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Recently, NPY overexpression has been proposed to alleviate motor deficits
and neuropathy in Machado-Joseph disease (MJD) mouse models, indicating its
neuroprotective role in the pathogenesis of MJD. We aimed to evaluate the association
between SNPs in NPY and its receptors and the susceptibility of MJD in the Chinese
population. Moreover, we investigated whether these SNPs modulate the age at onset
(AO) of MJD. In total, 527 MJD patients and 487 healthy controls were enrolled in
the study, and four specific selected SNPs (rs16139, rs3037354, rs2234759, and
rs11100494) in NPY and its receptor genes were genotyped. In this study, the genotypic
frequency using the dominant model and the allelic distribution of rs11100494 in NPY5R
revealed a significant difference between the MJD and control group during the first-
stage analysis (P = 0.048 and P = 0.024, respectively). After we expanded the sample
size, significant differences were observed between the two groups using the dominant
model in genotypic and allelic distribution (P = 0.034, P = 0.046, and P = 0.016,
respectively). No significant differences in genotypic and allelic distribution were found
between the MJD and control groups for the other three SNPs. All selected SNPs had
no significant effect on the AO of MJD. The association of rs11100494 in the NPY5R
gene and susceptibility of MJD suggested that the NPY system might be implicated
in the pathogenesis of MJD. Our study demonstrated the existence of other genetic
modifiers in MJD, along with CAG expansion and known genetic modifier factors, which
might lead to a better understanding of MJD pathogenesis.
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INTRODUCTION

Machado-Joseph disease (MJD), or spinocerebellar ataxia
type 3 (SCA3), is a fatal, autosomal dominantly inherited
neurodegenerative disease without curable therapies (Paulson,
2007). It was caused by an abnormal expansion of the CAG
repeats in exon 10 of the ATXN3 gene, leading to an expanded
polyglutamine tract within the ataxin3 protein (Kawaguchi et al.,
1994). The expanded polyglutamine tract induces insoluble
ubiquitin-positive protein aggregation and accumulation in
neurons, leading to progressive neurodegeneration in the
cerebellum, spinal cord, and substantia nigra (Taroni and
DiDonato, 2004). There is a well-established inverse correlation
between abnormally expanded CAG repeats and the age at onset
(AO) in MJD (Matos et al., 2019). However, the abnormally
expanded CAG repeats could only explain 50—70% of AO
variability, showing that MJD is modulated by factors other than
the expanded CAG repeats only (Tezenas et al., 2014; Chen et al.,
2016). Recent studies have reported that in addition to CAG
repeats in polyglutamine (polyQ) genes (Franca et al., 2012;
Leotti et al., 2021), single nucleotide polymorphisms (SNPs)
in crucial genes could also modulate the AO of MJD (Wang
et al., 2018; Ding et al., 2019; Mergener et al., 2020), indicating
that they could be new important genetic factors affecting the
pathogenesis of MJD and composing “missing heritability” in
AO of MJD (Ding et al., 2016). To date, the genotypic and/or
allelic status of SNPs at approximately 10 genes, including
ATXN3 (Long et al., 2015), ATXN2 (Ding et al., 2016), APOE
(Bettencourt et al., 2011; Peng et al., 2014), MT-ND3 (Chen
et al., 2016), CAST (Martins et al., 2021), FAN1 (Mergener et al.,
2020), DNMT3A, DNMT3L (Ding et al., 2019), and IL6 (Raposo
et al., 2017), has been demonstrated to modulate the AO of MJD
patients. These genes are involved in mitochondrial function,
the calpain-cleavage pathway, DNA repair, DNA methylation,
and neuroimmunity, suggesting that the mechanism of MJD
pathogenesis is complicated.

Neuropeptide Y (NPY) is an abundantly distributed
neuropeptide in the mammalian brain and has been implicated
in neuroprotection through inhibiting neuron death and
excitotoxicity (Smialowska et al., 2009; Santos-Carvalho et al.,
2013), increasing neuronal trophic support (Croce et al., 2013),
stimulating the process of autophagy (Aveleira et al., 2015),
and regulating transmission between cerebellar interneurons
(Dubois et al., 2012). To date, five NPY receptors (NPY1R,
NPY2R, NPY4R, NPY5R, and NPY6R) have been found in
the mammalian brain; however, NPY6R has not been reported
to be functional in the human brain (Diaz-delCastillo et al.,
2018). NPY produces neuroprotective effects through NPY2R
and NPY5R by alleviating the excitatory neurotoxic effect,
inhibiting glutamate receptor overactivity, regulating calcium
homeostasis, and attenuating neuroinflammation (Wu and Li,
2005; Farzi et al., 2015). In the central nervous system, NPY
has been proven to control and alleviate neurodegeneration
in models of Parkinson’s disease (PD) (Decressac et al.,
2012), Huntington disease (HD) (Decressac et al., 2010),
and Alzheimer’s disease (AD) (Chen et al., 2018). Moreover,
SNPs (rs16139, rs3037354, rs2234759, and rs11100494) in

NPY, NPY2R, and NPY5R have been found to be associated
with AO in HD patients, major depressive disorder, and
dyslipidemia (Coletta et al., 2007; Wang et al., 2013; Kloster
et al., 2014). Recently, NPY overexpression or intranasal
delivery in MJD mouse models have been found to alleviate
MJD-associated motor deficits and neuropathy, indicating
that NPY has neuroprotective potential in the pathogenesis
of MJD (Duarte-Neves et al., 2021, 2015). This study was
designed to determine whether NPY and its receptors contribute
to the susceptibility of MJD and the variability of AO of
this disease. For this purpose, we conducted a case–control
study that analyzed the association between selected SNPs
in NPY, NPY2R, and NPY5R and MJD. We also investigated
whether these SNPs could explain some of the variability of AO
in MJD patients.

MATERIALS AND METHODS

Study Subjects
We enrolled 527 patients and 487 healthy controls (300
MJD patients and 300 controls from mainland China in the
first stage (Supplementary Table 1), and an additional 227
MJD patients and 187 controls were added (Supplementary
Table 2) to validate the obtained positive results) from Hunan,
Hubei, Guizhou, Jiangxi, and Jiangsu provinces of China. The
patients were consecutively recruited from the Department
of Neurology of Xiangya Hospital, Central South University
and the Department of Neurology of the First Affiliated
Hospital of Soochow University during 2004–2020. A standard
clinical neurological examination was performed by at least
two experienced neurologists, and the clinical diagnoses were
confirmed by molecular examinations. The healthy control
subjects were matched to MJD patients by gender and did not
have a positive family history of spinocerebellar ataxias (SCAs).
Written informed consent was obtained from all subjects before
they participated in this study, which was approved by the Ethics
Committee of Xiangya Hospital, Central South University and
the First Affiliated Hospital of Soochow University.

TABLE 1 | Characteristics of the controls and MJD patients.

Characteristic MJD patients Controls

Mean age Total 40.24 ± 11.65 41.83 ± 18.06

Female 40.88 ± 11.49 41.42 ± 19.28

Male 39.65 ± 11.79 42.21 ± 16.86

Age of onset Total 34.90 ± 10.23 NA

Female 35.55 ± 10.13

Male 34.30 ± 10.30

CAG (normal) Total 22.62 ± 6.29 NA

Female 22.93 ± 6.15

Male 22.33 ± 6.41

CAG (expanded) Total 74.90 ± 3.55 NA

Female 74.92 ± 3.48

Male 74.89 ± 3.62
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TABLE 2 | Correlation analysis between genotypes and alleles of selected SNPs and susceptibility of MJD.

Study group variables

Genotypic distribution Genotypic distribution (dominant model) Genotypic distribution (recessive model) Allelic frequency

rs2234759 AA AG GG AA AG + GG AA + AG GG A G

N % N % N % N % N % N % N % N % N %

MJD (N = 300) 79 26.33 149 49.67 72 24 79 26.33 221 73.67 228 76 72 24 307 51.17 293 48.83

Control (N = 300) 71 23.67 155 51.67 74 24.66 71 23.67 229 76.33 226 75.33 74 24.67 297 49.5 303 50.5

P value (χ2) 0.751 (0.572) 0.451 (0.569) 0.849 (0.036) 0.564 (0.333)

OR (95%CI) – 1.153 (0.796–1.669) 1.037 (0.714–1.506) 1.069 (0.852–1.340)

rs3037354 TG TG.DEL DEL TG TG.DEL + DEL TG + TG.DEL DEL TG DEL

N % N % N % N % N % N % N % N % N %

MJD (N = 300) 135 45 138 46 27 9 135 45 165 55 273 91 27 9 408 68 192 32

Control (N = 300) 134 44.67 125 41.67 41 13.66 134 44.67 166 55.33 259 86.33 41 13.67 393 65.5 207 34.5

P value (χ2) 0.171 (3.529) 0.935 (0.007) 0.071 (3.251) 0.358 (0.845)

OR (95%CI) – 1.014 (0.735–1.398) 1.601 (0.957–2.678) 1.119 (0.880–1.423)

rs11100494 CC CA AA CC CA + AA CC + CA AA C A

N % N % N % N % N % N % N % N % N %

MJD (N = 300) 235 78.33 60 20 5 1.67 235 78.33 65 21.67 295 98.33 5 1.67 530 88.33 70 11.67

Control (N = 300) 214 71.33 75 25 11 3.67 214 71.33 86 28.67 289 96.33 11 3.67 503 83.83 97 16.17

P value (χ2) 0.086 (4.899) 0.048 (3.903) 0.128 (2.312) 0.024 (5.071)

OR (95%CI) 1.453 (1.002–2.107) 2.246 (0.771–6.544) 1.460 (1.049–2.032)

N % N % N % N % N % N % N % N % N %

MJD (N = 527) 393 74.57 125 23.72 9 1.71 393 74.57 134 25.43 518 98.29 9 1.71 911 143

Control (N = 487) 334 68.58 136 27.93 17 3.49 334 68.58 86 31.42 470 96.51 17 3.49 804 170

P value (χ2) 0.046 (6.145) 0.034 (4.475) 0.073 (3.221) 0.016 (5.858)

OR (95%CI) – 1.343 (1.022–1.767) 2.082 (0.919–4.715) 1.347 (1.058–1.715)
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SNP Selection and Genotyping
Four SNPs (rs16139, rs3037354, rs2234759, and rs11100494)
in NPY, NPY2R, and NPY5R were selected by giving priority
to SNPs in the promoter or other regulatory regions and
SNPs shown to be associated human diseases. Genomic
DNA was extracted from peripheral blood leukocytes via
standard phenol–chloroform extraction methods. CAG repeats
in ATXN3 were determined by capillary electrophoresis and
DNA sequencing with T-vector cloning. Genotypes of SNPs in
the primary 600subjects were examined by matrix-assisted laser
desorption/ionization-time-of-flight mass spectrometry via the
MassARRAY system (Sequenom). To confirm the matrix-assisted
laser desorption/ionization-time-of-flight mass spectrometry
results, 30 patients and 30 controls were randomly selected for
Sanger sequencing. Genotypes of SNPs in an additional 414
subjects (227 MJD patients and 187 controls) were tested by
Sanger sequencing. All primers (Supplementary Table 3) were
designed using Primer31.

Statistical Analysis
For each SNP, the standard goodness-of-fit test was used to test
Hardy–Weinberg equilibrium (HWE). The differences in the
allele and genotype frequencies between cases and controls were
determined using the standard chi-square (χ2) test or Fisher
tests. The odds ratios (ORs) and associated 95% confidence
intervals (95% CIs) were also calculated. Linear regression
analysis was performed to determine the effect of each SNP
on AO with the logarithmically (decimal) transformed AO as
the dependent variable. When introducing each SNP in the
linear regression analysis, dominant, codominant/genotypic, and
recessive effects were assumed. The determinant coefficient (R2)
was used to indicate the percentage of the explanation for
AO variance via a given model. We analyzed covariance to
adjust for the effect of the expanded CAG repeats on AO.
Before that, a hypothesis test for regression coefficients was
performed to examine the interaction between expanded CAG
repeats and genotypes.

All analyses were performed using SPSS Ver23.0 (SPSS Inc.,
Chicago, IL, United States), and P < 0.05 was considered
statistically significant.

RESULTS

Subject Characteristics
The characteristics of MJD patients and healthy controls are
summarized in Table 1. The study included 1,014 subjects,
comprising 527 MJD patients [274 males and 253 females;
mean age (±SD), 40.24 ± 11.65 years; Table 1] and 487
controls [250 males and 237 females; mean age (±SD),
41.83± 18.06 years; Table 1]. There was no significant difference
in gnder distribution between MJD patients and controls
(χ2 = 0.044, P = 0.834).

1http://bioinfo.ut.ee/primer3-0.4.0/

FIGURE 1 | AO attributed to abnormal CAG repeats in ATXN3 of MJD
patients. The figures on the above and below are regression analyses in linear
and quadratic models, respectively. The X-axis denotes the expanded CAG
repeat length, and the Y-axis indicates the logarithmically transformed AO. AO
of MJD patients was inversely correlated with the length of expanded CAG
repeats in the ATXN3 gene.

Association of NPY, NPY R2, and NPY R5
SNPs With MJD
The genotypic distribution and allelic frequency for the selected
SNPs in the MJD patients and controls are described in Table 2.
The genotypic distribution and allelic frequency did not deviate
significantly from HWE (P > 0.05). In the primary cohort of
300 MJD patients and 300 controls, all genotypes of rs16139
in both MJD patients and controls were “TT” (not shown in
Table 2). There were no significant differences in the genotypic
distribution and allelic frequency of rs2234759 and rs3037354
between MJD patients and controls (Table 2). In the first stage
of analysis, the frequencies of rs11100494 genotypes determined
from MJD were 78.33% for CC, 20% for CA, and 1.67% for
AA, and in the control group, the frequencies of CC, CA,
and AA were 71.33, 25, and 3.67%, respectively (P = 0.086).
The CC genotype of rs11100494 was significantly higher among
the MJD patients than among the control group (78.33 and
71.33%, respectively, P = 0.048) and was associated with increased
susceptibility of MJD (OR = 1.543, 95% CI: 1.002–2.107). The C
allelic frequency showed a significant difference in MJD patients
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TABLE 3 | Regression analysis of SNPs in NPY and receptor genes in AO of MJD.

Group Number of patients R2 1 R2 P-value

MJD (CAG 65∼84) 299 0.516 – <0.001

rs3037354

Dominant model 272/27 0.517 0.001 0.615

Codominant/genotypic model 135/137/27 0.517 0.001 0.867

Recessive model 135/164 0.516 – 0.976

rs2234759

Dominant model 227/72 0.522 0.006 0.081

Codominant/genotypic model 79/148/72 0.526 0.010 0.126

Recessive model 79/220 0.517 0.001 0.695

rs 11100494

Dominant model 294/5 0.516 – 0.685

Codominant/genotypic model 234/60/5 0.517 0.001 0.831

Recessive model 234/65 0.517 0.001 0.384

rs 11100494 (expanded sample) 524 0.572 – <0.001

Dominant model 515/9 0.572 – 0.606

Codominant/genotypic model 390/125/9 0.572 – 0.701

Recessive model 390/134 0.572 – 0.594

Delta (1) R2 quantifies the relative improvement of the regression model when the SNP genotypes are considered CAG repeats.

TABLE 4 | AO differences among different genotypes of rs11100494 in the NPY5R gene after adjusting for the effect of expanded CAG repeats.

Study group Genotype AO of MJD patients (N = 299) AO of MJD patients (N = 524)

Genotypic distribution CC 36.25 ± 9.92 35.14 ± 10.20

CA 35.45 ± 10.06 34.43 ± 10.20

AA 38.60 ± 5.86 34.00 ± 10.98

P value 0.814 0.694

Genotypic distribution (dominant model) CC 36.25 ± 9.92 35.14 ± 10.20

CA + AA 35.69 ± 9.80 34.40 ± 10.22

P value 0.871 0.743

compared with the control group (P = 0.024, OR = 1.460,
95% CI: 1.049–2.032). After we expanded the sample size,
CC, CA, and AA genotypic distributions were significantly
different between the MJD patients and the control group
(P = 0.046). Moreover, significant differences in CC genotypic
and C allelic frequencies between MJD patients and the control
group remained (P = 0.034, OR = 1.343, 95% CI: 1.022–1.767;
P = 0.016, OR = 1.347, 95% CI: 1.058–1.715, respectively).

Association of NPY, NPY 2R, and NPY5R
SNPs With the AO of MJD
We inspected the residuals to verify the validity of the linear
regression model, and an extreme outlier with CAG repeats of 51
was eliminated in the primary 300-patient cohort. Analyzing the
effect of the abnormally expanded CAG repeat in ATXN3 itself
on ln(AO), R2 reaches values of 0.437 and 0.516 in linear and
quadric models, respectively (Figure 1). Because of the additional
increase of 7.9% in R2, the quadric model was used for the
following analysis. As shown in Table 3, after inclusion of each of
the four SNPs, the R2 value was raised to different degrees or not
raised. However, after adjusting for the expanded CAG repeats
in ATXN3, there were no significant differences among different

genotypes of rs11100494 in the NPY5R gene (Table 4) in the
analysis of covariance. In the replication stage, another 2 extreme
outliers with CAG repeats of 55 and 86 were eliminated. The
results of covariance analysis of rs11100494 showed no essential
change after we enrolled the additional 227 MJD patients into the
cohort (Table 4).

DISCUSSION

Machado-Joseph disease is the most common type of autosomal
dominant ataxia worldwide, and this disease accounts for
approximately 62.64% of cases in China (Paulson, 2012; Chen
et al., 2018). Although the genetic cause of MJD, abnormal CAG
expansion in ATXN3, has been clearly defined for many years
(Takiyama et al., 1993; Kawaguchi et al., 1994), the pathogenesis
mechanisms of MJD have not been fully elucidated. To date,
several different pathways have been identified to be involved in
the pathogenesis of MJD: RNA toxicity (Nalavade et al., 2013),
abnormal protein aggregation (Seidel et al., 2012), dysregulation
of transcription (Raposo et al., 2015), proteolytic cleavage
(Weber et al., 2017), post-translational modification (Wan et al.,
2018), mitochondrial dysfunction (Ramos et al., 2015), calcium
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signaling dysregulation (Chen et al., 2008), and damage of
neuronal homeostasis (Cunha-Santos et al., 2016).

NPY, widely expressed in the central nervous system (CNS),
has been implicated in neurogenesis and neuroprotection,
playing a crucial role in maintaining neuronal homeostasis
(Vezzani et al., 1999). The functions in neurogenesis and
neuroprotection are performed by binding to different G-coupled
NPY receptors distributed in different organs (Pedrazzini et al.,
2003). To date, the NPY system has been found to play a potential
role and to be a therapeutic target in many neurodegenerative
diseases, such as AD, PD, and HD (Decressac et al., 2010, 2012;
Croce et al., 2013). Recently, Duarte-Neves et al. (2015) found
that NPY overexpression alleviated motor coordination and
balance disability, prevented mutant ataxin3-induced immune
activity increase, increased BDNF levels, and reduced IL-6 levels
in MJD mouse models. Their results indicate the neuroprotective
role of NPY in the pathogenesis of MJD.

This study is the first extensive examination of the association
between variations in NPY, NPY2R, NPY5R genes and the
pathogenesis and AO of MJD. In the present study, we provide
evidence that variation in the NPY5R gene is associated with
susceptibility to MJD. The genotypic distribution and allelic
frequency of rs11100494 were significantly different between
MJD patients and the control group. The CC genotypic
and C allelic frequencies were significantly higher in MJD
patients than in the control group, indicating that they were
genetic modifier factors of MJD. To date, this SNP has been
demonstrated to be associated with plasma TG levels and
HDL concentrations in a Mexican-American dyslipidemia cohort
(Coletta et al., 2007) and the phenotype of alcohol withdrawal
with seizures (Wetherill et al., 2008). It was proven for the
first time to be associated with neurodegenerative disease. As
mentioned above, NPY could alleviate the excitatory neurotoxic
effect, inhibit glutamate receptor overactivity, regulate calcium
homeostasis, and attenuate neuroinflammation by binding to
NPY2R and NPY5R in the CNS (Wu and Li, 2005; Farzi
et al., 2015). Moreover, IL-6 levels were reduced in an
MJD mouse model with NPY overexpression (Duarte-Neves
et al., 2015), and a variant in IL6 was associated with the
AO of MJD patients (Raposo et al., 2017). We speculated
that rs11100494 might modulate the susceptibility of MJD
by influencing the levels of interleukins and the process of
neuroinflammation. However, the mechanism remains to be fully
elucidated in the future.

In our data, all the genotypes of rs16139 in both MJD
patients and controls were “TT”, which is different from some
previously reported results (MAF = 0.019 in major depression)
(Wang et al., 2013; Kloster et al., 2014). Therefore, this
SNP was not included in the next analysis. rs3037354 of the
NPY gene and rs2234759 of the NPY2R gene were previously
demonstrated to be associated with the pathogenesis of HD
(Kloster et al., 2014). However, no significant differences were
observed between MJD patients and controls in our data.
This result may be explained by the different distribution of
the variations in various racial groups and different diseases.
For all SNPs analyzed in our study, no differences in AO
were found among their different genotypes and alleles. Due

to the incompleteness of the information provided by single
SNPs, the genetic association conclusion drawn by individual
SNP data analysis may not be definite. Negative results
from a specific SNP cannot rule out the possible association
of diseases with candidate genes. Given the neuroprotective
role of NPY and its receptors in neurodegenerative disease
(Decressac and Barker, 2012; Decressac et al., 2012; Geloso
et al., 2015), exploring other functional SNPs or the whole exons
of these genes in MJD patients is suggested before a definite
conclusion is reached.

In summary, using a case–control study and an extended
analysis in MJD patients, we found that the genotypic distribution
and allelic frequency of the rs11100494 polymorphism in the
NPY5R gene were significantly different between MJD patients
and the control group. This result indicates that sequence
variations in the NPY system might be associated with the
pathogenesis of MJD. Therefore, the NPY system could be of
interest in MJD as a possible therapeutic agent, and detection
of SNPs in a larger sample should be performed in the future to
confirm the results and find other “missing heritability” in MJD.
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