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Abstract
Real-time trends from surveillance data are important to assess and develop
preparedness for influenza outbreaks. The overwhelming testing demand and
limited capacity of testing laboratories for viral positivity render daily con-
firmed case data inaccurate and delay its availability in preparedness. Using
Bayesian dynamic downscaling models, we obtained posterior estimates for
daily influenza incidences from weekly estimates of the Centers for Disease Con-
trol and Prevention and daily reported constitutional and respiratory complaints
during emergency department (ED) visits obtained from the state health depart-
ments. Our model provides one-day and seven-day lead forecasts along with 95%
prediction intervals. Our hybrid Markov Chain Monte Carlo and Kalman filter
algorithms facilitate faster computation and enable us to update our estimates as
new data become available. Our method is tested and validated using the State of
Michigan data over the years 2009-2013. Reported constitutional and respiratory
complaints at the EDs showed strong correlations of 0.81 and 0.68 respectively,
with influenza rates. In general, our forecast model can be adapted to track an
outbreak with only one respiratory virus as a causative agent.
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1 INTRODUCTION

Every year, it is estimated that around one billion individuals fall sick with flu like symptoms worldwide,1 and between
291 243 and 645 832 individuals die from illnesses associated with seasonal influenza.2 When viruses mutate, immunity
mechanisms fall short in responding to the mutation, which may yield a rapid spread of pandemic proportions, like the
H1N1 outbreak in 2009. Due to the continuously changing and fast spreading nature of respiratory viruses, the resulting
diseases pose constant threats to human health.

Surveillance systems are key to addressing uncertainties in disease detection, monitoring, and control for influenza.3
However, due to disparities in reporting mechanisms, daily data are often noisy, subjected to delay in reporting, and unre-
liable. Traditional surveillance occurs passively when symptomatic cases report their symptoms to the healthcare systems.
As an example, the state of Michigan works with three different sources to collect data from symptomatic cases: (1) the
Michigan Syndromic Surveillance System (MSSS), which collects daily chief complaint data from individual registrations
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in emergency departments (EDs) and urgent cares, (2) the Michigan component of the Centers for Disease Control and
Prevention (CDC) ILINet (influenza like illness network), which collects weekly aggregates from primary and urgent
care practitioners,4 and (3) the MSSS, which captures weekly totals and individual case reports from EDs, primary, and
urgent care providers, as well as any other type of individual submission (eg, from schools or flu testing labs). Although
non-traditional data sources have been proposed for influenza surveillance (from Google search queries, Twitter mes-
sages, Facebook, Wikipedia article reviews, restaurant reservations, non-prescription pharmacy sales, etc.), there remain
challenges in system validation and implementation,5 which render traditional surveillance as the most reliable source
of uncertainty management.

Current research on influenza surveillance points at real-time influenza incidences forecasting as an ideal tool for
uncertainty management, and resource planning during influenza outbreaks.6 A handful of forecasting studies are pre-
sented in the literature, where forecasts vary in their estimation method, timeframe, settings, outcomes, and data types
used, and are reviewed in their scope by Chretien et al7 and Nsoesie et al.8 Since the 2013/2014 influenza season, the
CDC has organized a challenge where modeling groups are allowed to submit real-time weekly forecasts of influenza
incidences. A recent cross-validation study compares the performance of 22 of the models producing forecasts for the
CDC challenge9

Due to the wide variability across seasons, and the unpredictable nature of pandemic outbreaks, several modeling
groups have accommodated uncertainty in their prediction models, a feature that is becoming increasingly prevalent
in the more recent models with demonstrated real-time usefulness. There exist Bayesian networks with probabilistic
nodes,10,11 empirical Bayes,12 mechanistic models coupled with Bayesian-based filtering procedures to assimilate data,13

dynamic Bayesian hierarchical models embedding a mechanistic model,14 kernel density estimation to model autore-
gressive dependency on previous observations,15 and kernel density estimation of incidence distributions for the forward
looking weeks of the season, with copulas to model the dependence in incidence across different weeks.16 There are
also superensemble methods that combine the predictions of multiple models into a single estimate. Most of these
superensembles also incorporate probabilistic components.13,15,17

Using a continuous time SIR (susceptible-infected-recovery) modeling framework and simulated data, Rhodes et al18

provided a strategy for detecting the start date of an epidemic and predicting the behavior of the epidemic on a daily scale.
Roberts et al19 also used an SIR modeling framework to estimate the prevalence and incidence during epidemics and its
peak. Lytras et al20 used a flexible Bayesian model to predict probabilities for five distinct phases during an epidemic, such
as, pre-epidemic, epidemic growth, epidemic plateau, epidemic decline, and post-epidemic. While predicting epidemics
and understanding its behavior is paramount, very little work has been done on how to get a hold on the behavior of
influenza viruses on a daily basis, utilizing the resources available to health departments.

Most of the existing forecasting methods are designed to predict on a weekly basis.7,9,11 This is the case since publicly
available data sources (eg, influenza incidences Sentinel Network and Google Flu trends) either accumulate case counts
by week or need to refine their daily counts as more data become available. In addition, many methods are made for
seasonal flu, in which the weekly resolution may suffice for planning purposes. The situation is different with pandemic
outbreaks; daily forecasts are an ideal feature to support decisions with high cost-benefit trade-off where daily incidence
rates may grow exponentially, and daily forecasts can be helpful to timely detect and stop chains of transmission (eg, by
closing schools and workplaces) that would be harder to control if observed on a weekly basis. Out of the four models in
the literature that provide forecasts on a daily basis, three assumed data that were collected daily and it included all daily
cases of the outbreak analyzed.18,19,21 Some improvements are presented in Jiang et al,10 which assumed incomplete daily
counts of data, and used an additional data trend (daily ER chief complaints of respiratory symptoms) to complete the
daily estimate. However, we were unable to find articles that fuse data with multiple time resolutions.

Our work focuses on a tool for dynamic downscaling from weekly to daily rates using data resources that are already
available to the state health departments, and provides one-day and seven-day forecasts of influenza incidences that
county and state health departments can use for timely detection of fast growing transmission chains. Dynamic down-
scaling is a numerical procedure where data collected at coarser time resolution (eg, weekly scale) are used to interpolate
at a finer resolution (eg, daily scale). Dynamic downscaling methods are popular in regional climate predictions based
on information at a coarser scale from general circulation models.22 However, it has been hardly applied for disease
predictions and forecasts.

Our modeling framework is purely data-driven and requires little to no strong assumptions that are often needed for
SIR/SEIR models. In addition to using prior seasonal outbreak data to predict the incidence in upcoming flu seasons,
our model fuses data collected in real-time, which broadens the applicability of our approach to single-event pandemic
outbreaks.
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Our model has several interesting features and it fuses two different data sources: (1) weekly confirmed flu cases from
CDC, as reported based on the World Health Organization (WHO) and National Respiratory Enteric Virus Surveillance
Systems (NREVSS), (2) MSSS data on daily reported symptoms aggregated in two categories: constitutional symptoms (ie,
fever, headache, malaise, fatigue, and diarrhea), and respiratory symptoms (ie, shortness of breath or difficulty breathing,
cough, sore throat, and runny nose). Constitutional and respiratory symptoms can characterize other diseases, but are
a strong indicator of influenza like illness (ILI) when appearing concurrently. We assume that the true underlying daily
influenza incidence trend is a latent variable that cannot be observed, but these datasets provide information as predictors.
Hybrid Markov Chain Monte Carlo (MCMC)23 and Kalman filter algorithms24 are developed for model fitting. Thus, the
true underlying daily influenza incidence trend is some type of shrinkage estimate between the weekly CDC rates and
daily respiratory and constitutional symptoms reported.

The remainder of this article is organized as follows: Section 2 gives details on our datasets; Section 3 provides the
modeling framework; Section 4 presents the results along with model evaluation and sensitivity analysis; Sections 5 and
6 present our discussion and conclusions.

2 DATA

Weekly incidence data were retrieved from the CDC, which aggregates the reports from the NREVSS for the state of
Michigan, and the WHO (https://www.who.int). The NREVSS receives data on influenza incidence cases tested for
influenza and reported laboratory confirmed cases of influenza from a network of clinics and hospitals, and then reports
these both unweighted and weighted against the state’s population. The WHO’s Global Influenza Surveillance and
Response System (GISRS), a global network of laboratories that examine influenza focused disease trends and viral
surveillance, also contributes to the NREVSS (influenza incidence cases tested and confirmed influenza cases).25

On the daily scale, IRB exempted MSSS data were obtained from the Michigan Department of Health and Human Ser-
vices (MDHHS). The MSSS data included constitutional and respiratory symptoms of patients attending EDs in Michigan
from 1 January 2009 until 25 December 2013. The MSSS system automatically captures descriptive features of symptoms
from the chief complaint data in the EDs, and classifies them into symptom categories, being constitutional and respira-
tory a couple of the categories used for classification. Hence, not all the reports in either the constitutional or respiratory
categories correspond to an influenza incidence case. In addition, there exists underreporting, as just around 61% of the
Michigan hospitals were participating in the MSSS at the time of data retrieval (exact numbers of hospitals participating
were not provided by the MDHSS and underreporting rates could not be calculated). However, this information plays an
important predictor for estimating the daily influenza incidences.

3 BAYESIAN DYNAMIC DOWNSCALING MODEL

Combining disparate data sources to improve estimates at a granular level is widely popular in survey statistics and small
area estimation. For example, Rose et al26 combined small area census records and household microdata via an iterative
proportional algorithm to find refined estimates for infant mortality and household attributes (such as the percentage of
house with electricity, tap water etc.) in Bangladesh provinces. Multilevel regressions and poststratification techniques
were used by Zhang et al27 on Behavioral Risk Factor Surveillance System data, Missouri County-Level Study, and Amer-
ican Community Survey data to obtain county-level estimates of health indicators such as cardio obstructive pulmonary
disease and uninsured rates. Spatial downscaling approaches using regression-based models that are widely used in Geo-
sciences also incorporate data fusion techniques based on exogenous variables.28-30 However, it is imperative to keep in
mind that validity and sensitivity analyses based on scientific reasoning are essential to avoid bias and “garbage in and
garbage out” scenarios. In what follows, we describe a Bayesian dynamic downscaling and nowcasting procedure based
on data fusion and semiparametric approaches.

Our analyses were conducted in log-transformed scale, which means that all rates were modeled as log rates. We start
with some notations. Let Yd,w denote the influenza incidence for the dth day of the wth week. This quantity is latent, as
we do not know this from the available data, and our goal is to obtain this from weekly CDC influenza incidence Zw,

daily constitutional rates Y C
d,w, and daily respiratory rates Y R

d,w.We also provide a mechanism for nowcasting the influenza
incidence. We adopt Bayesian methods for their natural benefits of hierarchical modeling, forecasting, and prediction
intervals. The quintessential structure of our hierarchical models is comprised of four levels and prior distributions for
parameters as:

https://www.who.int
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[Weekly CDC influenza incidences] ≡ A × Daily influenza incidences (Downscaled)
+White noise

[Daily respiratory] ≡ Autoregression + Seasonal component +White noise
[Daily constitutional] ≡ Autoregression + Seasonal component +White noise

[Daily influenza incidences (Downscaled)] ≡ h (Denoised daily respiratory and daily constitutional)
+White noise

[𝜽] ≡ Prior distributions,

where A is a 1 × 7 vector of coefficients that maps weekly observations to latent daily influenza incidences, a priori we
assume that it is uniformly distributed across the week and set the values to 1∕7, and [𝜽] denotes prior distributions for
all unknown parameters estimated in the model.

At the top level of our modeling framework, we link the weekly CDC rates with downscaled daily influenza incidences
as:

Zw = A Yw + ez
w, (1)

where Yw is a 7 × 1 matrix with elements of daily influenza incidences during a week and the white noise, ez
w, follows a

zero mean Gaussian distribution with variance 𝜎2
z .

We assume Bayesian Structural Time Series (BSTS) models24,31-33 for Y C
d,w and Y R

d,w. The BSTS model decomposes a
time series into trend, autoregression, seasonal component, cyclical component, and white noise. Specifically, we consider a
structural time series model in the state space form as:

Y j
t = 𝜇

j
t + 𝜏

j
t + 𝜀

j
t, (2)

𝜇

j
t+1 = 𝜇

j
t + 𝜈

j
t + 𝜉

j
t , (3)

𝜈

j
t+1 = 𝜈

j
t + 𝜂

j
t, (4)

𝜏

j
t+1 = −

s−1∑

i=1
𝜏

j
t+1−i + 𝜔

j
t, j ∈ {C,R}, t = 7(w − 1) + d, (5)

where {d,w} represents the dth day in the wth week; 𝜇j
t is the unobserved underlying trend of the time series that evolves

through an autoregressive process; 𝜈j
t is a slope term characterized by a random walk distribution, which controls a steady

upward or downward movement of the time series and imposes a drift into the structural model for the trend; 𝜏 j
t denotes

the seasonal component, where s is the number of seasons for Y j
t , and 𝜀j

t, 𝜉
j
t , 𝜂

j
t, and𝜔j

t are independent zero-mean Gaussian
white noise processes with variance parameters 𝜎2

𝜀,j, 𝜎
2
𝜉,j, 𝜎

2
𝜂,j, and 𝜎2

𝜈,j, respectively. Note that we excluded the cyclical
component from the BSTS model in Equation (2). From our datasets, we could observe that influenza outbreaks exhibit
strong seasonal variations but no cyclical/periodic variations out of regular season.

At the next level of our hierarchical modeling, we characterize the relation between Yd,w and the mean respiratory
rates x1 ≡ 𝜇

R
d,w + 𝜏

R
d,w and constitutional rates x2 ≡ 𝜇

C
d,w + 𝜏

C
d,w as:

Yd,w = h(x1, x2) + ey
d,w, (6)

where h(⋅) is an unknown function of the trends and seasonal components of constitutional and respiratory symptoms,
which will be specified semiparametrically using basis functions as:

h(x1, x2) = 𝛽0 + 𝛽1x1 + 𝛽2x2 +
K∑

k=1
uk ||x − 𝜼k|| log ||x − 𝜼k||, x = (x1, x2), (7)

where K is the number of knots, and 𝜼k are selected knots on the bivariate domain that control the smoothness of the
function h(⋅). The knots were selected using exploratory analyses based on a Clara algorithm,34 where we consider a
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uniform distribution of CDC daily confirmed rates by dividing the weekly rates with an initial value of seven. The Clara
algorithm selected the knots based on a two-dimensional surface of the observed daily time series of constitutional and
respiratory rates via restricted maximum likelihood estimation using connections between penalized splines and linear
mixed models. Clara algorithms are available in R packages SemiPar35 and Cluster.36 White noise, ey

d,w, follows a zero
mean Gaussian distribution with variance 𝜎2

y .

We use Markov Chain Monte Carlo methods and Kalman filter techniques to fit our proposed model to the data. Under
our model assumptions, Zw follows a univariate Gaussian distribution with mean A Yw and variance 𝜎2

z , and Yw follows
a multivariate Gaussian distribution with mean vector hw and covariance matrix 𝜎2

wI7. Here hw is a 7 × 1 vector of h
function values computed over the wth week. The full conditional distribution for generating Yw is multivariate Gaussian
with mean vector 𝜇Y |Z of dimension 7 × 1 and covariance matrix 𝚺Y |Z of dimension 7 × 7 are obtained as:

𝚺Y |Z =
(

1
𝜎

2
w

I + A′A
𝜎

2
z

)−1

,

𝝁Y |Z = 𝚺Y |Z

(
h′wI
𝜎

2
w
+ ZwA

𝜎

2
z

)
.

Thus, the downscaled daily ILI trends are shrinkage estimates of the h′w function and ZwA. Note that the h(⋅) function is
a function of constitutional and respiratory rates after distilling their measurement errors.

We impose improper priors on the real line for all variance parameters (𝜎2), that resulted in full conditional distri-
butions for 𝜎2

w as proper inverse-gamma with shape parameter n∕2 + 1 and scale parameter 0.5
(
Y − ̂Y

)′ (Y − ̂Y
)
, where

Y denotes the n × 1 vector of all daily downscaled influenza incidences over our study period. Similarly, in our MCMC
algorithm, 𝜎2

z was generated from an inverse-gamma distribution with rate parameter nw∕2 + 1 and scale parameter
0.5(Zw −A Yw)′ (Zw −A Yw) , where nw is the number of weeks.

Let 𝜽 = [𝛽0, 𝛽1, 𝛽2, 𝜇k, k = 1, 2, … ,K]′ denote the coefficients in the semi-parametric regression; we impose
a multivariate Gaussian prior with mean vector 𝝁

𝜃

and covariance matrix 𝚺
𝜃

on 𝜽. The full conditional
distribution for 𝜽 results in a Gaussian distribution with mean vector 𝜇

𝜃|Rest and covariance matrix 𝚺
𝜃|Rest

as:

𝚺
𝜃|Rest =

(
GG′

𝜎

2
w
+ Σ−1

𝜃

)−1

𝜇
𝜃|Rest = 𝚺𝜃|Rest

(
G′Y
𝜎

2
w
+ 𝚺−1

𝜃

𝝁
𝜃

)
.

The full conditional distributions for mean respiratory rates x1 ≡ 𝜇
R
d,w + 𝜏

R
d,w and constitutional rates x2 ≡ 𝜇

C
d,w + 𝜏

C
d,w are

unavailable in closed form due to the nonlinearity in the semiparametric regression, Equation (7). We use a hybrid method
that comprises a Kalman filter and a Metropolis-Hastings step to sample these parameters. Now we focus on the Bayesian
Kalman filter algorithm that is widely used for BSTS models.

We rewrite Equations (2)-(4) for constitutional and respiratory rates as:

Y j
t = Xj

t𝜶
j
t + 𝜖

j
t, (8)

𝜶
j
t+1 = Tj

t𝜶
j
t +Mj

te
j
t, (9)

where the state-space parameters are 𝜶j
t = (𝜇

j
t, 𝛾

j
t , 𝜏

j
t , 𝜏

j
t−1, … , 𝜏

j
t−s+1)

′
, s is the number of seasons, and ej

t is a zero-mean
multivariate Gaussian random vector of dimension 3 × 1 with diagonal covariance matrix Qj

t ≡ Diag
(
𝜎

2
𝜉,j, 𝜎

2
𝜂,j, 𝜎

2
𝜈,j

)
.

In Equation (8), Xj
t is Diag

(
Xj
[1],X

j
[2]

)
, where Xj

[1] = (1, 0) and Xj
[2] is a 1 × s vector with the first element 1, and the

remaining elements are 0. The matrix Tj
t is of dimension (s + 2) × (s + 2) and can be written as Diag

(
Tj

1,T
j
2

)
, where the

2 × 2 matrix Tj
1 and the s × s matrix Tj

2 are:
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Tj
1 ≡

[
1 1
0 1

]
Tj

2 ≡

⎡
⎢
⎢
⎢
⎢
⎢⎣

−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
0 0 · · · 1 0

⎤
⎥
⎥
⎥
⎥
⎥⎦

In Equation (9), the (s + 2) × (s + 2) matrix Mj
t can be written as Diag

(
Mj
[1],M

j
[2]

)
, with Mj

[1] being an identity matrix of

rank 2 and Mj
[2] is an s-dimensional vector with the first element one and the remaining entries zero.

A Kalman filter algorithm,32 is used assuming the initial state 𝜶j
1 follows a Gaussian distribution with mean aj

1 and
covariance Pj

1. Let yj
t denote the observations up to time t as yj

t = ((Y
j
1)
′
, (Y j

2)
′
, … , (Y j

t )
′)′. Denoting aj

t|t = E[𝜶j
t|y

j
t], aj

t+1 =
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j
t], Pj
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t|y

j
t), and Pj

t+1 = Var(𝜶j
t+1|y

j
t), the derived Kalman-Filter equations are:
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j
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tX
j
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j
t(M

j
t)
′ for t = 1, 2, … ,T, j ∈ {C,R},

where vt,j = Yj
t − Xj
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j
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⊺
+Hj

t, and Kj
t = Tj
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j
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j
t
⊺
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t
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. The state vector 𝜶j
t+1 is sampled from a Gaussian dis-

tribution with mean aj
t+1 = Tj

ta
j
t|t and covariance matrix Pj

t+1 = Tj
tP

j
t|t(T

j
t)
′ +Mj

tQ
j
t(M

j
t)
′. This distribution is considered

as a proposal distribution for the Metropolis-Hastings step to sample the trend and seasonal components 𝜇j
t, 𝜏

j
t , j ∈ C,R,

t = d,w, respectively. Pseudocode of the algorithms is provided. For details, see Algorithms 1 and 2.

4 RESULTS

4.1 Real data analysis

Recall that our primary goal is obtaining influenza incidence trends on a daily scale, Yd,w, based on weekly CDC
reported influenza incidence trends and MDHHS reported daily constitutional and respiratory trends. We also obtain 95%
prediction intervals for the downscaled influenza incidences.

Since we fitted a semiparametric model, the nonparametric function h(⋅) estimation involves a large number of param-
eters. In Table 1, we only showed the posterior estimates of parameters from the linear portion of h(⋅) function and all
variance parameters. These parameters were summarized in the table using posterior medians, means, and 95% cred-
ible intervals. According to our model, the h(⋅) function is the a priori mean of the downscaled ILI rates on log scale.
In Figure 1, we plotted the posterior median of h(⋅) function with respect to log-transformed respiratory and constitu-
tional rates. From this plot, we see an overall increasing trend of the mean surface of daily downscaled ILI rates with
constitutional and respiratory rates.

Figure 2 shows four time series, three of which are on daily scale and one on weekly scale. The green and greenish
blue lines indicate daily reported respiratory and constitutional log-transformed rates per 100 000 population. The red
dots indicate weekly log-transformed CDC influenza incidences per 100 000 population. From these three time series,
one can clearly see the seasonal patterns. Also, the 2009 H1N1 pandemic is clearly observed. The Pearson’s correlations
between weekly influenza incidences and weekly constitutional and respiratory rates are 0.81 and 0.68, respectively. These
high correlation values confirm that constitutional and respiratory rates are strong predictors of influenza incidences.
Whenever there is a peak in weekly influenza incidences, we also see peaks for constitutional and respiratory rates.

The black lines in Figure 2 indicate the posterior medians of downscaled daily influenza incidences, with gray-shaded
95% prediction intervals. The downscaled time series follow similar patterns of weekly CDC rates. During the 2009 pan-
demic, there are many confirmed cases in a typical week. For example, based on our downscaled influenza incidence
trends, between 12 October 2009 and 28 November 2009, 43 741 population got affected with an average of 1121 people
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Algorithm 1. Algorithm for downscaling influenza incidences with available data

1. Step 1: From BSTS models get niter0 = 30000 realizations of constitutional daily rates and respiratory daily rates. Use
the parts after burn-in (burnin). Extract trend and seasonal components 𝜇C

d,w, 𝜏C
d,w, 𝜇R

d,w, and 𝜏R
d,w for (niter0 − burnin)

realizations.
2. Step 2: Set loop number n1 as (niter0 − burnin), set initial value of the weight w[1] = −1.15 × 1013.

for k = 1 to n1 do xc[k]=𝜇C
d,w[k] + 𝜏

C
d,w[k], xr[k]=𝜇R

d,w[k] + 𝜏
R
d,w[k]

if k = 1 then p = 1
else

rate=min(1, w[k]
w[k−1]

), p ∼ binomial(1, rate)
end if
if p = 1 then

Constitutional rates[k]=xc[k], Respiratory rates[k]=xr[k]
else

Constitutional rates[k]=xc[k-1], Respiratory rates[k]=xr[k-1]
end if
Run semi-parametric regression to get hw, and fitted value for CDC daily rates: fitted_value and set up the initial

prior of 𝜃: 𝝁
𝜃

, which is the mean of coefficients in semi-parametric regression, and𝚺
𝜃
, which is the covariance matrix

in the semi-parametric regression.
for i = 1 to nw do

𝚺Y |Z = (
1
𝜎

2
w

I + A′A
𝜎

2
z
)−1, 𝝁Y |Z = 𝚺Y |Z(

h′wI
𝜎

2
w
+ ZwA

𝜎

2
z
), influenza incidences Daily[, i]= Yw|Zw ∼ N7(𝜇Y |Z,ΣY |Z)

end for
Transform influenza incidences Daily (7 × nw) into a vector of daily rates:
Y[k] = vec(influenza incidences Daily[k])
Get the scale for the truncated inverse gamma distribution of 𝜎2

z , scale_sum = 0
for i = 1 to nw do

scale_sum = scale_sum + (Zw[i] − A × influenza incidences Daily[, i])2
end for

Generate 𝜎2
w and 𝜎2

z : 𝜎2
z ∼ inverse gamma(1,nw∕2 + 1, 2

scale_sum
)

𝜎

2
w ∼ inverse gamma(1,n∕2 + 1, 2

(Y[k]−fitted_value)′(Y[k]−fitted_value)
)

Generate 𝜃:𝚺
𝜃|R = positive definite((GG′

𝜎

2
w
+ Σ−1

𝜃

)−1), 𝜇
𝜃|R = 𝚺𝜃|R(

G′Y[k]
𝜎

2
w

+ 𝚺−1
𝜃

𝝁
𝜃

)

𝜃 ∼ N(𝜇
𝜃|R,Σ𝜃|R)

Get weights w by calculating natural logarithm of the multivariate normal density of Y[k]:
w[k + 1] = dmvnorm(Y[k],G × 𝜃, 𝜎2

w ∗ diag(n), log=TRUE)
end for
Take 2.5% and 97.5% percentile as the upper bound and lower bound of the downscaled daily influenza incidences
confidence interval; and take the median as the downscaled daily influenza incidences. (If the value is below 0, then
take 0.)

per day. During a regular flu season, between 1 January 2012 and 30 April 2012, 25 084 population got affected with an
average of 207 people per day. Note that our downscaled series have several desirable properties: (1) they provide some
degree of shrinkage, and (2) they are more stable and less noisy. If we look closely at the time period between 1 January
2013 and 1 March 2013, we see that the respiratory rates are substantially high; however, our estimates are balanced by
the other two time series. Our estimates are impacted less by the noise present in the respiratory data during that time
period.

We set aside the last 15 days of data and predicted for those days using the remaining data from 1805 days. Our
predicted daily influenza incidence trends (blue lines) and the associated prediction intervals (gray shades) are shown in
Figure 3. The weekly CDC data is also shown (red dots). Comparing the CDC data with the predictions, we can clearly
see that our predictions follow similar patterns. Additionally, the widths of prediction intervals ensure that the model is
able to capture the uncertainties associated with the data.
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Algorithm 2. Algorithm for predicting downscaled influenza incidences

1. Step 1: Use BSTS models to predict n1 days of constitutional daily rates and respiratory daily rates with N realizations.
Use the parts after burn-in (burnin). Extract trend and seasonal components of predicted n1 days: 𝜇C

d,w, 𝜏C
d,w, 𝜇R

d,w and
𝜏

R
d,w for n = N − burnin realizations.

2. Step 2: Set the initial value of the weight w[1] = −1.15 × 1013

for k = 1 to n do
xc[k]=𝜇C

d,w[k] + 𝜏
C
d,w[k], xr[k]=𝜇R

d,w[k] + 𝜏
R
d,w[k]

if k = 1 then p = 1
else rate=min(1, w[k]

w[k−1]
), p ∼ binomial(1, rate)

end if
if p = 1 then

Constitutional rates[k]=xc[k], Respiratory rates[k]=xr[k]
else

Constitutional rates[k]=xc[k-1], Respiratory rates[k]=xr[k-1]
end if

Predict initial CDC daily rates y_hat_predict by the semi-parametric model in Algorithm 1. Run semi-parametric
regression for y_hat_predict with constitutional rates [k] and respiratory rates [k] to get hw, and fitted value for CDC
daily rates in the prediction periods: fitted_value. Set up the initial prior of 𝜃: 𝜇

𝜃
is the mean of coefficients and Σ

𝜃
is

the covariance matrix in the semi-parametric regression of predicted periods. n_w_pred is the number of predicted
weeks.

for i = 1 to n_w_pred do

𝚺Y |Z = (
1
𝜎

2
w

I + A′A
𝜎

2
z
)−1, 𝝁Y |Z = 𝚺Y |Z(

h′wI
𝜎

2
w
+ ZwA

𝜎

2
z
)

influenza incidences Daily[, i]= Yw|Zw ∼ N7(𝜇Y |Z,ΣY |Z)
end for

Transform influenza incidences Daily (7 × n_w_pred) matrix into a vector of daily rates:
Y[k] = vec(influenza incidences Daily[k])
Get the scale for the truncated inverse gamma distribution of 𝜎2

z , scale_sum = 0
for i = 1 to n_w_pred doscale_sum = scale_sum + (Zw[i] − A × influenza incidences Daily[, i])2

end for
Generate 𝜎2

w and 𝜎2
z : 𝜎2

z ∼ inverse gamma(1,nw∕2 + 1, 2
scale_sum

)
𝜎

2
w ∼ inverse gamma(1,n∕2 + 1, 2

(Y[k]−fitted_value)′(Y[k]−fitted_value)
)

Generate 𝜃:
𝚺
𝜃|R = positive definite((GG′

𝜎

2
w
+ Σ−1

𝜃

)−1), 𝜇
𝜃|R = 𝚺𝜃|R(

G′Y[k]
𝜎

2
w

+ 𝚺−1
𝜃

𝝁
𝜃

) 𝜃 ∼ N(𝜇
𝜃|R,Σ𝜃|R)

Get weights w by calculating natural logarithm of the multivariate normal density of Y[k]:
w[k + 1] = dmvnorm(Y[k],G × 𝜃, 𝜎2

w ∗ diag(n), log=TRUE)

end for
Take 2.5% and 97.5% percentile as the upper and lower bound of predicted downscaled daily influenza incidences
confidence interval; and take the median as predicted downscaled daily influenza incidences. (If the value is below
0, then take 0.)
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T A B L E 1 Posterior medians, means, and 95% credible intervals (LB: lower bound and UB: upper bound) for model
parameters

Parameters Median Mean 95% CrI LB 95% CrI UB

𝛽0 −9.12 −9.11 −10.09 −8.09

𝛽1 2.26 2.26 2.12 2.41

𝛽2 0.44 0.44 0.26 0.6

𝜎z 0.24 0.12 1.9 × 10−4 0.25

𝜎y 0.27 0.27 0.26 0.28

𝜎
𝜖,C 0.05 0.05 0.04 0.07

𝜎
𝜂,C 0.06 0.06 4.9 × 10−3 0.06

𝜎
𝜈,C 1.9 × 10−4 3.9 × 10−4 9.2 × 10−5 4.3 × 10−3

𝜎
𝜉,C 0.015 0.02 2.1×10−4 0.07

𝜎
𝜖,R 0.04 0.04 0.03 0.08

𝜎
𝜂,R 0.07 0.07 4.3×10−3 0.08

𝜎
𝜈,R 2.2 × 10−4 4.1 × 10−4 1.01 × 10−4 3.5 × 10−3

𝜎
𝜉,R 2.6 × 10−3 7.6 × 10−3 1.6 × 10−4 0.04

F I G U R E 1 Posterior median of h(⋅) function with respect to constitutional and respiratory rates

Since there is no gold standard to validate our model, we conducted sensitivity analysis by setting aside portions of
data, and cross-validation by comparing downscaled influenza incidences with full data and with partial data.

In Figure 4A, we set aside data for 90 days from 1 January 2011 through 1 April 2011. The orange lines show the
downscaled influenza incidences with partial data and the black lines show the downscaled influenza incidences with
complete data. The red dots are weekly CDC confirmed cases. We can easily see that both downscaled time series are close
enough to assure us that the model developed based on the three time series provides meaningful dynamic downscaling
and predictions. To further ensure, we also set aside data from peaks and dips of the time series, obtained downscaled
influenza incidence trends from those missing portions and compared them with downscaled influenza incidences with
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F I G U R E 2 Analyses were conducted in log-scale. Downscaled daily log influenza incidences are denoted by black lines, red dots
denote the log CDC reported weekly influenza incidences, the gray shades indicate 95% prediction intervals, green lines indicate log daily
respiratory rates, and greenish blue lines indicate log daily constitutional rates

full data. Figure 4B singles out a dip in the time frame of June through the end of August 2011, and Figure 4C does the
same for a peak in the range from January through the end of June 2012. In each case, we find that the predictions show
meaningful trends as we compare them with CDC data.

4.2 Simulation results

Since we do not have daily influenza incidence rates in the real dataset, we simulated these rates and use them for model
fitting. We generated daily constitutional and respiratory rates using the BSTS model described in Equations (2)-(5). The
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F I G U R E 3 Analyses were conducted in log-scale. Downscaled daily log influenza incidences are denoted by black lines, red dots denote
the CDC reported weekly log influenza incidences, the gray shades indicate 95% prediction intervals, green lines indicate daily log respiratory
rates, and greenish blue lines indicate daily log constitutional rates. The blue lines indicate 14 day predictions for log influenza incidences

generated respiratory and constitutional cases were used in the Equation (6) to get daily cases. Then, weekly rates were
generated by adding the daily cases over a week and dividing by population sizes. We simulated 30 unique datasets where
we set the variance parameters as follows: 𝜎

𝜀,C = 0.0428, 𝜎
𝜉,C = 0.006, 𝜎

𝜂,C = 0.00013, 𝜎
𝜈,C = 0.003, 𝜎

𝜀,R = 0.039, 𝜎
𝜉,R =

0.071, 𝜎
𝜂,R = 0.000156, 𝜎

𝜈,R = 0.003, 𝜎z = 0.0001, 𝜎y = 0.0001. The {𝜇} terms and {𝜈} terms were set at 𝜇C
0 = 4.3, 𝜇R

0 =
4.9, 𝜈C

0 = 𝜈
R
0 = 𝜏

C
0 = 𝜏

R
0 = 0. These initial values of 𝜇C

0 and 𝜇R
0 were set as the observed values of constitutional rates and

respiratory rates at time 0. The level and slope parameters 𝜎
𝜀,C, 𝜎𝜂,C 𝜎𝜀,R, and 𝜎

𝜂,R were chosen from one realization of
MCMC based on real data after burn-in. The noise parameters {𝜎

𝜈,C, 𝜎𝜈,R, 𝜎z, 𝜎y} were chosen to avoid the overlap in the
seasonal perturbations of constitutional and respiratory rates.

We fitted our models to these 30 unique simulated datasets, each over T = 1820 days. The boxplot in Figure 5 shows
the summary of mean squared errors (MSE) from these 30 simulated datasets in log rates per million population. The
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F I G U R E 4 Analyses were conducted in log scale. In all figures, log downscaled daily influenza incidences are denoted by dark purple
lines, red dots denote the CDC reported weekly log influenza incidences, the gray shades indicate 95% prediction intervals, green lines
indicate daily log respiratory rates, and greenish blue lines indicate daily log constitutional rates. The orange lines indicate the predicted daily
log influenza incidences for the withheld time period
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F I G U R E 5 Boxplot of mean squared error from 30 simulated datasets

MSE was calculated using the differences between posterior medians and simulated daily ILI rates. Figure 6 shows the
results of six out of 30 simulated datasets, where estimated (posterior medians) daily log influenza incidence rates (in
black) closely resemble the simulated log daily rates (in red). These figures clearly indicate reasonable model fitting with
acceptable uncertainty estimates measured by prediction intervals. We also use posterior predictive checks to assess model
fitting.

5 DISCUSSION

In this article, we present a dynamic downscaling method for estimating daily influenza incidences from weekly
data. These estimates can support preparedness by the state and county health systems during flu emergencies. In
the United States, the healthcare burden for flu is high and the county health departments are at the forefront to
get their communities ready by providing enough vaccines, monitoring severity by tracking hospitalization and death
rates, and creating awareness. The granularity of the method in this article allows identifying the peaks and will
help in channeling appropriate resources whenever necessary. Bayesian hierarchical modeling37 provides a natural
platform for combining information from disparate data sources in a coherent mathematical framework. Semipara-
metric modeling38 boosts the flexibility that was needed to characterize the unknown relations between the daily
observed respiratory and constitutional symptoms, and the actual influenza incidence. Markov Chain Monte Carlo23

and Kalman filter32 based hybrid algorithms provided the efficiency for better convergence and continuous updat-
ing of the estimates as new data become available on a daily basis. Posterior distribution based inferences rely on
the shrinkage between the data and the prior beliefs of the unknown parameters. We selected noninformative priors
for robust Bayesian inference. Additionally, the 95% prediction intervals provide the uncertainty associated with the
estimates.

Our algorithm contributes to timely and accurate information that the data collection systems are currently
unable to provide due to delays in submission of testing results to the electronic reporting systems at the state
level. In the Michigan case, the electronic reporting system is the MDSS, which expects information from health-
care providers in real time. It is well known, however, that due to the variety of testing methods and processing
criteria, queuing priorities for testing, and exacerbated demand for testing during influenza emergencies, submis-
sion of confirmed cases can take up to 2 weeks.39 Therefore, daily trends of influenza incidence are currently
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F I G U R E 6 Results from 6 simulations out of 30 simulations done. Black line: Estimated downscaled daily log influenza incidences per
100 000 million. Red dotted line: Simulated log daily influenza incidences per 100 000 million. Gray shades: 95% prediction intervals. Green
line: Simulated log daily respiratory rates. Greenish blue line: Simulated log daily constitutional rates
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observed weekly and corrected as more confirmed specimens are submitted to the system. Our algorithm is suit-
able to accommodate the time resolution from weekly to daily, which corrects for the operational delays in the
submission.

From our work, we found that MDHHS constitutional and respiratory trends are good proxies for estimating bench-
mark daily trends of influenza incidence. There are several advantages in the use of constitutional and respiratory trends:
They are retrieved with a one-day delay only, and they are based on reported symptoms and not on confirmatory testing,
which makes them independent from the specificity, sensitivity, timeliness, and variability of the testing infrastructure
built in each reporting healthcare provider. Although the constitutional and respiratory trends present underreporting,
our work shows that they are meaningful predictors contributing their fluctuation patterns in the estimation of the daily
influenza incidence trend.

In this article, a semi-parametric function was estimated to fuse the daily constitutional and respiratory trends. We
found that the shrinkage contribution associated with the constitutional trends in the basis function was higher than the
contribution of the respiratory trends. This finding is justifiable as the respiratory trends might be subject to more noise
during the influenza seasons than the constitutional. The EDs receive many patients with respiratory symptoms from
non-flu related diseases (eg, heart failure, chronic obstructive pulmonary disease, asthma, acute coronary syndrome, and
arrhythmia). In contrast, the constitutional burden might be mostly attributed to flu and flu related diseases during the
influenza seasons.

Our modeling framework considers that the constitutional and respiratory trends are proxies of influenza activity,
which is a reasonable assumption during the flu seasons or during an outbreak from a recognized causative flu strain.
During flu seasons, however, the trends are only helpful to track ILI, and determining which virus is driving the increasing
trend is a recognized challenge.

Constitutional and respiratory trends might also work to track an outbreak caused by a respiratory
virus, as long as the outbreak does not overlap with a flu related case surge. Previous research demon-
strates how increasing ILI trends were heavily correlated with the respiratory syncytial virus outbreak in
Washington State during December 2019, and with the SARS-CoV-2 outbreak in the United States during
March 2020.40

6 CONCLUSION

We developed a dynamic downscaling method for estimating daily influenza incidences from weekly data. Despite the
assumptions and limitations described in the discussion section, our work possesses several strengths: (1) our method is
based on two powerful data sources, which are also widely and easily available to the MDHHS. Most of the state health
departments in the U.S. have an established infrastructure to retrieve influenza incidence trends like the constitutional
and respiratory. In addition, the CDC’s weekly trends of cases confirmed with a flu virus are publicly available; (2) since
we used structured surveillance data/systems to build our framework, public health officials are better suited to question
and validate the results of the down-scaled trends, if our algorithm is implemented; (3) our fast algorithms facilitates
updated predictions as the new data become available; and (4) our modeling framework has the ability to capture adaptive
seasonal effects.

When infrastructure limits the capacity of testing, EDs report constitutional and respiratory cases that are useful
proxies for estimating surges and the true incidences during epidemics. At the time of writing this article, it is unknown
how SARS-CoV-2 and flu will interact during flu season. However, our model accounts for symptoms that are common
in both diseases, and hence our model contributes to the groundwork that is needed to understand such interactions in
the future.
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