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Adaptive demodulation 
by deep‑learning‑based 
identification of fractional orbital 
angular momentum modes 
with structural distortion due 
to atmospheric turbulence
Youngbin Na & Do‑Kyeong Ko*

Since the great success of optical communications utilizing orbital angular momentum (OAM), 
increasing the number of addressable spatial modes in the given physical resources has always been 
an important yet challenging problem. The recent improvement in measurement resolution through 
deep-learning techniques has demonstrated the possibility of high-capacity free-space optical 
communications based on fractional OAM modes. However, due to a tiny gap between adjacent 
modes, such systems are highly susceptible to external perturbations such as atmospheric turbulence 
(AT). Here, we propose an AT adaptive neural network (ATANN) and study high-resolution recognition 
of fractional OAM modes in the presence of turbulence. We perform simulations of fractional OAM 
beams propagating through a 1-km optical turbulence channel and analyze the effects of turbulence 
strength, OAM mode interval, and signal noise on the recognition performance of the ATANN. The 
recognition of multiplexed fractional modes is also investigated to demonstrate the feasibility of high-
dimensional data transmission in the proposed deep-learning-based system. Our results show that 
the proposed model can predict transmitted modes with high accuracy and high resolution despite the 
collapse of structured fields due to AT and provide stable performance over a wide SNR range.

The application of an orbital angular momentum (OAM) as an additional degree of freedom for information 
transfer has been a popular topic in optical communications in recent years1–8. Light OAM associated with the 
spatial distribution stems from a helical phase exp(ilϕ) , where l  is a topological charge (TC), and ϕ is the azimuth 
angle in the cylindrical coordinate system9,10. The so-called “twisted” light with these structured phases carries an 
OAM of lℏ per photon9, and the TC, which determines the OAM mode, takes an integer or fractional value11–13. 
Unlike spin angular momentum with only two possible values, theoretically unbounded values of the OAM can 
provide high degrees of freedom1. Indeed, many experimental results have shown that the transmission capac-
ity can be improved beyond Tbit/s with integer OAM beams along with polarization- and wavelength-division 
multiplexing1,2,4,5. However, there are challenges to be overcome, such as diffraction effects of higher-order 
modes14 (beam size and beam divergence) and the space-bandwidth product of a given optical system6,15. The 
number of addressable OAM modes is physically restricted by the system, even though the range of the OAM 
mode itself is unbounded6,15. Besides, the higher-order mode with a larger beam size is relatively more vulnerable 
to atmospheric distortion, resulting in higher modal crosstalk16. Hence, OAM modes separated by fractional 
intervals have drawn attention as a potential solution to the problems. One could exploit more OAM modes 
under fewer physical resources (space-bandwidth product of the system) by reducing the mode interval as small 
as possible. Indeed, recent studies have shown the tremendous potential of fractional OAM links combined with 
superhigh-resolution recognition techniques based on a deep-learning model17–19.

Artificial neural networks comprised of multiple processing layers have been widely applied as a precise, 
efficient tool for detecting OAM modes17–24. Deep-learning models directly recognize transmitted spatial modes 
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without any optical mode sorter for extracting phase information18,20 and provide reliable performance against 
distorting factors such as optical misalignment18,24,25. Adaptive demodulation21–23 and turbulence correction26,27 
for integer vortex beams have been studied in depth by pioneering researchers. Meanwhile, the previous studies 
on fractional OAM modes focused on high-resolution recognition and the capability to increase communication 
capacity17,18. The researchers have experimentally demonstrated that a deep-learning model based on a convo-
lutional neural network can classify fractional OAM modes with a resolution of up to 0.0117 and process two 
independent spatial degrees of freedom simultaneously18. Jing et al. built a deep neural network for recognizing 
fractional OAM modes19. The author improved anti-turbulence ability by combining a method of diffraction 
preprocessing of a two-dimensional fork grating and achieved the recognition accuracy of 99.1% for the mode 
interval of 0.1. In addition, deep-learning-based detection of hybrid beams carrying fractional topological charge 
and the fractional angular ratio was investigated, which showed accurate recognition of fractional OAM with 
broad bandwidth in atmospheric environments28.

Despite the remarkable success of the deep-learning scheme, there is the problem of long-distance transmis-
sion and detection of fractional OAM beams. Atmospheric turbulence (AT) and power loss, i.e., low SNR, are the 
most problematic factors. The AT, which results from random variations in air refractive index, leads to adver-
sarial effects on the propagating structured light, distorting a light wavefront and degrading the mode purity29,30. 
In particular, at long-distance propagation where phase distortion accumulates, such adversarial effects become 
more apparent. Compared to the integer OAM mode of the ring structure, the peculiar spatial distribution of 
the fractional OAM mode can provide various local features for effective classification11–13,18. However, optical 
systems employing fractional OAM modes are expected to be highly sensitive to external perturbations due to 
tiny structural differences between adjacent modes. Moreover, the recognition performance would be much 
affected by the selected mode interval. Therefore, for the practical application of such OAM modes, it is necessary 
to develop an optical system capable of performing high-resolution recognition regardless of distorting factors.

Here, we build an AT adaptive neural network called ATANN for high-resolution recognition of fractional 
OAM modes transmitted through optical turbulence channels. To prepare data sets for training and testing, 
we first model 1-km optical turbulence channels consisting of random phase screens that mimic turbulence 
environments. Then, we simulate the beam propagation and analyze the effects of turbulence level, signal noise, 
and mode intervals between fractional OAM modes on the model performance. In particular, the recognition 
accuracy of the ATANN is investigated for 5 kinds of 10-ary OAM shift keying systems, respectively, with mode 
intervals of 0.05, 0.10, 0.15, 0.20, and 0.25. We also discuss the generalization performance of the deep-learning 
method and the recognition of multiplexed fractional OAM beams.

Method
Fractional OAM beams evolving from spiral phase plates.  Light beams carrying an OAM originate 
from a helical phase structure11

where l  is the azimuthal mode index that determines the TC of output fields, and (r,ϕ) are the transverse coordi-
nates in the cylindrical coordinate system. For integer l  values, the phase front of such beams forms l  intertwined 
helical structure and the consequent phase singularity, creating doughnut shape intensity distribution11. Mean-
while, for fractional l  values, the phase is no longer an integer multiple of 2π and creates a phase discontinuity 
along the radial direction, resulting in a symmetry-broken complex-phase structure11,31. The propagation of 
fractional OAM beams evolving from a spiral phase is calculated numerically by the angular spectrum method, 
which can be written as32

where (ρ, θ) are the cylindrical coordinate components of the output plane, �z is the propagation distance, 
FFT

(

FFT−1
)

 represents the 2D fast Fourier transform operation, k is the wavenumber, and 
(

fx , fy
)

 are the spatial 
frequency components. The second term in the inverse fast Fourier transform operation corresponds to the 
angular spectrum transfer function. ul(r,ϕ, 0) = ug(r,ϕ, 0)ψl(r,ϕ) is the field distribution in the input plane, 
where ug represents an incident Gaussian beam. Figure 2 (top row) shows 10 fractional OAM beams separated 
by a fractional interval of 0.10 as an example. As shown in Fig. 2, fractional TCs give rise to local variations in the 
spatial field distribution, allowing a deep-learning model to discriminate them effectively despite the small mode 
interval18. Here, we assume 5 types of 10-OAM free-space optical links, where each of them has different mode 
spacing �l among {0.05, 0.10, 0.15, 0.20, 0.25} . 10 OAM modes composing each link are presented in Table 1.

Simulation of atmospheric turbulence channels.  Simulation of laser beams propagating through AT 
channels is implemented using the split-step Fourier method and random phase plates placed along the propaga-
tion direction16,32–34. As shown in Fig. 1a, the turbulent channel with a total link distance of 1 km is modeled with 
5 phase screens separated by distance �z = 200m . Here, each screen imposes the integrated phase of turbulence 
that exists over the distance �z . The propagation of laser beams is calculated with the procedure shown in Fig. 1b. 
First, an OAM beam ul
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 incident upon the first screen is multiplied by the phase function exp
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 . 
Then, it propagates to the next screen, which is implemented using the angular spectrum method described in 
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exp[iφAT] . The out-
put field Ul
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total distance L is reached. After that, the final field distribution is measured at the receiver.
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Table 1.   5 mode intervals and the corresponding 10 OAM modes.

Spacing OAMs

0.05 1.10–1.55

0.10 1.10–2.00

0.15 1.10–2.45

0.20 1.10–2.90

0.25 1.10–3.35

Figure 1.   Schematic diagrams for investigating AT effects. (a) Geometry of the simulation model and (b) a 
flowchart for numerical simulation of laser beams propagating through AT media. Each inset in (a) displays the 
phase hologram (left) and intensity profile (right) of fractional OAM mode l = 1.50 , respectively.

Figure 2.   Intensity profiles of the received fractional OAM beams over 1000-m AT channels with different C2
n . 

Here, each image is 200 × 200 pixels wide.
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The random phase screens that mimic the AT-induced distortion effect are produced by the power spectrum 
of refractive index fluctuations with statistical properties similar to those of a turbulent environment30. A variety 
of spectrum models have been presented to emulate the AT29. The most representative model is the Kolmogorov 
power-law spectrum expressed as29

where 
(

κx , κy
)

 is the angular spatial frequency, and C2
n is the structure constant of the refractive index that deter-

mines the turbulence strength. It is widely used in theoretical and numerical studies due to its relatively simple 
mathematical form. However, the spectrum only applies to the inertial subrange of 1/L0 ≪ κ ≪ 1/l0 , where l0 and 
L0 are the inner and outer scales of turbulence, and is not able to describe some physical phenomena such as the 
small bump at high wavenumber near 1/l0 29. Therefore, we use the modified atmospheric spectrum, developed 
by Hill35 and defined analytically by Andrew36. It can provide tractability for theoretical studies and explain the 
phenomenon occurring at the high wavenumber. The spectrum is expressed as29

where κl = 3.3/l0 , and κ0 = 2π/L0 . Here, we assume that the structure constant C2
n is constant throughout the 

optical channel. Meanwhile, the variance of the phase spectrum is given by32,33

where N  and �x represent the number of grid points and the spatial grid interval, respectively. The random 
realization of the AT phase screen is implemented by multiplying a complex Gaussian random matrix and then 
performing the FFT operation, which can be written as32,33

where hN×N is a complex Gaussian random matrix with mean 0 and variance 1. Additionally, a subharmonic 
method is used to compensate for under-sampling for low-frequency components that induce beam wander32,33. 
The method is to resample the spectrum near the origin with sub-grid points and incorporate a phase derived 
from that region into the phase screen φ

(

x, y
)

 . Thus, the final phase screen used for the simulation is given as 
φAT = φ + φs , where φs is the subharmonic screen.

To investigate the effects of AT strength, we prepared data sets for 5 different turbulence levels 
C2
n

[

m−2/3
]

=
{

1× 10−16, 5× 10−16, 1× 10−15, 5× 10−15, 1× 10−14
}

 . Here, we selected the range of 
C2
n and the sampling distance �z by considering the conditions for the Rytov variance16,32, σ 2

R(L) < 1 and 
σ 2
R(�z) < 0.1σ 2

R(L) . The random phase screen is set with window size Lx = Ly = 0.8m , the number of grid 
points N = 1024 , grid interval �x = �y = Lx/N  , inner scale l0 = 2mm , and outer scale L0 = 50m . A laser 
beam with wavelength � = 594 nm and beam radius w0 = 0.03m is used as the light source. The central 200 × 200 
area of the simulation window is set as the observation region. All intensity profiles measured in that region are 
preprocessed for supervised learning and resized from 200 × 200 to 80 × 80 pixels for computational efficiency.

Figure 2 shows intensity profiles of 10 fractional OAM beams transmitted through 1000-m AT channels 
with different values of C2

n . For the turbulence with C2
n ≤ 1× 10−15 m−2/3 , each OAM beam well preserves the 

local structure that differentiates itself from others, so it is expected that the deep-learning model recognizes 
transmitted OAM modes with high accuracy despite the small spacing �l = 0.05 . For the strong turbulence 
with C2

n = 1× 10−14 m−2/3 , the local features are severely destroyed. However, the surprising thing is that the 
ATANN can, even in this case, extract the inherent features of each fractional mode and perform classification; 
see Fig. 7c. Here, we used the pseudo color for visual clarity of beam profile images, but the actual image format 
input to the neural network is 8-bit grayscale.

Architecture of the ATANN.  Deep learning is a subset of artificial intelligence inspired by the structure 
and the mechanism of the human brain. It uses an artificial neural network with multiple processing layers in 
order to learn representations of data with high levels of abstraction37. The architecture of ATANN is depicted 
schematically in Fig. 3; see Table 2 for details. It comprises a series of convolution blocks for feature extraction 
and one fully connected (FC) layer for mode classification. Each block consists of four types of layers: batch 
normalization (BN)38, rectified linear unit (ReLU)39, convolution, and pooling. The BN is a layer that normalizes 
each feature map for the input mini-batch, maintaining the mean and standard deviation of the output close to 0 
and 1. The purpose of BN is to accelerate the training of neural networks while mitigating overfitting38. To utilize 
BN effectively, we adopted the so-called pre-activation structure of BN-ReLU-Conv presented in modern net-
work architectures such as residual network (ResNet)40 and densely connected network (DenseNet)41. The ReLU 
is a nonlinear activation function of the form f (z) = max(z, 0) , whose purpose is to provide non-linearity to the 
output18. The ReLU is suitable for deep neural networks possessing many hidden layers because it can solve the 
gradient vanishing problem39. Multiple convolution filters in a convolutional layer are convolved with the input 
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image and generate various feature maps. The extracted feature maps are downsampled in half by a max-pooling 
layer with a 2 × 2 window42, and the downsampled feature maps are fed into the next block. Note that the last 
block uses a global max-pooling layer that extracts only one maximum value for each feature map; see Table 2. 
Compared to the max-pooling layer followed by the flatten operation18, it significantly reduces the number of 
trainable parameters, which is computationally efficient and more effective for alleviating overfitting. After the 
extraction process is complete, the FC layer predicts a received mode by integrating the output of the last block 
and applying a softmax activation function.

Results and discussion
Training of neural network and recognition performance.  Training a neural network is to find the 
optimized weights of trainable layers, i.e., parameters of convolutional layers and FC layers, with a gradient 
descent algorithm. In this study, we prepared a total of 25 data sets, taking into account 5 turbulence levels and 
5 OAM intervals, as described above. Each data set contains 700 (500 for training, 100 for validation, and 100 
for testing) intensity profile images per mode, i.e., 7,000 intensity profiles in total. Model training and testing are 
implemented on a commercial laptop system (CPU: i7-9750H; GPU: RTX 2060) based on the Keras framework. 
We run the training with batch size 20 for 50 epochs, and the weights of the ATANN are updated automatically 
with the Adam optimizer43, a stochastic optimization method. The optimization process is implemented by 
minimizing the loss function, which is expressed as17

(7)L = − 1
N

∑N
i=1

∑m
j=1 y

(i)
j log

(

z
(i)
j

∑m
n=1exp

(

z
(i)
n

)

)

,

Figure 3.   Schematic diagram of the ATANN: Conv, convolutional layer; B, convolution block; BN, batch 
normalization layer; FC, fully connected layer. Each block consists of BN, ReLU, Conv, and Pooling layers.

Table 2.   Detailed information on the ATANN.

Layer Hyperparameter Output shape # of parameters

Conv Conv2D 16, (3, 3), padding (80, 80, 16) 160

B1

BatchNorm 0.3 (80, 80, 16) 64

Activation ReLU (80, 80, 16) 0

Conv2D 16, (3, 3), padding (80, 80, 16) 2,304

Maxpool2D (2, 2) (40, 40, 16) 0

B2

BatchNorm 0.3 (40, 40, 16) 64

Activation ReLU (40, 40, 16) 0

Conv2D 32, (3, 3), padding (40, 40, 32) 4,608

Maxpool2D (2, 2) (20, 20, 32) 0

B3

BatchNorm 0.3 (20, 20, 32) 128

Activation ReLU (20, 20, 32) 0

Conv2D 64, (3, 3), padding (20, 20, 64) 18,432

Maxpool2D (2, 2) (10, 10, 64) 0

B4

BatchNorm 0.3 (10, 10, 64) 256

Activation ReLU (10, 10, 64) 0

Conv2D 128, (3, 3), padding (10, 10, 128) 73,728

GlobalMaxpool2D – (128) 0

– Dropout 20% (128) 0

FC Dense 10, softmax (10) 1,290
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where N and m represent the number of samples and the number of OAM modes, respectively, and j represents 
the index corresponding to each OAM mode. y(i)j  is the jth element of a 1D label vector of size m . An element of 
the vector is 1 if the index j corresponds to a target OAM mode and 0 otherwise. For example, for the 10-OAM 
with �l = 0.10 , label vectors of the OAM mode of l = 1.10 and l = 2.00 are {1, 0, . . . , 0} and {0, 0, . . . , 1} , respec-
tively. Note that the function in the parentheses corresponds to the operation of the softmax function, which 
yields the probabilities that the input samples belong to each OAM mode18. Here, zj is the output of the jth 
neuron in the FC layer, which is calculated as a weighted sum of its inputs from the previous layer37. Meanwhile, 
the learning rate, initially set to be 0.001, is set to decrease by a factor of 0.5 if no improvement in the validation 
loss is seen for 5 epochs.

Figure  4a,b show the training results of the proposed ATANN, as an example, for the data set 
( C2

n = 1× 10−14 m−2/3 and �l = 0.20 ). Here, the loss is the value calculated by Eq. (7), and the accuracy is 
defined as the number of correctly recognized samples out of the total number of samples. As the training pro-
gresses, the ATANN discovers proper weights for classifying fractional modes, and accordingly, the loss function 
decreases and gradually converges. Meanwhile, since only the training set participates in the model training, 
there may be weak fluctuations in the loss of the validation set compared to the training set, as shown in Fig. 4a. 
Nevertheless, the validation curve follows the training curve well without overfitting, which indicates that the 
trained model can perform predictions even on new data. After the training is complete, optimized weights that 
minimize the loss of the validation set are stored and then used to test the recognition performance.

Once the architecture and training of a neural network are complete, the computational speed is determined 
by the size of input data18 and the Floating-point Operations Per Second (FLOPS) of the computing resources27, 
i.e., GPU or CPU. The FLOPS is a value fixed by the given computing system, so only the effect of the number 
of pixels is investigated. Figure 4c shows the training time and validation loss for the input pixel size. Intensity 
profiles, resized from 200 × 200 to 5 different pixel numbers, are used to train the ATANN. The time of the 
model training increases in proportion to the square of the number of pixels. On the other hand, the measured 
loss function is high at 20 × 20 pixels but decreases with increasing the resolution and converges to about 0.01 
after 60 × 60 pixels. The result of 80 × 80 pixels shows a performance relatively lower than the higher resolution 
(100 × 100). However, for application fields such as optical communications, both the demodulation performance 
and the computational speed are critical factors, so a resolution of 80 × 80 pixels is suitable for our task. For 
input images of 80 × 80 pixels, the measured prediction time is less than 3 ms, which can be reduced further by 
a high-performance GPU with faster FLOPS27.

Before we continue, we compared the proposed ATANN with different architectures of networks to check 
whether the designed system is appropriate. Here, we investigated the influence of three main hyperparameters 
that determine the model architecture: (1) the number of used convolution blocks, (2) the number of filters in 
convolutional layers, and (3) the configuration of convolution blocks constituting a neural network. First, we 
investigated the influence of the number of convolution blocks on the recognition accuracy. As shown in Fig. 5a, 
the accuracy of the neural network improves from 53.1 to 98.0% as the number of convolution blocks increases 
from 1 to 5. Models composed of 4 or 5 convolution blocks showed the optimized performance of 98.0%, and 
we selected four-block architecture. The influence of the number of filters in convolutional layers is illustrated 
in Fig. 5b. Here, filters of convolutional layers placed in the convolution blocks were adjusted. Similar to the 
case of the number for blocks, increase of the number of filters improves model performance, which is because 
the trained model can learn more intrinsic features from the input data42. Although the model with (32, 64, 
128, 256) filters shows relatively higher accuracy, it has about 3.9 times more trainable parameters, which slows 
down the computation. Therefore, the number of filters of the ATANN was set as (16, 32, 64, 128) for efficiency.

Figure 5c displays the recognition performance of neural networks with different configuration of con-
volution blocks. “Traditional” corresponds to the well-known AlexNet configuration of Conv-ReLU-Pooling, 
and “Residual” stands for residual unit40, a structure with skip connection. Meanwhile, our proposed ATANN 

Figure 4.   Training of the ATANN. (a) Loss and (b) accuracy curves for a training set and a validation set 
( C2

n = 1× 10
−14

m
−2/3 and �l = 0.20 ). (c) Model evaluation for the input pixel size. Blue arrows indicate 

44th epoch at which minimum validation loss was achieved. Each data displayed in (c) is the result of a data set 
( C2

n = 1× 10
−14

m
−2/3 and �l = 0.15 ) and shows the mean value of 15 training results. The red curve in (c) 

represents a fitting line.
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consists of pre-activation structure BN-ReLU-Conv-Pooling. Here, to minimize the difference in the number of 
weight parameters due to configurations, the number of blocks constituting a neural network and the number 
of convolution filters were set to be the same. Compared with the traditional framework, we can see that add-
ing the BN increases recognition performance from 96.2% to 98.0%, indicating better generalizability without 
overfitting. The result shows that the ATANN comprised of convolution blocks of pre-activation configuration 
is more effective for our problem.

To investigate the recognition performance of the trained ATANN, we conduct mode prediction with test 
data sets and analyze the recognition accuracy. Figure 6 shows the influence of turbulence level and mode 
spacing on the recognition accuracy. For the turbulence with C2

n ≤ 1× 10−15 m−2/3 , the recognition accuracy 
was measured to be over 99.2% regardless of mode spacing, which means that the ATANN is able to identify 
transmitted fractional OAM modes up to a resolution of 0.05 under that turbulence condition. For the strong 
turbulence with C2

n ≥ 5× 10−15 m−2/3 , the recognition performance for �l = 0.05 is severely degraded, and 
the accuracy drops to below 70%. It is because distortion that exceeds the decision boundaries of the ATANN 
causes a lot of wrong predictions; see Fig. 6b. Mode prediction of the ATANN is performed by argmax(•) , an 
operation that selects an element (index i) possessing the maximum probability zi/

∑

nexp(zn) . To achieve this, 
our model finds the optimized weight parameters through the training process, and the parameters act as the 
decision boundary for classifying 10 fractional OAM modes. Meanwhile, as the mode spacing increases, the 
recognition accuracy improves rapidly, showing reduced crosstalk between adjacent modes; see Fig. 6c. The 
recognition accuracy reaches 99.2% at C2

n = 1× 10−14 m−2/3 and �l = 0.20 . In other words, it is possible to 

Figure 5.   Comparison of the recognition performance for model architectures. Influence of (a) the number 
of convolution blocks and (b) the number of filters in convolutional layers. Recognition performance for 
models with different configurations of convolution blocks. All data presented here are the result for a data set 
( C2

n = 1× 10
−14

m
−2/3 and �l = 0.15 ) and represent the mean values of 5 test results. Hatched bars in each bar 

graph represent results of the proposed ATANN.

Figure 6.   Influence of OAM mode interval �l and turbulence strength C2
n on recognition performance. (a) 

Recognition accuracy as a function of OAM mode spacing and (b,c) crosstalk matrices for a 1000-m link with 
C2
n = 1× 10

−14
m

−2/3 . Here, (b) and (c) correspond to the results of �l = 0.05 (10 OAM modes from 1.10 to 
1.55) and �l = 0.15 (10 OAM modes from 1.10 to 2.45), respectively. All data presented in (a) correspond to the 
mean values of 5 test results per data set.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23505  | https://doi.org/10.1038/s41598-021-03026-z

www.nature.com/scientificreports/

build a stable measurement system by selecting the appropriate mode interval for a given turbulence environ-
ment. The application of AT compensation techniques could lower the resolution limited by turbulence further.

Until now, we have tested the model performance at the same turbulence strength as the training data, i.e., 
the pre-learned turbulence level. However, actual turbulence is not a static phenomenon, and its strength is not 
constant. Thus, it is necessary to investigate the generalization ability of the ATANN for unknown turbulence 
levels. Here, the “unknown” stands for a case that the turbulence strength C2

n considered in the test set is dif-
ferent from that of the training set. Figure 7a–c show the generalization performance of models trained with 3 
different data sets, whose C2

n is 1× 10−16 m−2/3 , 1× 10−15 m−2/3 , and 1× 10−14 m−2/3 , respectively. As shown 
in Fig. 7c, a model trained in a turbulence environment with a higher C2

n shows better adaptability. The models 
trained with a data set of C2

n = 1× 10−14 m−2/3 achieve almost 100% recognition accuracy except for one case 
(96.8%) of C2

n = 1× 10−15 m−2/3 and �l = 0.05 . The results demonstrate that despite the strong AT level and the 
consequent collapse of the field structure, the ATANN can learn information on the unperturbed field pattern by 
discovering intrinsic local features that compose each fractional OAM mode from collected data. Additionally, 
we think that the relatively low accuracy at �l = 0.05 , described above, can be improved with a hybrid training 
set considering various turbulence levels23.

It is necessary to discuss the appropriate mode spacing for the future applications of the fractional OAM 
beams in free-space communications. The minimum spacing is determined by the resolution of a deep-learning 
classifier, but it is limited and changed according to the strength of environmental factors such as AT level; see 
Fig. 6a. The laser beams propagating through atmospheric media experience different phase distortions depend-
ing on their wavelength and beam size16. So, it is proper to use the phasefront distortion D/r0 , where D is the 
beam diameter, and r0 =

[

0.423k20C
2
nL

]−3/5 is the coherence length, for providing comprehensive criteria16,30. For 
turbulence environments that gives rise to the phasefront distortion of < 0.62 , the proposed scheme can exploit 
the mode spacing of 0.05. For the phase distortion ranging from 0.62 to 1.63, the mode spacing of 0.15 is available. 
In the case with D/r0 between 1.63 and 2.47, one could select 0.20 as the mode interval. Here, we calculated the 
phasefront distortion using the Gaussian beam diameter, but actual beam sizes increase with the OAM order14. 
Therefore, the higher-order OAM beams experience stronger distortion than lower-order beams. Moreover, such 
problems become apparent and unavoidable as the number of OAM modes used increases. Therefore, for strong 
turbulence environments with D/r0 > 2.47 , one might apply uneven mode spacing for high-order OAM modes, 
e.g., a gap increasing with the OAM order. In addition, phase correction methods based on deep learning26,27 or 
a wavefront sensor44 could be considered, in conjunction with increasing the spacing.

Stability enhancement using data augmentation.  Data augmentation is a technique to artificially 
create new data from a given training set in the training phase of neural networks, which is implemented by 
applying various transformations, such as translation, rotation, and scaling24,45. Data augmentation randomly 
sets the degree of these transformations every epoch, effectively improving the generalization performance of 
neural networks. Here, we apply data augmentation with additive white Gaussian noise for modeling signal dis-
tortion due to sensor noise and investigate the change in the recognition accuracy over the signal-to-noise ratio 
(SNR). In order to make the model experience various noise levels, the algorithm generates a random number 
from a Gaussian distribution every epoch and applies it as the noise strength. The standard deviation of the dis-
tribution used in this work is 0.02, which corresponds to ~ 20 dB SNR.

As shown in Fig. 8a, we prepared noisy images (1,000 images per mode) to be used as test sets. Each noisy 
image is generated by adding random matrix of Gaussian distribution, which can be written as

where I(m, n) is a noiseless image, σn is the strength of the added noise, and h(m, n) is a Gaussian random matrix 
with mean 0 and standard deviation 1. SNR of each noisy image is calculated as32

(8)Inoise(m, n) = I(m, n)+ σnh(m, n),

Figure 7.   Generalization ability under unknown turbulence environments. Recognition performance 
for models trained with a data set of (a) C2

n = 1× 10
−16

m
−2/3 , (b) C2

n = 1× 10
−15

m
−2/3 , and (c) 

C2
n = 1× 10

−14
m

−2/3 . Hatched bars in each bar graph represent prediction results obtained from test sets with 
the same AT strength C2

n as the training sets. Each data shows the mean value of 5 test results.
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where I  represents the mean pixel value of the noiseless image I(m, n) . Figure 8b shows the measured test accu-
racy against SNR. Even if the same σn is applied, there is some difference in the SNR of generated images. Thus, 
we used the average SNR per data set to display test results. Here, “w/ augmentation” represents the accuracy of 
a model trained by applying the data augmentation that adds Gaussian noise to input images. Whereas the rec-
ognition accuracy of the plain model starts to drop at 25 dB and rapidly decreases to 64.9%, the model using the 
data augmentation maintains the accuracy of at least 96% regardless of the applied noise strength. In particular, 
it maintains the accuracy of more than 99% up to 20 dB, which demonstrates that the proposed ATANN can be 
highly resistant to signal noise as well as AT through data augmentation.

Application to multiplexed fractional OAM beams.  A small interval of fractional modes makes 
more modes available despite the limited physical resources, but data encoding with a single OAM mode still 
has a limit on representing information of a large number of bits. For example, 2N fractional OAM modes 
are required to encode N-bit data, and additional 2N modes should be introduced for N + 1 bits. Therefore, 
the use of multiplexed fractional beams and their demodulation are explored. Here, the fractional mode set 
{|l| = 1.10, 1.40, 1.80, 2.10} is used to represent 4-bit data. 0 or 1 is assigned according to the sign of each mode, 
e.g., 0011 for {−1.10,−1.40, 1.80, 2.10} and 0100 for {−1.10, 1.40,−1.80,−2.10} . The measured intensity pro-
files after 1000-m propagation in free-space channels with and without AT are shown in Fig. 9. The recognition 
accuracy for the multi modes is presented in Table 3, of which the first two columns show the results of single-
mode schemes (10 integer modes from 1 to 10 and 10 fractional modes from 1.10 to 2.90). All tests presented 
here were conducted at the same turbulence level ( C2

n = 1× 10−14 m−2/3 ). The recognition accuracy of integer 
OAM beams was less than 90% despite their wide mode spacing, which is because the size feature for identifi-
cation, such as radius, is weakened by AT23. On the other hand, the accuracy for both fractional schemes was 
measured to be over 99%. The results indicate that the multi-mode fractional OAM system can encode more bits 
with smaller l  values while maintaining recognition performance. Note that the broader the range of OAM, the 
more modes are available. Besides, one can increase further the amount of transmitted data by combining other 
photonic degrees of freedom.

Conclusion
In conclusion, we proposed and demonstrated deep-learning-based adaptive demodulation of fractional OAM 
modes distorted by AT. First, to prepare datasets for training and testing the designed neural network, we mod-
eled 1-km turbulence channels with random phase screens emulating turbulence effects and simulated beam 
propagation through the channels. After that, we investigated the classification performance of the trained 
ATANN for 5 kinds of 10-ary fractional OAM systems (5 different mode intervals) and 5 kinds of AT levels 
(5 different C2

n values). Despite the strong turbulence level and the resulting collapse of the field structure, the 
ATANN achieved recognition accuracy of more than 99.2% for 10-ary fractional OAM systems with the mode 
spacing of ≥ 0.20 . For optical channels with weak and moderate turbulence strength levels, transmitted OAM 
modes were accurately identified regardless of mode intervals. Furthermore, we investigated the generalization 
ability of the ATANN for unknown turbulence levels. Our results showed that a model trained with a higher level 
of turbulence strength accommodates a wide range of turbulence environments, providing better adaptability. 
In addition to the turbulence effect, we applied the data augmentation technique for enhancing noise toler-
ance and demonstrated stable performance over a wide SNR range. The proposed scheme capable of perform-
ing high-resolution recognition despite external perturbations will offer reliable optical systems for free-space 
communications employing fractional OAM beams as data carriers. Moreover, the application of multiplexed 
fractional OAM beams might be helpful to realize higher data rates.

(9)SNR = 10log10

(

I
σn

)

,

Figure 8.   Data augmentation for enhancing noise tolerance. (a) Deformation of field distribution caused by AT 
(middle) and additive Gaussian noise (bottom). (b) Recognition accuracy against SNR. Black (red) circles show 
the result of a model trained without (with) data augmentation. Here, the SNR represents the average value for 
each test set.
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