposure (Tattini et al., 2004). During D.
delavayi growth, mature leaves have a longer developmental cycle than young leaves and
receive external environmental stresses such as light for a longer period of time, which
may be one of the reasons why most flavonoids accumulate higher in mature leaves than
in young. The mature leaves of D. delavayi were more leathery and thicker than young,
which may be related to the polyphenolic compound gallic acid in the plant (Getachew et
al., 2009; Zhang et al., 2011). Studies have shown that gallic acid greatly contributes to leaf
thickness and leatheriness (Kohorn & Kohorn, 2012; Rose & Lee, 2010; Wang et al., 2019b;
Zhang et al., 2011).

In the metabolites of young and mature D. delavayi leaves, the content of cinchonain Ic,
syringic sldehyde-glucoside, and L-ascorbic acidwere 103, 64, and 50 times higher inmature
leaves than in young leaves. We identified cinchonain Ic, syringic sldehyde-glucoside as
polyphenols, which are the main antioxidant and antitumor active substances in vegetables
and fruits (Gharras, 2009; Manach et al., 2004), and L-ascorbic acid as an antioxidant can
synergistic effect with polyphenols to improve antioxidant efficacy (Gharras, 2009). We
also detected four flavonoids (quercetin, chrysin, avicularin, and naringenin) present in D.
delavayi leaves, which is consistent with previous studies on D. delavayi rhizomes (Deng
et al., 2014), and all of these compounds have some antitumor activity. It could be useful
for future functional and nutritional assessments of D. delavayi leaves. In our study, both
young and mature leaves having their own unique metabolites. Differential metabolite
analysis showed that most of the 12 metabolites present only in mature leaves have
anti-tumor, anti-cancer, antioxidant, anti-inflammatory, anti-osteoporotic, anti-allergy,
and other effects, which have high development value (Bernatova, 2018; Chen et al., 2020;
García-Lafuente et al., 2009; He et al., 2020; Ke et al., 2019; Kim et al., 2004; Li et al., 2017;
Wei et al., 2019; Li et al., 2019).

We also found an interesting phenomenon that terpenoids and tannins were significantly
upregulated inmature leaves. Terpenoids are usually produced in vegetative tissues, flowers,
and, occasionally, roots (Dudareva, Pichersky & Gershenzon, 2004). In D. delavayi leaves,
terpenoids are mostly triterpenoids, which have the functions of resist inflammation, and
inhibit the proliferation of tumor cells (Banno et al., 2005; Rufino-Palomares et al., 2013).
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This is similar to the previous function of specific metabolites in mature leaves, which
further confirms that the content of anti-inflammatory and anti-tumour compounds
is higher in mature leaves than in young. Tannins are an important bioactive class of
compounds with potential antioxidant and antibacterial activities, as well as good anti-
inflammatory and wound healing potential (Ambreen & Mirza, 2020; Dos Santos et al.,
2017; Ogawa & Yazaki, 2018). Tannins increased as the leaves grow, all tannin compounds
are upregulated in mature leaves. Reports by Hyder et al. (2002) reveal that compared to
mature leaves, immature leaves of plants contained high levels of tannins, especially in
stressed conditions. This is not consistent with our results and may be due to a defense
mechanism that plants acquire when trying to protect themselves from excessive leaf
shedding (Toit, Sithole & Vorster, 2020).

Further study of the KEGG enrichment analysis showed that the most significant of
phenylpropanoid biosynthesis was found in the comparison groups between young and
mature leaves. A total of ninemetabolites were enriched to this pathway and their structures
metabolites are shown in Fig. S2, with most of the differential metabolites (l-phenylalanine,
caffeic acid, ferulic acid, coniferyl alcohol, syringin, sinapaldehyde) being down-regulated
in mature leaves (Fig. S3). This may be due to the increase in secondary metabolites such
as phenolic acids that were critical for environmental adaptation and plant survival during
early nutrition (Aidoo et al., 2016; Zhang et al., 2017).

CONCLUSIONS
In the present study, we successfully performed UPLC-ESI-MS/MS-based metabolic
analysis to compare metabolites of young and mature leaves of D. delavayi in a systematic
method. A total of 477metabolites were detected, 281 ofwhichwere differentialmetabolites.
Differential metabolite analysis showed that flavonoids were the predominant metabolites,
with most flavonoids, terpenoids and tannins being up-regulated in mature leaves. In
addition, we identified 12 compounds present only in mature leaves, all of which have
some antioxidant, anti-inflammatory and anti-cancer effects. Overall, this study contributes
to the understanding the composition of D. delavayi leaves metabolites and also provides
a reference for the future medical use and development of D. delavayi leaves.
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