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Introduction: In this study, the role of A1 adenosine receptors in improving the effect of Low-
Frequency Electrical Stimulation (LFS) on seizure-induced hyperexcitability of hippocampal 
CA1 pyramidal neurons was investigated.

Methods: A semi-rapid hippocampal kindling model was used to induce seizures in male 
Wistar rats. Examination of the electrophysiological properties of CA1 pyramidal neurons of 
the hippocampus using whole-cell patch-clamp recording 48 h after the last kindling stimulation 
revealed that the application of LFS as two packages of stimulations at a time interval of 6 h 
for two consecutive days could significantly restore the excitability CA1 pyramidal neurons 
evidenced by a decreased in the of the number of evoked action potentials and enhancement of 
amplitude, maximum rise slope and decay slope of the first evoked action potential, rheobase, 
utilization time, adaptation index, first-spike latency, and post-AHP amplitude. Selective 
locked of A1 receptors by the administration of 8-Cyclopentyl-1,3-dimethylxanthine (1 μM, 
1 μl, i.c.v.) before applying each LFS package, significantly reduced LFS effectiveness in 
recovering these parameters. 

Results: On the other hand, selective activation of A1 receptors by an injection of N6-
cyclohexyladenosine (10 μM, 1 μl, i.c.v.), instead of LFS application, could imitate LFS 
function in improving these parameters. 

Conclusion: It is suggested that LFS exerts its efficacy on reducing the neuronal excitability, 
partially by activating the adenosine system and activating its A1 receptors.
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1. Introduction

pilepsy is one of the most prevalent chronic 
brain disorders worldwide, characterized by 
the presence of recurrent, spontaneous sei-
zures, resulting from the uncontrolled, syn-
chronous excitation of a neuronal population 

within the brain. Despite numerous available antiepileptic 
drugs, seizures do not respond well or are resistant to them 
in more than 20%-40% of the patients (French, 2007). Pa-
tients diagnosed with refractory epilepsy may qualify for 
surgical resection of epileptic brain tissue. However, there 
are serious postoperative complications following neuro-
surgical resection, such as surgical mortality, permanent or 
temporary language and motor or psychologic deficits, and 
possibly, lack of amelioration or worsening in seizure activ-
ity (especially in patients with tumor-associated epilepsy) 
(Kwan & Brodie, 2000; Lin et al., 2011). 

Furthermore, over 40% of the patients with refractory 
epilepsy do not meet the appropriateness criteria for the 
surgical treatment (Kwan & Brodie, 2000). Among the epi-
lepsy syndromes, mesial temporal lobe epilepsy is the most 
frequent type of focal epilepsy with intractable seizures 
in adulthood. In this morbidity, seizures arise from differ-
ent areas of the temporal lobe, such as the hippocampus, 
parahippocampal gyrus, and amygdala (Engel, 2001), and 
pathologically are characterized by specific morphological 
alterations in the hippocampus (Hinterkeuser et al., 2000; 
Temkin, 2009).

In recent years, there has been a growing interest in ap-
plication of Deep Brain Stimulation (DBS) in the treatment 

of refractory epilepsy. This therapeutic method involves the 
implantation of one or more electrodes into specific brain 
regions to deliver controlled electrical pulses to a target in 
brain to modulate neuronal activity. Although DBS is a rec-
ognized therapeutic tool that has received the U.S. Food and 
Drug Administration (FDA) approval for the treatment of 
refractory epilepsy; however, the antiepileptic mechanisms 
involved in its effectiveness are still largely unknown. 

Low-Frequency electrical Stimulation (LFS) is an effec-
tive pattern of DBS, which has shown with anticonvulsive 
activity in both clinical (Kinoshita et al., 2004; Yamamoto 
et al., 2002; Yamamoto et al., 2006) and experimental (Gai-
to & Gaito, 1981; Gharib, Sayyahi, Komaki, Barkley, Sari-
hi, & Mirnajafi-Zadeh, 2018; Goodman, Berger, & Tcheng, 
2005; Mohammad-Zadeh et al., 2007; Shahpari, Mirnajafi-
Zadeh, Firoozabadi, , & Yadollahpour, 2012) studies. We 
have previously demonstrated that the application of LFS 
at a frequency of 1 Hz retards the onset or development 
of seizures in both in vivo and in vitro models of seizures 
(Ahmadirad et al., 2019; Ghasemi et al., 2019; Ghorbani, 
Mohammad-Zadeh, Mirnajafi-Zadeh, & Fathollahi, 2007; 
Jahanshahi Mirnajafi-Zadeh, Javan, Mohammad-Zadeh, & 
Rohani, 2009; Shahpari et al., 2012). This LFS paradigm 
was also able to improve learning and memory deficits fol-
lowing kindling acquisition (Esmaeilpour, Sheibani, Sha-
bani, & Mirnajafi-Zadeh, 2017). Conventionally, LFS is a 
well-known research tool for the elimination of long-term 
potentiation, and induction of long-term depression of syn-
aptic transmission. It has been proposed that LFS employs 
similar mechanisms to exert its inhibitory effect on seizure 
activity, such as endogenous adenosine system. 

Highlights 

• Epilepsy is one of the most prevalent chronic brain disorders worldwide;

• Selective locked of A1 receptors by administration of 8-cyclopenthyle dimethylexanthine significantly reduced LFS 
effectiveness in recovering these parameters.

• Patients diagnosed with refractory epilepsy may qualify for surgical resection of epileptic brain tissue.

• Recently, deep brain stimulation (DBS) is used in the treatment of refractory epilepsy.

• Low-frequency electrical stimulation (LFS) is an effective pattern of DBS in both clinical and experimental studies.

Plain Language Summary 

Epilepsy is one of the most prevalent chronic brain disorders worldwide characterized by the presence of recurrent, 
spontaneous seizures;however, seizures do not respond well or are resistant to them all.
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Adenosine, as an endogenous purine ribonucleoside, is 
a neuromodulator and a homeostatic regulator in the ner-
vous system that mostly suppresses excitatory synaptic 
transmission and reduces neuronal excitability (de Men-
donça & Ribeiro, 1997; Ribeiro, 1995). Adenosine is re-
leased during seizures and it is believed to have an impor-
tant role in terminating the seizures (Dunwiddie , Hoffer, 
& Fredholm, 1981; During & Spencer, 1992; Ribeiro, 
Sebastiao, & de Mendonca, 2003; Zhou et al., 2018). 
Anticonvulsant activity of the adenosine system has been 
demonstrated in various animal models of epilepsy, and 
its dysfunction can cause a seizure (Alasvand Zarasvand, 
Mirnajafi-Zadeh, Fathollahi, & Palizvan, 2001; Boison, 
2005, 2013; Chwalczuk, Rubaj, Swiader, & Czuczwar, 
2008; Ekonomou, Angelatou, Vergnes, & Kostopoulos, 
1998; Gasior, Borowicz, Kleinrok, & Czuczwar, 1996; 
Malhotra & Gupta, 1997; Siebel et al., 2015; Young & 
Dragunow, 1994). Antiepileptic effect of adenosine is 
mainly accomplished through the activation of its A1 re-
ceptors, which is the most abundant adenosine receptor 
in brain areas critical for epileptogenesis, such as the hip-
pocampus (Fedele, Li, Lan, Fredholm, & Boison, 2006; 
Fredholm et al., 2001; Fredholm, Chen, Masino, & Vau-
geois, 2005; Hosseinmardi, Mirnajafi-Zadeh, Fathollahi, 
& Shahabi, 2007; Zeraati, Mirnajafi-Zadeh, Fathollahi, 
Namvar, & Rezvani, 2006; Zhou et al., 2018). 

Our previous studies have shown that the anticonvulsant 
effect of LFS is partly mediated through adenosine A1 re-
ceptors (Jahanshahi et al., 2009; Mohammad-Zadeh et al., 
2009). In addition, LFS employs adenosine A1 receptors 
to inhibit seizure-induced potentiation of Field Excitatory 
Postsynaptic Potentials (fEPSP) in dentate gyrus of the 
hippocampal formation Mohammad-Zadeh et al., 2009).

In another study, we reported that the application of 
LFS can prevent seizure-induced hyperexcitability of 
CA1 pyramidal neurons in hippocampus (Ghotbedin, 
Janahmadi, Mirnajafi-Zadeh, Behzadi, & Semnanian, 
2013). Considering the important role of adenosine A1 
receptors in the anti-epileptic effect of LFS, in this study, 
we investigated the role of these receptors in the effec-
tiveness of LFS applied following kindling acquisition 
on seizure-induced hyperexcitability of hippocampal 
CA1 pyramidal neurons in rats. Accordingly, we em-
ployed a semi-rapid hippocampal kindling model to in-
duce and develop the seizures and used the whole-cell 
patch-clamp recording to examine electrophysiological 
properties of the hippocampal CA1 pyramidal neurons.

2. Methods 

2.1. Animals

Male Wistar rats (45 days old) were kept in normal 
conditions at 23±2°C temperature and a 12:12 light:dark 
schedule (lights on at 7:00 A.M) with ad libitum access to 
food and water. Adequate measures were taken to mini-
mize pain or discomfort. All experiments were carried out 
based on the ethical guidelines set by the Ethical Com-
mittee of Faculty of Medical Sciences, Tarbiat Modares 
University and were entirety complied with the “NIH 
Guide for the Care and Use of Laboratory Animals”.

2.2. Animal surgery

Animals were anesthetized with a ketamine/xylazine 
mixture (100/10 mg/kg, i.p.) and underwent stereotaxic 
implantation of a bipolar stimulating electrode in right 
Schaffer Collateral pathway (coordinates: A, 3.1 mm; L, 
3.1 mm from Bregma and 2.8 mm below the dura), a mo-
nopolar recording electrode in CA1 area (coordinates: A, 
2.8 mm; L, 1.8 mm from Bregma and 2.4 mm below the 
dura) of the hippocampus and a 23-gauge guide cannula 
was also located in the left lateral ventricle (coordinates: 
A, −0.9 mm; L, −1.5 mm from Bregma and 3.5 mm be-
low the dura) (Paxinos & Watson, 2009). The exact posi-
tion of the recording and stimulating electrodes was set 
to record a maximum slope of field EPSP in the stratum 
radiatum layer of the hippocampal CA1 area following 
the Schaffer Collateral pathway stimulation and also to 
confirm the correct electrodes placement. The electrodes 
composed of twisted stainless steel, Teflon coated wires 
with a diameter of 127 µm insulated, except for their 
tips (A-M Systems, Inc., WA, U.S.A.). Each reference 
and ground electrode consisted of a stainless-steel screw 
that was implanted over the frontal and parietal lobes. 
All electrodes were connected to an electrical socket and 
fixed to the skull with dental cement.

2.3. Semi-rapid kindling procedure

The rats were individually transferred from their home 
cage to a recording box (30 cm×30cm×30 cm) follow-
ing a postoperative day 10. A flexible, shielded cable 
was plugged to the animal’s socket while the animal was 
moving freely in the recording box. Then, kindling was 
induced in a semi-rapid manner. Electrical stimulation 
comprised a 1 ms monophasic square wave of 50 Hz with 
a 2 s train duration at the afterdischarge threshold. This 
stimulation paradigm was delivered 6 times daily at in-
ter-train intervals of 20 min. For afterdischarge threshold 
determination, stimulations were stared at an intensity of 
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10 µA. The intensities were then increased in increments 
of 10 µA (with 10 min intervals) until the stimulation 
could induce the ADs for at least 20 s. This intensity 
was considered as the afterdischarge threshold and em-
ployed for kindling stimulations. The afterdischarge was 
defined as spikes observed in local field potentials with 
a frequency of at least 1 Hz and an amplitude of at least 
twice the baseline activity recorded immediately follow-
ing stimulation pulses. In this study, the afterdischarge 
threshold intensity of animals ranged from 20 to 100 μA. 
Extracellular local field potential signals were boosted 
and sampled (at 10 kHz) using a PC-based data acqui-
sition system (D3111 Data Acquisition, ScienceBeam 
Co., Iran) and a homemade software. The progression 
of kindling was examined by monitoring the behavioral 
seizure stage and estimating the afterdischarges duration 
following each stimulation. Behavioral seizures were 
rated according to the Racine’s standard classification 
(Racine, 1972): stage 1. Facial clonus; stage 2. Head 
nodding; stage 3. Forelimb clonus; stage 4. Rearing and 
bilateral forelimb clonus; and stage 5. Rearing and fall-
ing. When the animals expressed stage 5 seizure over 3 
consecutive days, they were regarded as fully kindled.

2.4. LFS application

In LFS-treated groups, LFS was administered at 5 min, 
6, 18, and 24 h after the last kindling stimulation. LFS was 
applied as 4 packages of electrical pulses at 5 min inter-
vals; every package comprised 200 monophasic square 
wave pulses with 0.1 ms in duration and 1 Hz in frequen-
cy. This LFS pattern was similar to our previous study 
(Ghafouri, Fathollahi, Javan, Shojaei, Asgari, A., & Mir-
najafi-Zadeh, 2016). The intensity of pulses for LFS was 
equal to the afterdischarge threshold for each kindled rat.

2.5. Drug administration

1,3-dimethyl-8-cylclopenthylxanthine (CPT; Sigma, 
UK), as a selective A1 receptor antagonist, and N6-cy-
clohexyladenosine (CHA; Sigma, UK), as a selective ad-
enosine A1 receptor agonist, were dissolved in DMSO, 
and then diluted by adding artificial cerebrospinal fluid 
(aCSF; composition of aCSF has been mentioned in 
whole-cell patch-clamp procedure) to the desired con-
centration. The ultimate concentration of DMSO in solu-
tions was 0.1% and their pH was adjusted to 7.35 - 7.40. 
The solutions were then sterilized through microfilters 
(0.2 mm, Minisart, NML, Sartorius, Germany). Drugs 
were delivered to the left lateral ventricle via a 30-gauge 
cannula, which was 1 mm below the tip of the guide can-
nula. CPT at a dose of 2 mM and CHA at a dose of 10 
mM were microinjected (1 μl over 1 min) into the left 

lateral ventricle 3 min before each LFS session in CPT 
and CHA receiving groups, respectively.

2.6. Whole-cell patch-clamp recording

Rats were killed by decapitation 48 h after the last 
kindling stimulation under ether anesthesia. Slice prepa-
ration and whole-cell patch-clamp recording were per-
formed in the same way as described previously (Shojaei 
et al., 2014). Briefly, brains were rapidly isolated and the 
right hemisphere was horizontally sliced with 400 μm in 
thickness using a vibroslicer (Leica VT 1200s, Leica Mi-
crosystems AG, Wetzlar, Germany) in ice-cold cutting 
artificial cerebrospinal fluid composed of (in mM) 238 
sucrose, 2.5 KCl, 1 NaH2PO4, 0.5 CaCl2, 2 MgSO4, 
26.2 NaHCO3 and 11 D-glucose. Also, pH ranged from 
7.35-7.45 after equilibration with 95% O2 and 5% CO2. 
Osmolarity was adjusted to 290-300 mOsm. Transverse 
hippocampal slices (400 μm) were prepared using … . 

Slices were immediately transferred to a Gibbs cham-
ber containing ACSF and incubated at 32-35°C for 60 
min. ACSF was composed of (in mM) 125 NaCl, 3 KCl, 
2 CaCl2, 1.3 MgCl2, 1.25 NaH2PO4, 25 NaHCO3, and 
10 D-glucose continuously bubbled with 95% O2 and 
5% CO2. The osmolality was 295±5 mOsm and pH was 
adjusted to 7.3-7.4. Before transferring the slices to the 
submerged recording chamber, they were kept at room 
temperature (23-25°C) for a minimum of 20 min. Hip-
pocampal CA1 pyramidal neurons were observed us-
ing an upright microscope (Axioskop 2 FS MOT; Carl 
Zeiss, Germany) equipped with infrared CCD camera 
(IR-1000, MTI, USA). Recording chamber was continu-
ously superfused with the ACSF at a rate of 3 ml/min. 

Whole-cell patch-clamp recording under the current-
clamp mode was made from CA1 pyramidal neurons. 
Recording microelectrodes with a tip resistance of 4-7 
MΩ (1.5 mm O.D. and 0.86 mm I.D., Sutter, USA) were 
pulled from borosilicate glass with a horizontal puller (P-
97, Sutter Instrument, USA) in 4 steps and filled with 
intracellular solution containing (in mM) 115 K-gluco-
nate, 20 KCl, 10 disodium-phosphocreatine, 2 EGTA, 10 
HEPES, 2 MgATP and 0.3 Na2GTP. We adjusted pH to 
7.25-7.30 and osmolality was set to 290-295 mOsm. Pi-
pette capacitance compensation and bridge balance were 
carried out and series resistance was compensated by 
80%. Signals were recorded by a Multiclamp 700B am-
plifier and digitized with a Digidata 1440 A/D converter 
(Molecular Devices, CA, USA). Signals were filtered 
and digitized at 10 kHz. Electrophysiological analysis 
was performed using pClamp 10 software. 
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Measurement of the electrophysiological parameters 
was started 10 min after the establishment of whole-cell 
configuration. To estimate the firing properties of neu-
rons, depolarizing current pulses (100 to 200 pA, 50 pA 
increment, 650 ms) were injected and the number of 
evoked action potentials (in each depolarizing current 
step), as well as the onset latency, amplitude of the first 
spike, adaptation index, instantaneous frequency and 
post-AHP amplitude (in the 150 pA depolarizing current 
step) were measured. Also, a depolarizing ramp current 
(0 - 200 pA during 1000 ms) was injected to calculate 
the rheobase and utilization time. Action potential am-
plitude was considered as the voltage difference between 
the baseline and peak of the first evoked action potential. 
First spike latency was defined as the time elapsed from 
the onset of depolarizing current injection to the thresh-
old of the evoked action potential. Instantaneous fre-
quency was defined as the frequency of first two spikes 
generated in response to applying depolarizing current. 
The adaptation index of spike frequency was calculated 
by dividing the average of the last three inter-spike inter-
vals to the average of the first three inter-spike intervals 
of evoked action potentials. 

The post-AHP was measured as the voltage difference 
between the baseline (before current injection) and the 
peak of hyperpolarization produced after cessation of 
depolarizing current injection. The rheobase was consid-
ered as the current injected for evoking the first action 
potential. The delay in firing the first action potential in 
this situation was measured as utilization time. 

2.7. Experimental groups

After the recovery period, animals were divided into 
seven groups. In the kindled+LFS (KLFS) group (n=3), 
LFS was administered at 5 min, 6, 18, and 24 h after 
the last kindling stimulation, and 1 μM ASCF contain-
ing 0.1 % DMSO was injected into the lateral ventricle 
as a vehicle (for 1 min) before each LFS session. In 
the KLFS+CPT groups (n=3), animals experienced the 
same procedure; however, they received CPT instead 
of the vehicle. Animals of the kindled+CHA (n=3) and 
kindled+CPT (n=3) groups received CHA or CPT, re-
spectively, at the same time after the kindling proce-
dure, LFS was not administrated. In the kindled group 
(n=3), animals were subjected to only kindling stimula-
tions and in the kindled+Vehicle group (n=3), they re-
ceived vehicle following kindling acquisition. Animals 
of the LFS group (n=3) were treated with LFS alone. 
There were also two control groups, including the sh-
am-operated (n=3) and naïve (non-operated) (n=3) rats. 
There was no statistically significant difference between 

the kindled and kindled+vehicle, and also between the 
sham-operated and naïve groups; therefore, their data 
were combined into a kindled (n=6) and control (n=6) 
groups, respectively. Besides, as no statistical difference 
in various parameters was found between the kindled 
and kindled+CPT groups, the data of the kindled+CPT 
group is not shown. 

2.8. Statistical analysis

Statistical analysis was carried out using GraphPad 
Prism software (version 6.01, GraphPad Software, Ca, 
USA). Normal distribution of data was checked using 
Shapiro-Wilk and Levene’s test, respectively. The num-
ber of evoked action potentials was compared by one-
way ANOVA and other parameters were analyzed using 
a two-way ANOVA (both followed by a Tukey’s post-
hoc test). Values are presented as Mean±Standard Error 
of the Mean (SEM) and a P-value of less than 0.05 was 
considered statistically significant. 

3. Results

The electrophysiological properties of CA1 pyramidal 
neurons were evaluated using whole-cell patch-clamp 
recording. To characterize the role of adenosine A1 re-
ceptors in the effectiveness of LFS on cellular hyperex-
citability, the evoked firing activity of pyramidal cells 
was examined in response to the injection of depolariz-
ing current pulses. A significant difference was observed 
in the number of action potentials evoked in response 
to injecting different depolarizing current steps (Figure 
1A). A two-way ANOVA of the number of evoked ac-
tion potentials revealed a significant difference in terms 
of the group (F5,150=35.28, P<0.001) and current intensi-
ties (F2,50=115.9, P<0.001). As Figure 1A shows and we 
reported in our previous studies (Ghotbedin et al., 2013; 
Moradi Chameh et al., 2015; Shojaei et al., 2014), the 
excitability of CA1 pyramidal neurons enhanced by 
kindling stimulations as evidenced by a higher number 
of action potentials triggered by an injection of 100 to 
200 pA depolarizing currents in the kindled group com-
pared with the control group (11.75±1.01 in 100 pA, 
18.33±0.90 in 150 pA, and 21.92±0.96 in 200 pA in the 
kindled group vs. 5.33±0.99 in 100 pA, 11.50±1.08 in 
150 pA, and 14.67±1.33 in 200 pA in the control group; 
P<0.001; n=12 cells in 6 slices from 6 rats; Figure 1A). 
This parameter indicated a significant reduction due to 
LFS application in the KLFS group (2.00±1.09 in 100 
pA, 6.25±0.77 in 150 pA, and 10.34±0.73 in 200 pA; 
P<0.001 compared with the kindled group; n=8 cells in 
6 slices from 3 rats). Antagonism of adenosine A1 re-
ceptors in KLFS+CPT group significantly alleviated the 

Shojaee, A., et al. (2020). LFS Decreases Hyperexcitability through Adenosine A1 Receptors. BCN, 11(3), 333-348.

http://bcn.iums.ac.ir/


Basic and Clinical

338

May, June 2020, Volume 11, Number 3

***
+++

++

Current (pA)
100 150 200

0

5

10

15

20

25

Control Kindled KLFS
KLFS+CPT Kindled+CHA LFS

***

***

*+++

+++

+++

+++
+++

+++

++

++

+

N
o.

 o
f a

ct
io

n 
po

te
nt

ia
ls ××

××

A2

0.5

1.0

1.5

2.0 ***
**

Ad
ap

ta
tio

n 
in

de
x

Con
tro

l

Kind
led

KLF
S

KLF
S+C

PT

Kind
led

+C
HA

LF
S

+++

+++

A3

0

50

100

150

200

250 ** *
*

Fi
rs

t s
pi

ke
 

la
te

nc
y 

(m
s)

Con
tro

l

Kind
led

KLF
S

KLF
S+C

PT

Kind
led

+C
HA

LF
S

B2

40 mV
10 ms

150 pA

B1

C2

-5

-4

-3

-2

-1

0 *
*
*

Po
st

-A
H

P 
am

pl
itu

de
 (m

V)

Con
tro

l

Kind
led

KLF
S

KLF
S+C

PT

Kind
led

+C
HA

LF
S

+++
+

500 ms

Kindled

Kindled+CHA
Control

LFS
KLFS+CPT

40 mV

C1

KLFS

50 ms

2 mV

40 mV

Control

Kindled

KLFS

KLFS+CPT

KLFS+CHA

LFS

200 ms

A1

150 pA150 pA

Control

Kindled

KLFS

KLFS+CPT

KLFS+CHA

LFS

Figure 1. Role of A1 adenosine receptors in the effectiveness of LFS applied following kindling acquisition on the number of evoked 
action potentials, adaptation index, first spike latency and post-AHP amplitude in of hippocampal CA1 pyramidal neurons 

A1: Sample traces of action potentials fired by hippocampal CA1 neurons in response to injecting 150 pA depolarizing current in dif-
ferent experimental groups. 

A2: Quantitative comparison of the number of spikes evoked in response to the application of depolarizing current pulses of 100, 150, 
and 200 pA (650 ms) in CA1 pyramidal neurons among various experimental groups. 

* P<0.05; and *** P<0.001 compared with the control group; + P<0.05, ++ P<0.01, and +++ P<0.001 compared with the kindled group, ×× 
P<0.01 compared with the KLFS group, Mean±SEM. 

A3: Comparing adaptation index of action potentials evoked in response to 150 pA depolarizing current pulse in different experimental 
groups. B1: Sample voltage traces from pyramidal neurons in response to 150 pA depolarizing current pulse to compare the first spike 
latency in various experimental groups. The dashed line shows the onset of depolarizing current. 

B2: Quantitative comparison of latency to the first spike triggered in response to 150 pA depolarizing current pulse in CA1 pyramidal 
neurons in different experimental groups. 

C1: The sample voltage traces shown in A1 on a new scale to further highlight differences in post-AHP amplitude in different experi-
mental groups. 

C2: Statistical comparing the amplitude of Post-AHP elicited in response to 150 pA depolarizing current pulse. + P<0.05 and 
+++ P<0.001 compared with the control group; 

* P<0.05, ** P<0.01, and *** P<0.001. KLFS: kindled+ low frequency stimulation; LFS: Low-frequency stimulation; 

CPT: 1,3-dimethyl-8-cylclopenthylxanthine; CHA: N6-cyclohexyladenosine
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suppressive effect of LFS on the number of evoked ac-
tion potentials (6.12±0.89 in 100 pA, 12.62±0.10 in 150 
pA and 16.87±1.01 in 200 pA; P<0.01 in 100 pA and 150 
pA, P<0.05 in 200 pA; n=8 cells in 6 slices from 3 rats). 
Activation of these receptors following seizure develop-
ment could mimic the ameliorative effect of LFS and re-
sult in lowering the number of fired action potentials in 
all depolarizing steps (2.37±1.03 in 100 pA; 8.62±1.77 
in 150 pA and 14.25±1.90 in 200 pA; P<0.001 compared 
with the kindled group; n=8 cells in 6 slices from 3 rats). 
This parameter didn’t show significant changes in the 
LFS group compared to control (Figure 1A). 

A one-way ANOVA showed a significant difference in 
latency to the first spike among different experimental 
groups (F5,50=4.20; P<0.01, Figure 1B). In detail, kindling 
stimulations diminished this latency (from 81.53±20.64 
ms in control to 45.22±1.43 ms in kindled group), but we 
couldn’t find significant difference compare to control 
(P=0.32; n=12 cells in 6 slices from 6 rats). However, 
LFS administration to animals of KLFS group increased 
first spike latency (117.80±13.36 ms; P<0.01 compared 
to kindled group; n=8 cells in 6 slices from 3 rats). In-
hibition of adenosine A1 receptors prevented the effect 
of LFS on first spike latency (51.34±2.30 ms; P<0.05 
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compared to KLFS group; n=8 cells in 6 slices from 3 
rats). Injection of CHA was also capable to recover this 
parameter in kindled+CHA group (104.30±20.75 ms; 
P<0.05 compared to kindled group; n=8 cells in 6 slices 
from 3 rats). Employment of LFS alone in LFS group 
had no significant effect on this parameter (55.76±5.04 
ms; P=0.78 compared to control) (Figure 1B). 

Evaluation of spike accommodation demonstrated a 
statistically significant difference in adaptation index 
among experimental groups (F5,46=12.42; P<0.001; Fig-
ure 1A). This index showed a considerable reduction in 
kindled group (1.11±0.02 in kindled vs 1.53±0.05 in con-
trol group; P<0.001; n=12 cells in 6 slices from 6 rats). 
LFS treatment of fully kindled animals in KLFS group 
could significantly restore this parameter near to control 
values (1.42±0.09; P<0.01 compared to kindled group; 
n=6 cells in 6 slices from 3 rats). Blockade of adenos-
ine A1 receptors by CPT in the KLFS+CPT group com-

pletely eliminated the effectiveness of LFS on the adapta-
tion index (1.10±0.04; P<0.05 compared to KLFS group; 
n=8 cells in 6 slices from 3 rats). This parameter signifi-
cantly enhanced by activation of adenosine A1 receptors 
in kindled+CHA group (1.46±0.06; P<0.01 compared to 
kindled group; n=6 cells in 6 slices from 3 rats). It showed 
a significant reduction by treatment of animals with LFS 
alone in LFS group (1.20±0.08; P<0.001 compared to 
control; n=8 cells in 6 slices from 3 rats) (Figure 1A). 

We next measured AHP magnitude after a 150 pA cur-
rent injection (post-AHP). Statistical analysis revealed 
that AHP had a significantly different amplitude than 
other experimental groups (F5,50=9.180; P<0.001; Figure 
1C). This parameter significantly decreased due to kin-
dling development (from -2.66±0.25 mV in the control 
group to -1.63±0.19 mV in the kindled group; P<0.05; 
n=12 cells in 6 slices from 6 rats). However, it complete-
ly improved by the LFS application in the KLFS group 
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(-2.78±0.23 mV; P<0.05 compared with the kindled 
group; n=8 cells in 6 slices from 3 rats). The amplitude 
of post-AHP in the KLFS+CPT group did not show an 
alteration following LFS treatment and a significant dif-
ference was observed compared with the KLFS group 
(-1.67±0.15 mV; P<0.05 than the KLFS group; n=8 cells 
in 6 slices from 3 rats). Examination of this parameter in 
the kindled+CHA group showed that it recovered by ad-
enosine A1 receptor activation (2.81±0.14 mV; P<0.05 
in comparison with the kindled group; n=8 cells in 6 
slices from 3 rats). Administration of LFS also signifi-
cantly decreased post-AHP amplitude in the LFS group 
(-1.25±0.29 mV; P<0.001 compared with the control; 
n=8 cells in 6 slices from 3 rats) (Figure 1C).

Estimating the amplitude of the first spike evoked by 
150 pA depolarizing current revealed that it declined 
by kindling stimulations in the kindled group (from 
118.90±0.53 mV in control to 109.60±1.17 mV in the 
kindled group; P<0.001 in comparison with control; 
n=12 cells in 6 slices from 6 rats, Figure 2A) but LFS 
restored this parameter in the KLFS group (121.30±0.55 
mV; P<0.001 compared with the kindled group; n=8 
cells in 6 slices from 3 rats). LFS application following 
CPT injection in the KLFS+CPT group failed to recov-
er kindling-induced decrement of first spike amplitude 
(110.60±2.97 mV; P<0.001 than the KLFS group; n=8 
cells in 6 slices from 3 rats). Activation of adenosine 
A1 receptors by CHA in the kindled+CHA group could 
significantly increase this parameter in comparison with 
the kindled group (117.10±1.00 mV; P<0.01 vs. the kin-
dled group; n=8 cells in 6 slices from 3 rats). Similar 
to the effect of kindling stimulations, the application of 
LFS alone also significantly decreased amplitude of first 
spike (110.70±1.70 mV; P<0.01 compared with the con-
trol group; n=8 cells in 6 slices from 3 rats) (Figure 2A).

Maximum rise slope and maximum decay slope of 
the first action potential were also decreased by kin-
dling stimulations (from 285±8.40 mV/ms in the control 
group to 219±10 mV/ms in the kindled group for maxi-
mum rise slope and form -69±1.00 mV/ms in the control 
group to -57±1.10 mV/ms in the kindled group for maxi-
mum decay slope; P<0.001; n=12 cells in 6 slices from 
6 rats; Figure 2B). LFS application in the KLFS group 
significantly recovered both parameters (299±5.40 mV/
ms for maximum rise slope and -64±0.69 mV/ms for 
maximum decay slope; P<0.001 for maximum rise slope 
and P<0.01 for maximum decay slope compared with 
the kindled group; n=8 cells in 6 slices from 3 rats). Ad-
ministration of CPT and inhibition of adenosine A1 re-
ceptors before LFS application in the KLFS+CPT group 
significantly eliminated the efficacy of LFS in raising 

these parameters (218±17.00 mV/ms for maximum rise 
slope (P<0.001) and -58±2.10 mV/ms for maximum de-
cay slope (P<0.05) compared with the KLFS group; n=8 
cells in 6 slices from 3 rats). Post-kindling treatment of 
the animals with CHA and activation of adenosine A1 
receptors in the kindled+CHA group significantly in-
creased the maximum decay slope of the first evoked 
spike than the kindled animals (-64±1.00 mV/ms; 
P<0.05). Although the enhancement of maximum rise 
slope in this group was not significant compared with the 
kindled group, however, no significant difference was 
observed than the control group (262±17.00 mV/ms; 
P=0.12 vs. the kindled group and P=0.73 vs. the control 
group; n=8 cells in 6 slices from 3 rats). LFS application 
in the LFS group insignificantly declined maximum rise 
slope and significantly reduced maximum decay slope of 
the first evoked spike (237±19.00 mV/ms for maximum 
rise slope (P=0.06) and -62±2.30 mV/ms for maximum 
decay slope (P<0.01) compared with the KLFS group; 
n=8 cells in 6 slices from 3 rats) (Figure 2B).

We then measured rheobase and utilization time pa-
rameters by applying ramp depolarizing currents. As 
we reported previously (Ghotbedin et al., 2013; Mo-
radi Chameh, Janahmadi, Semnanian, Shojaei, & Mir-
najafi-Zadeh, 2015), both parameters showed a sig-
nificant reduction following kindling acquisition (form 
114.70±9.85 pA in the control group to 79.48±3.99 pA 
in the kindled group for rheobase (P<0.01), and form 
565.40±48.76 ms in the control group to 393.70±77.92 
ms in the kindled group for utilization time (P<0.05); 
n=12 cells in 6 slices from 6 rats; Figure 3). 

LFS treatment of animals in the KLFS group significantly 
increased rheobase and utilization time (135.10±3.77 pA for 
rheobase and 667.60±17.80 ms for utilization time; P<0.001; 
n=8 cells in 6 slices from 3 rats). CPT injection in the animals 
of the kindled group significantly eliminated the efficacy of 
LFS treatment on recovering these parameters (86.13±3.53 
pA for rheobase (P<0.001) and 423.80±17.41 ms for utiliza-
tion time (P<0.01) in the KLFS+CPT group compared with 
the KLFS group; n=8 cells in 6 slices from 3 rats). CHA ad-
ministration and activation of adenosine A1 receptors could 
again mimic LFS effect on these parameters (116±50 pA for 
rheobase (P<0.01) and 606.40±42.82 ms for utilization time 
(P<0.001) in kindled+CHA group compared with the kindled 
group; n=8 cells in 6 slices from 3 rats). The results obtained 
from the LFS group showed that LFS alone did not affect 
rheobase (103.50±8.44 pA; P=0.085) and utilization time 
(509.70±41.70 ms; P=0.86) in comparison with the control 
group; n=8 cells in 6 slices from 3 rats) (Figure 3). 
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4. Discussion

In this study, we assessed the role of adenosine A1 recep-
tors in recovering the seizure-induced hyperexcitability of 
CA1 pyramidal neurons by LFS treatment. The obtained 
results confirmed that the application of LFS can improve 
the deleterious effect of kindling on cellular excitability. 
Also, inhibition of adenosine A1 receptors decreased the 
effectiveness of LFS in the reduction of cellular excitabili-
ty in kindled animals. Furthermore, restoring effect of LFS 
on cellular excitability could be mimicked to a great ex-
tent by activation of A1 adenosine receptor. We formerly 
showed that antiepileptogenic effects of LFS are mediated 
somehow through the activation of adenosine A1 recep-
tors (Mohammad-Zadeh et al., 2009). In addition, LFS 
exerted its anticonvulsant effect, in part, by preventing the 
kindling-induced decrement of A1 receptor gene expres-
sion during epileptogenesis (Jahanshahi et al., 2009). 

Data obtained from the present study confirmed that 
LFS could decrease neuronal excitability, indicated by 
reducing the number of evoked action potentials, extend-
ing first spike latency, increasing the adaptation index, 
post-AHP amplitude, maximum decay slope of the first 
evoked action potential, rheobase current, and utilization 
time parameters. Investigating the role of adenosine A1 
receptors in these observations revealed that these recep-
tors are involved in restoring the effect of LFS on the 
number of evoked action potentials. 

This parameter is regulated by different voltage- or 
calcium-dependent outward potassium currents com-
prising A-type (Lien & Jonas, 2003C; Rudy & McBain, 
2001; Storm, 1987; Wang et al., 1998) slowly inactivat-
ing D-type (Segal & Barker, 1984; Storm, 1990), slowly 
activating, non-inactivating M type (Gu, Vervaeke, Hu, 
& Storm, 2005; Marrion, 1997), large-conductance, cal-
cium-activated (BK) potassium channels (Gu, Vervaeke, 
& Storm, 2007; Shao, Halvorsrud, Borg-Graham, & 
Storm, 1999; Storm, 1987) and small-conductance cal-
cium-activated (SK) potassium channels (Engel, Schul-
tens, & Schild,, 1999; Pedarzani et al., 2005). These cur-
rents underlie neuronal excitability and the abnormality 
in their functions leads to increased neuronal excitability 
and seizure (Brenner et al., 2005; Du et al., 2005; Olivei-
ra et al., 2010; Segal, Barker, 1984; Singh et al., 1998; 
Wu & Barish, 1999). Therefore, LFS may involve ad-
enosine A1 receptors to affect the activity of one or more 
types of potassium currents. 

For a better clarification, we also assessed the effect 
of LFS application in the presence of A1 adenosine re-
ceptor antagonist (CPT) on maximum decay slope of 

the first spike, first spike latency, spike adaptation, and 
post-AHP amplitude in response to a depolarizing cur-
rent injection. Maximum decay slope and onset latency 
of the first action potential parameters were hampered to 
be changed by LFS when adenosine A1 receptors were 
blocked. Maximum decay slope of the first action po-
tential is dependent on the activity of A-type potassium 
channels (Bean, 2007; Kim, Wei, & Hoffman, 2005) and 
first spike latency is mainly determined by the function 
of both A- and D-type potassium currents (Storm, 1988; 
Yuan & Chen, 2006). These potassium channels play 
a pivotal role in the regulation of neuronal excitability 
(Nakajima, Nakajima, Leonard, & Yamaguchi, 1986; 
Rogawski, 1985; Segal & Barker, 1984). Based on the 
findings of this study, it can be suggested that the em-
ployed adenosine A1 receptors by LFS can affect A- and 
D- type potassium currents. 

LFS also lost its efficacy on increasing the spike ad-
aptation and post-AHP amplitude when adenosine A1 
receptors were blocked. These parameters are mostly 
dependent on big- and small-conductance (BK and SK) 
potassium currents (Figenschou, Hu, & Storm, 1996; 
Gu, Vervaeke, & Storm, 2007). Therefore, the recovery 
of these currents by LFS may be mediated through ad-
enosine A1 receptors. 

The restoring effect of LFS on maximum rise slope of 
the first evoked action potential, rheobase current, and uti-
lization time was stopped when adenosine A1 receptors 
were blocked. These parameters are mostly controlled 
by voltage-gated sodium channels. Considering the im-
portant role of these channels in the generation of action 
potentials (Offord & Catterall, 1989; Waxman, ib-Hajj, 
Cummins, & Black, 2000), changes in the activity of 
them by adenosine A1 receptors may also be considered as 
a possible LFS mechanism of action. In this regard, it has 
also been shown that the expression of four voltage-gated 
sodium channel subtypes (NaV1.1, NaV1.2, NaV1.3, and 
NaV1.6) is elevated in the hippocampus and temporal 
lobe cortex following epileptic seizures (Berkovic, Mul-
ley, Scheffer, & Petrou, 2006; Blumenfeld et al., 2009; 
Mulley, Scheffer, Petrou, Dibbens, Berkovic, & Harkin, 
2005; Waxman et al., 2000; Xu et al., 2013). 

To confirm the possible involvement of adenosine A1 
receptors in the ameliorating effect of LFS, we observed 
that the application of an A1 adenosine receptor agonist 
(CHA) could mimic the effect of LFS on cellular excit-
ability in kindled animals. Previous studies have dem-
onstrated that the activation of adenosine A1 receptors 
hyperpolarizes the cells by direct triggering inwardly-
rectifying potassium channels (GIRKs) in postsynaptic 
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neurons and decreases cellular excitability (Nicoll, 1988; 
North, 1989; Rotermund et al., 2018; Thompson, Capog.-
na, & Scanziani, 1993). GIRK1–3 are expressed relatively 
at high levels by hippocampal CA1 and CA3 pyramidal 
cells (Drake, Bausch, Milner, & Chavkin, 1997; Karschin, 
Dissmann, Stühmer, & Karschin, 1996; Liao, Jan, & Jan, 
1996; Ponce et al., 1996). Activation of these currents 
through adenosine A1 receptors inhibits action potential 
generation in response to depolarizing current injection to 
CA1 neurons (Hargus, Bertram, & Patel, 2009). 

Besides, activation of adenosine A1 receptors can 
activate calcium-dependent potassium-current flows 
through the SK channels (Gerber, Greene, Haas, & Ste-
vens, 1989; Haas & Greene, 1984). These channels are 
controlled by cAMP and underlie the accommodation 
of firing seen in many hippocampal pyramidal neurons 
(Marrion & Tavalin, 1998). Furthermore, adenosine re-
duces the High Voltage-activated (HVA) calcium cur-
rents through adenosine A1 receptors in CA1 (Scholz & 
Miller, 1991) and CA3 (Mogul, Adams, & Fox, 1993) 
hippocampal pyramidal cells. 

It should be noted that the activation of these recep-
tors can also affect synaptic transmission. Adenosine A1 
receptors exist at excitatory synapses in the hippocam-
pus (Rebola, Pinheiro, Oliveira, Malva, & Cunha, 2003) 
and their activation has been demonstrated to hamper 
excitatory synaptic transmission in CA1 (Brundege & 
Dunwiddie, 1996) and CA3 pyramidal neurons. Alto-
gether, such mechanisms may be employed by adenos-
ine A1 receptors to affect sodium and potassium currents 
and reduce the neuronal excitability in kindled animals. 
However, further studies are required to elucidate this is-
sue in more details.

In conclusion, according to the present data, it may be 
suggested that LFS involves adenosine A1 receptors to 
exert its efficacy on neuronal excitability following sei-
zure development in the CA1 area of the hippocampus. 
The results of this study also confirm the fact that ad-
enosine A1 receptors can be considered as a potential 
target for drug development against epilepsy.
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