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The COVID-19 epidemic is the latest in a long
list of pandemics that have affected humankind
in the last century. In this paper, we propose
a novel mathematical epidemiological model
named SUIHTER from the names of the seven
compartments that it comprises: susceptible
uninfected individuals (S), undetected (both
asymptomatic and symptomatic) infected (U),
isolated infected (I), hospitalized (H), threatened (T),
extinct (E) and recovered (R). A suitable parameter
calibration that is based on the combined use of the
least-squares method and the Markov chain Monte
Carlo method is proposed with the aim of reproducing
the past history of the epidemic in Italy, which
surfaced in late February and is still ongoing to date,
and of validating SUIHTER in terms of its predicting
capabilities. A distinctive feature of the new model
is that it allows a one-to-one calibration strategy
between the model compartments and the data
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that are made available daily by the Italian Civil Protection Department. The new model is then
applied to the analysis of the Italian epidemic with emphasis on the second outbreak, which
emerged in autumn 2020. In particular, we show that the epidemiological model SUIHTER can
be suitably used in a predictive manner to perform scenario analysis at a national level.

1. Introduction
The coronavirus disease 2019 (COVID-19) pandemic is a tremendous threat to global health.
Since the first outbreak in early December 2019 in China, more than 1 834 573 deaths have been
registered worldwide, while the estimated total number of confirmed cases is 84 511 153 up to
2 January 2021 [1]. The real number of people infected is unknown, but it is probably much higher.
In this scenario, predicting the trend of the epidemic is of paramount importance to mitigate the
pressure on health systems and to activate control strategies (e.g. quarantines, lockdowns and
suspension of travel) aimed at containing the disease and delaying the spread.

As these predictions have vital consequences for the different actions taken by governments
to limit and control the COVID-19 pandemic, the recent period has seen considerable growth of
epidemiological mathematical models (e.g. [2–7]). However, estimates and scenarios emerging
from modelling highly depend on different factors, ranging from epidemiological assumptions
to, perhaps most importantly, the completeness and quality of the data on which models are
calibrated. Since the beginning of the COVID-19 emergency, the quality of data on infections,
deaths, tests and other factors has been spoiled by under-detection or inconsistent detection of
cases, reporting delays and poor documentation. This has affected, and is still to date hampering,
the intrinsic predictive capability of mathematical models.

Despite the lack or incompleteness of the available data, which makes modelling the current
COVID-19 outbreak challenging, mathematical models are still vital to establish predictions
within reasonable ranges, and can be adapted to incorporate the effects of public health
authority interventions in order to estimate in advance their effectiveness and their impact
on the spread of COVID-19. Building upon the well-known susceptible–infectious–recovered
(SIR) model proposed in 1927 by Kermack & McKendrick [8], several generalizations have been
formulated over the years by enriching the number of compartments, e.g. susceptible–exposed–
infectious–recovered (SEIR), susceptible–infectious–susceptible (SIS), susceptible–exposed–
infected–recovered–deceased (SEIRD), susceptible–exposed–infectious–asymptomatic–recovered
(SEIAR), susceptible–infectious–recovered–susceptible (SIRS), susceptible–exposed–infectious–
quarantined–recovered (SEIQR), maternally derived immunity–susceptible–exposed–infectious–
recovered (MSEIR), . . . ; we refer to, for example, [9–11] for an overview. Overall, these models
have been abundantly applied to locally analyse COVID-19 outbreak dynamics in various
countries (e.g. [6,12–14]).

However, the peculiar epidemiological traits of COVID-19 require models that are better
able to accurately portray the mutable dynamic characteristics of the ongoing epidemic, with
particular emphasis on two critical aspects: (i) the crucial role played by the undetected
(both asymptomatic and symptomatic) individuals; (ii) the number of individuals who require
intensive care unit (ICU) admission. This latter aspect is of paramount importance in designing
realistic scenarios that incorporate the pressure of the epidemic on national health systems.

In this paper, we introduce a new mathematical model, named SUIHTER, based on the initials
of the seven compartments that it comprises: susceptible uninfected individuals (S), undetected
(both asymptomatic and symptomatic) infected (U), isolated infected (I), hospitalized (H),
threatened (T), extinct (E), recovered (R). It is a system of coupled ordinary differential equations
(ODEs) that are driven by a set of parameters that are indeed piecewise constant time-dependent
functions. A first set of parameters denote the transmission rates due to contacts between
susceptible and undetected, quarantined or hospitalized subjects. A second set of parameters
mimics the rates at which I (isolated) and H (hospitalized) individuals develop clinically relevant
or life-threatening symptoms. A further parameter indicates the probability rate of detection
of previously undetected infected individuals. Another set of parameters indicates the rate of
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recovery for the four classes of infected subjects. Finally, the last parameters denote the mortality
rates for the different compartments.

This SUIHTER model has been conceived to overcome some of the limitations that can be
found in existing epidemiological models applied to the COVID-19 pandemic. On the one
hand, some studies adopt simple SIR-like models [6,12,14], which have the advantage of a
limited number of parameters to be calibrated but are unable to track the dynamics of different
categories of infected individuals. On the other hand, other multi-compartmental models (e.g.
[2,5]) have been proposed to account for the detailed knowledge of the clinical characterization for
different classes of infected individuals according to the actual level of disease severity. However,
it is not always possible (and, even when possible, it is not easy) to associate the multiple
infected compartments with the available data. The SUIHTER model has been designed with the
objective of creating the most compact model able to predict the different categories of infectious
individuals that are considered relevant by the policymakers.

A key challenge in modelling the dynamics of the COVID-19 epidemic is represented by the
large number of undetected cases. Indeed, the contribution to the spread of the epidemic by (often
asymptomatic) undetected cases is too relevant to be neglected. Several authors [5,15,16] have
attempted, using different strategies, to quantify the number of undetected infections and their
effect on epidemic spread. In the present work, we propose a strategy for the initialization of those
compartments that are not covered by the data (such as susceptible, undetected and recovered).

The model adopts a two-step calibration process based on a preliminary estimation of the
model parameters that uses a least-squares (LS) minimization, followed by a Bayesian calibration
performed through a Markov chain Monte Carlo (MCMC) algorithm.

The model has been adopted to simulate the second COVID-19 epidemic outbreak in Italy,
began in autumn 2020 (and is still ongoing). In particular, we have investigated the capability
of the model in forecasting the occurrence of a peak for the most relevant compartments with
adequate advance notice. The results of the calibration, simulation by SUIHTER and predictions
for Italy and the six largest Italian regions are also reported.

The outline of the paper is as follows: in §2, we introduce the SUIHTER mathematical model;
§3 is devoted to the description of the calibration procedure; and §4 contains the numerical results
along with the discussion. In §5, we draw our conclusions and we discuss some of the model’s
limitations.

2. Mathematical model
The spread of COVID-19 has made it clear that it is of paramount importance to include in
epidemiological models a compartment describing the dynamics of infected individuals who are
still undetected. This is, for example, the case in [5]. However, some compartments presented
in [5] (undetected asymptomatic infected and undetected symptomatic infected) are virtually
impossible to validate since these classes of individuals cannot be traced in public databases
(see [17]). For this reason, building upon [5], we propose a new model more suited to taking
full advantage of publicly available data. In particular, our model is described by the following
system of ODEs:

Ṡ(t) = −S(t)
βUU(t) + βII(t) + βHH(t)

N
,

U̇(t) = S(t)
βUU(t) + βII(t) + βHH(t)

N
− (δ + ρU)U(t),

İ(t) = δU(t) − (ρI + ωI + γI)I(t) + θHH(t),

Ḣ(t) = ωII(t) − (ρH + ωH + θH + γH)H(t) + θTT(t),

Ṫ(t) = ωHH(t) − (θT + γT)T(t),

Ė(t) = γII(t) + γHH(t) + γTT(t),

Ṙ(t) = ρUU(t) + ρII(t) + ρHH(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)
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Figure 1. Interactions among compartments inSUIHTERmodel. (Online version in colour.)

where the compartments of the model are defined as follows (figure 1):

— S: number of susceptible (uninfected) individuals;
— U: number of undetected (both asymptomatic and symptomatic) infected individuals;
— I: number of infected individuals isolated at home;
— H: number of infected hospitalized individuals;
— T: number of infected threatened individuals being cared for in ICUs;
— E: number of extinct individuals;
— R: number of recovered individuals;

and N = S + U + I + H + T + E + R denotes the total population (assumed constant).
The model is characterized by the following 14 parameters, some of which are chosen as time-

dependent piecewise polynomial functions:

— βU, βI, βH denote the transmission rates due to contacts between a susceptible subject and
an undetected infected, a quarantined or a hospitalized subject, respectively;

— ωI denotes the rate at which I-individuals develop clinically relevant symptoms, while
ωH denotes the rate at which H-individuals develop life-threatening symptoms;

— θH and θT denote the rates at which the health of H- and T-individuals improves and they
return to the less critical I and H compartments, respectively;

— δ denotes the probability rate of detection, relative to undetected infected individuals;
— ρU, ρI and ρH denote the rate of recovery for three classes (U, I and H, respectively) of

infected subjects;
— γI, γH and γT denote the mortality rates for the individuals isolated at home, hospitalized

and being cared for in ICUs, respectively.

Since data available for the recovered cases do not include those individuals who recovered
before being detected, we also propose a novel indicator that will be denoted as recovered from
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detected and that we define as

RD(t) =
∫ t

tI

(ρII(τ ) + ρHH(τ )) dτ .

This indicator can be obtained in postprocessing from computed compartments and collects those
individuals who recover after being detected.

In mathematical epidemiology, a fundamental quantity is the basic reproduction number
(denoted by R0), which is used to measure the transmission potential of a disease. It represents the
average number of secondary infections produced by a typical case of an infection in a population
where everyone is susceptible (see [9,11,18]). For our model, by using a similar argument to the
one adopted in the proof of proposition 1 in [5], we find

R0 = βU

r1
+ δ

r1

(
βI(r3r4 − θTωH) + βHωIr4

r2r3r4 − r4θHωI − r2θTωH

)
, (2.2)

where r1 = δ + ρU, r2 = ρI + ωI + γI, r3 = ρH + ωH + θH + γH and r4 = θT + γT. For the sake of
comparison (see eqn (32) in [5]), we observe that in the present context the characteristic
polynomial q(s) of the Jacobian matrix associated with the linearization of (2.1) around the
equilibrium configuration (S̄, 0, 0, 0, 0, Ē, R̄) with S̄ + Ē + R̄ = N is

q(s) = s3p(s) with p(s) = D(s) − S̄N(s),

where
D(s) = (s + r1)(s + r2)(s + r3)(s + r4) − (s + r1)θHωI − (s + r1)(s + r2)θTωH

and

N(s) = (s + r4){βU[(s + r2)(s + r3) − ωIθH] + βIδ(s + r3) + βHδωI}
− βUωHθT(s + r2) − βIδθTωH.

From a mathematical point of view, the reproduction number R0 plays the role of a threshold
value at the outset of the epidemic. If R0 > 1, the disease spreads in the population; if R0 < 1,
the number of infected gradually declines to zero. Note that all factors in equation (2.2) are,
as expected, actually positive. Furthermore, the expression (2.2) considerably simplifies upon
assuming, as done in the remainder of this paper, that βI = βH = θH = γH = 0. Our SUIHTER

model, as with other compartmental models, corresponds to a particular case of an integral model
with arbitrary distribution of infectious time, for which R0 is well known [18].

(a) Model initialization
A critical issue is the way in which those compartments for which data are unavailable (susceptible,
undetected and recovered) are initialized. In particular, when the analysis focuses on a late phase of
the epidemic, as in the present investigation of the second epidemic outbreak in autumn 2020, it
may be difficult to estimate those ‘initial’ values as a result of the simulation from day 0.

For these reasons, we have devised a strategy to estimate the number of recovered and undetected
individuals based on the value of the infection fatality ratio (IFR), which is defined as the ratio
between the number of deaths and the number of resolved cases (dead or recovered) at a specific
time (ideally at the end of the epidemic)

IFR = E
R + E

. (2.3)

We assume that IFR will be roughly constant in time, at least over the first wave. By using the
age-dependent estimates given in [19] the IFR can be estimated at around 1.2 % for Italy. The
number of recovered individuals on a given day can then be computed from (2.3) based on IFR
and the number of expired individuals. Moreover, the number of undetected individuals at a given
time can be obtained by exploiting the detecting ratio at any given time as follows. We introduce
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a time-dependent case fatality ratio (CFR), which is defined as

CFR(t) = 	E(t)
	RD(t) + 	E(t)

, (2.4)

where 	E(t) = E(t + 	t/2) − E(t − 	t/2) and 	RD(t) = RD(t + 	t/2) − RD(t − 	t/2) denote the
deaths and (detected) recovered cases observed in a time window of size 	t = 28 days around
a given time t. The number of undetected individuals at a given time is estimated by assuming that
the detection ratio, that is, the percentage of detected cases with respect to the total number of
positive cases, is computed as

I(t) + H(t) + T(t)
U(t) + I(t) + H(t) + T(t)

≈ 	I(t) + 	H(t) + 	T(t)
	U(t) + 	I(t) + 	H(t) + 	T(t)

= IFR
CFR(t + d)

. (2.5)

Here, we have assumed that the variation in the number of total positive individuals in the time
window [t − 	t, t + 	t] can be approximated by the variation in the resolved cases shifted by a
confirmation-to-death delay d = 13 (see [20]), namely

	U(T) + 	I(t) + 	H(t) + 	T(t) ≈ 	R(t + d) + 	E(t + d) = 	E(t + d)
IFR

.

Similarly, we have assumed that the variation in the number of detected positive individuals in
the time window [t − 	t, t + 	t] can be approximated by the variation in the resolved detected
cases shifted by the same time delay

	I(t) + 	H(t) + 	T(t) ≈ 	RD(t + d) + 	E(t + d) = 	E(t + d)
CFR(t + d)

.

By using the available data for I, H, T and E, other than the value of S deduced under the
assumption of constant total population and the estimate of CFR(t) given in equation (2.4), we
estimate the initial conditions for R and U as

R(t) =
(

1
IFR

− 1
)

E(t)

and

U(t) =
(

CFR(t + d)
IFR

− 1
)

(I(t) + H(t) + T(t)),

from equations (2.3) and (2.5), respectively.

3. Parameter calibration
Model calibration through data fitting is essential to reproduce the past history of the epidemic
and to perform short-term forecasts by inferring the epidemiological characteristics of COVID-19.

Here, we use data reported for isolated, hospitalized, threatened and extinct cases to
estimate the parameters of the proposed SUIHTER model. In particular, we perform the
calibration in two steps. Firstly, we find a set of parameter values using an (ordinary) LS
estimator. Then, we perform a Bayesian calibration using an MCMC algorithm, starting from
a prior distribution of the parameters centred about the LS estimate. Calibration of
epidemiological models has already been performed in a Bayesian framework, following the
pioneering paper by O’Neill & Roberts [21], for several infectious diseases [22–24]. In the
case of the COVID-19 epidemic, Bayesian inference has been performed using simpler SIR
[25,26], meta-community SEIR-like [2,4,13,27,28] and SEIAR [7] models, in the last case aiming
at estimating nine parameters—including a dynamic, time-dependent contact rate β(t)—during
the first outbreak of the COVID-19 epidemic. In addition to model calibration, our analysis also
provides a numerical assessment of the predictive capability of the model, in forecasting with
adequate advance notice the occurrence of a peak for the most relevant compartments.

System (2.1) can be recast in the following general form, which describes a system of ODEs
for a state vector Y with ne components (or compartments): find Y(t) : [tI, tF] → R

ne with Y(t) =
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[Y1(t), . . . , Yne (t)]
T, such that

Y′(t) = F(t, Y(t); p(t)) t ∈ (tI, tF] (3.1)

and
Y(tI) = Y0, (3.2)

where F is the right-hand side of system (2.1) and Y0 ∈ R
ne denotes the initial condition at time

tI evaluated as discussed in §2a. The evolution of the system depends on npar time-dependent
parameters, collected into the function p(t) : (tI, tF] → R

np . Note that, at the discrete level, the
nonlinear nature of system (2.1) is treated by considering an explicit (fourth-order Runge–Kutta)
time discretization with time step 	t = 1 day.

Let us partition the interval I = [tI, tF] into nph phases, corresponding to different epidemic
stages due to, for example, partial restrictions (such as lockdown measures) or different
containment rules introduced by the government or by the local authorities, so that in each phase
the environmental conditions may be considered fixed. Thus, in each phase, the values of the npar

model parameters are assumed constant (but unknown), so that we can introduce the following
set of admissible parameters:

Pad = {p(t) : p(t)|Ik = pk ∈ [pL,k, pU,k], k = 1, . . . , nph}, (3.3)

where pL,k, pU,k are constant vectors. For the sake of notation, let us denote by p ∈ R
np the vectors

of unknown parameters to be estimated, with np = nparnph, and let Y = Y(t, p) highlight the
dependence of the states on the parameters. Consequently, Pad is the np-dimensional hypercube
delimited by the constraints (3.3). Additional constraints on the parameters are assumed, by
imposing that some of them are constant over all phases.

Let 	t be a positive time step, for which we consider nme measurements of
ncom = 5 < ne compartments at equally spaced times tj = j	t, j = 1, . . . , nme over the interval
I = [tI, tF], with t1 = tI + 	t, tnme = tF; in total, we have ncom × nme = 5 × nme reported data, say
D̂(t) = {ŶI,H,T,E,RD (tj)}nme

j=1 ∈ R
5×nme , that is,

D̂(t) = {(Î(t1), Ĥ(t1), T̂(t1), Ê(t1), R̂D(t1))T, . . . , (Î(tnme ), Ĥ(tnme )), T̂(tnme ), Ê(tnme ), R̂D(tnme )
T}. (3.4)

The first stage of the calibration process is then performed by seeking a LS estimate of the
parameters vector, given by the solution of the following minimization problem:

p̂ = arg min
p∈Pad

J (p), (3.5)

with

J (p) :=
nme∑
j=1

∑
k={I,H,T,E,RD}

αk(tj)||Yk(tj, p) − Ŷk(tj)||22, (3.6)

where Yk(tj, p), k = {I, H, T, E, RD} denote the components of solution Y of problems (3.1) and (3.2),
corresponding to the compartments I, H, T, E and RD, respectively, evaluated at time instant tj, j =
1, . . . , nme, for the set of parameters p. For a balanced distribution of the error across the different
compartments, whose amplitudes vary with time, the dynamical weight coefficients are defined
as αk(tj) = 1/Ŷk(tj).

We considered the official epidemiological data supplied daily by the Dipartimento della
Protezione Civile (Italian Civil Protection Department), hereafter called ‘raw data’ and which
are freely available at https://github.com/pcm-dpc/COVID-19 [17]. The accuracy of these data
is highly questioned, in particular concerning the estimate of the total number of reported
positive cases (strongly dependent on the daily screening effort) [4]. This lack of accuracy is
indeed one of the most critical aspects of simple SIR-like models in which the calibration of the
infected compartment is often performed using data on the reported positive cases. In our model,
the ncom = 5 time series selected for the calibration (isolated, hospitalized, threatened, extincts and
recovered from detected) are in fact the data that have been supplied daily by the Italian authorities
since the beginning of the pandemic. One of the key features of the proposed SUIHTER model is

https://github.com/pcm-dpc/COVID-19
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indeed the one-to-one correspondence of the compartments with the categories for which reliable
data, such as those provided on a daily basis by the Italian Civil Protection Department, are
available [17].

When nph phases are considered, equation (3.5) leads to the optimization of np = 14nph
parameters in total. Namely, for each phase of the epidemic, we have the 14 parameters given
by [βU, βI, βH, ωI, ωH, δ, ρU, ρI, ρH, θH, θT, γI, γH, γT].

Unfortunately, so many parameters make the calibration process problematic. In what follows,
we calibrate our model under the following simplifying assumptions:

— βI and βH are set to zero, by assuming that the infection only occurs through a contact
between a susceptible individual and an undetected infected individual (see, for instance,
[29]);

— θH is set to zero as we assume that a hospitalized individual can return home only once
that individual has recovered, since this parameter may be difficult to estimate in the
absence of specific data on the H to I flux;

— γH are set to zero, by assuming that, when a hospitalized individual is in a life-threatening
condition, that individual is moved to ICU;

— δ, ρU, ρI, ρH, γI, θT ∈ R are constant on [tI, tF].

With these restrictions, the total number of parameters to be calibrated is reduced to 4nph + 6.
The first stage of the calibration process has been performed by solving the minimization

problem (3.5) numerically. We have used a parallel version of the limited memory Broyden–
Fletcher–Goldfarb–Shanno algorithm with box constraints (L-BFGS-B); see [30] for details.

The second stage of the calibration process aims to quantify uncertainties and has been carried
out by employing a Bayesian framework, since the latter provides probability densities of the
input parameters that can be propagated through the model.

Bayesian inference allows us to construct a probability distribution function (PDF) for the
unknown parameters, merging prior information and available data, the latter entering in the
expression of the likelihood function. At this stage, in order to account for the uncertainty
on the initial conditions, we extend the set of parameters to be estimated to p̄ = (p, q), where
q = (U(tI), R(tI)) collects the initial conditions for the undetected and recovered compartments whose
values are not available from the data and can only be estimated. The posterior PDF can then
be obtained through the Bayes theorem on conditional probabilities. For the case at hand, we
quantify the likelihood of the parameter vector p̄ corresponding to the model outcome Yk(tj, p̄),
k = {I, H, T, E, RD} in correlation with the reported cases D̂(t) as

π (D̂(t) | p̄) =
∏

k={I,H,T,E,RD}

1
(2πσ 2)nme/2 exp

⎛
⎝− 1

2σ 2

nme∑
j=1

(Ŷk(tj) − Yk(tj, p̄))2

⎞
⎠ ,

where the (unknown) variance σ 2 is assumed to be constant for each compartment.
Note that a usual assumption when estimating parameters of epidemiological models is

that reported cases, given their discrete nature, follow either a Poisson or a negative binomial
distribution [4,23,28,29]. However, given the relatively large number of cases, the normal
distribution represents a flexible approximation, allowing for faster computations.

Using Bayes’ theorem, we obtain the posterior distribution of the parameters p̄ accounting for
the prior knowledge on the parameters and the reported cases, as

π (p̄ | D̂(t)) = π (D̂(t) | p̄)π (p̄)

π (D̂(t))
= π (D̂(t) | p̄)π (p̄)∫

P π (D̂(t) | p̄)π (p̄) dp̄
,

where π (p̄) denotes the (uniform) prior distribution for the parameters. Here, we assume that the
prior PDF for the model parameters p is centred at the LS estimate p̂ obtained during the former
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calibration stage, on a range [0.9p̂, 1.1p̂], while the prior of the initial values q is centred around
an estimate q̂ obtained based on the IFR (see equation (2.3)), on a range [0.7q̂, 1.3q̂]. The larger
relative amplitude of the latter prior interval reflects the higher uncertainty on the initial value
for the recovered and undetected compartments.

An alternative, more common and rigorous procedure would require informative priors to be
specified for the parameters, starting from key epidemiological features, as done, for example,
in [4,29]. However, given the large numbers of parameters to be estimated—some of which
do not find explicit counterparts in the epidemiological literature—we have assumed uniform
priors, centred about the LS estimates, as a practical shortcut to overcoming the difficulty in
specifying the prior distribution. In terms of predictive capability of the model, the numerical
results provided in §4 allow us to assess the proposed approach.

Since we cannot obtain the posterior distribution over the model parameters p analytically,
we adopt approximate-inference techniques based on Monte Carlo (MC) methods, which aim to
generate a sequence of random samples from a Markov chain whose distribution approaches
the posterior distribution asymptotically, whence the name of MCMC [31]. In particular, we
have used the delayed rejection adaptive Metropolis (DRAM) algorithm [32] implemented in
pymcmcstat; see [33] for the details. The first 500 000 samples of the chain serve to tune the
sampler and are later discarded (burn-in period). We use the next 500 000 samples to approximate
the posterior distribution for the parameters p̄.

From the generated chains, we draw NMC samples of the parameters p̄1, . . . , p̄NMC that we use
to perform forward propagation of uncertainty through the model, and to compute predictive
envelopes of the SUIHTER model compartments (or predictive distributions).

We report the MC samples of the trajectories on the time interval (tI, tfor], including a forecast
window (tF, tfor] that extends beyond the time window (tI, tF] where data have been reported, to
assess the predictive capability of the model.

4. Results and discussion
In this section, we present three batteries of numerical results assessing the forecasting capabilities
of the SUIHTER model. Our analysis focuses on the second wave of the epidemic that started at
the end of summer 2020 and, at the time of writing, is still affecting Italy. In §4a, we present the
simulation of the second wave obtained with the SUIHTER model using for its calibration all
the data between 20 August 2020 and 31 December 2020. By limiting the time range of the data
used for the calibration, we also investigate the model’s capability of forecasting the peaks of the
different compartments (see §4b).

Our results at the national level for the second outbreak have been obtained by initializing
the isolated, hospitalized, threatened and extinct compartments with the data provided by the Italian
Civil Protection Department [17] on 20 August 2020, namely I = 15 063, H = 883, T = 68 and E =
35 418. The initial values for the undetected and recovered compartments are estimated using the
strategy based on IFR and the time-dependent CFR introduced in §2a, resulting in the values U =
12 274 and R = 2 916 082, respectively. Finally, the initial condition for the susceptible compartments
is given by S = (N − I − U − H − T − E − R) = 57 504 185. Note that this would imply that, by the
end of the first wave, around 4.8% of the Italian population had been infected. A serosurvey
organized by Istituto Nazionale di Statistica (ISTAT) and Istituto Superiore di Sanità (ISS) had
estimated that 2.5% of the Italian population had been infected [34,35]; the survey however had
a low compliance, so that its results may be biased. A corresponding survey in Spain [36] with
a much higher compliance rate estimated a seropositivity value of 4.6% or 5%, depending on
the methodology used for the seroprevalence analysis. Using an ensemble model calibrated over
several countries [37] the estimate of the proportion infected in Italy on 1 September 2020 was
around 4.5%. Using instead a dynamical model calibrated over detailed data [28] the estimate of
the proportion infected in Italy on 30 September 2020 was 4.78%. Thus, the value of recovered cases
obtained for 20 August looks rather realistic.



10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210027

..........................................................

(a) Simulation of the second epidemic wave
The SUIHTER model has been used to simulate the second epidemic outbreak, from 20
August 2020 until 31 December 2020. The different phases in which the parameters can
take different values have been identified according to the occurrence of some critical
events:

— 24 September 2020: all schools at the national level reopened after the summer (and spring
lockdown) closure (schools calendars vary by grades and by region in Italy);

— 8 October 2020: new rules imposing the mandatory use of masks in all locations (either
indoor or outdoor) accessible to public;

— 26 October 2020: confinement rules including distance learning for most secondary
schools, limitations on the activity of shops, bars and restaurants, strong limitation on
sport and leisure activities;1

— 6 November 2020: stricter confinement rules including distance learning from the 9th
grade, further restrictions on commercial activities, limitations on circulation outside
people’s own municipality (for some Italian regions, classified as red regions);2

— 15 November 2020: additional confinement rules as more regions became red regions;3

— 19 November 2020: additional confinement rules as more regions became red regions;4

— 29 November 2020: relaxation of confinement rules in some regions as they became orange
regions;5

— 6 December 2020: relaxation of confinement rules in some regions as they became yellow
regions;6

— 18 December 2020: stricter confinement rules are introduced for the Christmas holidays.7

By considering a time lag of 4 days (to account for the incubation period) [38], the
corresponding phases on which the model parameters are defined (and possibly changing) are:

— phase 1: 20 August 2020–28 September 2020;
— phase 2: 29 September 2020–11 October 2020;
— phase 3: 12 October 2020–29 October 2020;
— phase 4: 30 October 2020–9 November 2020;
— phase 5: 10 November 2020–18 November 2020;
— phase 6: 19 November 2020–23 November 2020;
— phase 7: 24 November 2020–3 December 2020;
— phase 8: 4 December 2020–10 December 2020;
— phase 9: 11 December 2020–22 December 2020;
— phase 10: 23 December 2020–31 December 2020.

As mentioned in §3, the compartments employed for calibration are only those with more
reliable data, namely isolated (I), hospitalized (H), threatened (T), extinct (E) and recovered from detected
individuals.

We performed the model calibration by employing the MCMC parameter estimation
procedure described in §3, over the 10 phases, using the data over the full time range from 20
August 2020 to 31 December 2020. The simulations were run for the subsequent 15 days beyond

1Decreto del Presidente del Consiglio dei Ministri (Decree of the President of the Council of Ministers; DPCM) 24 October
2020, http://www.governo.it/sites/new.governo.it/files/DPCM_20201024.pdf.
2DPCM 4 November 2020, http://www.salute.gov.it/imgs/C_17_notizie_5171_0_file.pdf.

3http://www.regione.abruzzo.it/system/files/atti-presidenziali/ordinanze/2020/ordinanza-n-102.pdf.

4http://www.salute.gov.it/imgs/C_17_notizie_5197_0_file.pdf.

5http://www.salute.gov.it/imgs/C_17_notizie_5197_0_file.pdf.

6https://www.gazzettaufficiale.it/eli/id/2020/12/05/20A06781/sg.

7Decree Law 18 December 2020, n. 172, https://www.gazzettaufficiale.it/eli/id/2020/12/18/20G00196/sg.

http://www.governo.it/sites/new.governo.it/files/DPCM_20201024.pdf
http://www.salute.gov.it/imgs/C_17_notizie_5171_0_file.pdf
http://www.regione.abruzzo.it/system/files/atti-presidenziali/ordinanze/2020/ordinanza-n-102.pdf
http://www.salute.gov.it/imgs/C_17_notizie_5197_0_file.pdf
http://www.salute.gov.it/imgs/C_17_notizie_5197_0_file.pdf
https://www.gazzettaufficiale.it/eli/id/2020/12/05/20A06781/sg
https://www.gazzettaufficiale.it/eli/id/2020/12/18/20G00196/sg
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Figure 2. Expected values (solid lines) and 95% prediction intervals (shaded areas) for the seven compartments of the
SUIHTER model plus the additional daily new positives compartment. The data are indicated with black dots (in the
calibration phase) and with a dashed line in the validation phase. (Online version in colour.)

the date associated with the last set of data used for the calibration forecasting the evolution of
the epidemic until 15 January 2021. For the new additional phase, the values of the parameters
are obtained by linearly extrapolating the two (constant) values of the corresponding parameter
of the last two phases, located on the final day of each phase, namely phases 9 and 10.

In figure 2, we report the expected values for the time evolution of the seven compartments of
the SUIHTER model as well as the time evolution of the additional compartment of the daily new
positives, which corresponds to δ U(t), and the corresponding 95% prediction intervals obtained
by propagating input uncertainties through the model.

We note that the calibrated compartments (isolated, hospitalized, threatened, extinct and recovered
from detected) accurately fit the corresponding time series-data in the calibration phase. For all
compartments the 15-day forecast also indicates the capability of the model in predicting the
evolution of the epidemic at the national level.

Moreover, the time history of the daily new positives is also in reasonable agreement with the
data, proving that the model is also able to capture the main dynamics of the system for quantities
that are not directly driven by the data calibration. Our calibration indicates that, from 20 August
2020 to 15 January 2021, 4 056 118 ± 284 533 individuals were infected, of which 48.0% ± 2.0% had
been detected. In addition, we estimate a posteriori, i.e. by using the outputs of the simulation,
that the IFR during the same period was 1.3% ± 0.1%. This latter figure is compatible with the
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Table 1. Median values and 95% credibility intervals (CI) of constant parameters and U and R initial values.

median 95% CI

δ 0.12041 [0.10739, 0.12841]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γI 3.78 × 10−5 [3.43 × 10−5, 4.15 × 10−5]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρU 0.12320 [0.11303, 0.13593]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρI 0.02408 [0.02197, 0.02658]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρH 0.06677 [0.06171, 0.07212]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

θT 0.05026 [0.04517, 0.05456]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

U(tI) 12 571 [9346, 15 775]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R(tI) 2 551 280 [2 270 830, 2 832 576]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IFR estimated at 1.2% for Italy by using estimates by age reported in [19], but is somewhat higher
than the estimate shown in [37]. We also observe that our calculated estimates are likely to be
underestimated as the second outbreak is still ongoing at the present time and compartments of
isolated and extinct individuals become populated at different time scales.

The median values and the 95% credibility intervals computed by the MCMC calibration are
reported in table 1 for the parameters that are constant over the simulation and for the initial
values of undetected and recovered, while in table 2 we report the parameters that are free to change
in each phase. The posterior distributions for all the constant and time-dependent parameters
are reported in electronic supplementary material, figures S1 and S2. The traceplots for all the
parameters (also available in electronic supplementary material, figures S3 and S4) indicate that
the MCMC method showed good convergence after the first 500 000 samples.

The former parameters and time-dependent functions represent rates that can be used to
interpret the dynamics of the second Italian outbreak. For example, large values of βU indicate
sustained transmission rates at the corresponding phases. Values of healing rates ρU, ρI and
ρH are proportional to the probability of healing for individuals in the compartments U, I and
H, but are inversely proportional to the corresponding average time of healing; the rate ρI

also incorporates the healing on isolated individuals who are however asymptomatic. To better
understand the role of the parameters, note that, if they were constant, ρI/(ρI + ωI + γI) would
represent the probability of an isolated individual recovering without being hospitalized, and
similarly ρH/(ρH + ωH + γH) represents the probability of a hospitalized individual recovering
without being transferred to an ICU. In the same way, γT/(γT + θT) represents the probability of an
individual in an ICU dying, and δ/(δ + ρU) represents the probability that an infected individual
is detected.

Finally, table 2 also reports the value of the basic reproduction number R0 calculated as in
equation (2.2) for the SUIHTER model. The calculation uses the model parameters reported in
tables 1 and 2 (columns 1–4). Note that the amplitude of the credibility intervals is strongly
influenced by the choice of the prior in the interval centred about the values of the model
parameters obtained by the LS procedure ±10%. They should mainly be judged in relative terms.

We observe that the value of R0 obtained by the calibration reflects the full reopening of
educational activities and work restaring after holidays, as well as the public health measures
and restrictions later introduced by the authorities to contain the second epidemic outbreak. In
particular, the rise of R0 in phases 2 and 3 follows the full reopening of schools and restarting
of working activities from mid-September, and probably accounts for seasonality effects too.
Restrictions on mobility, schools and businesses and partial lockdowns were introduced in late
October at the regional and national levels, as reflected by the decrease in R0 from phase 5 to
phase 6, when R0 became less than 1. Partial reopening and easing of restrictions were gradually
introduced in some regions and at the national level from late November, as the new increment
of R0 from phase 9 indicates.
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Table 2. Median values and 95% credibility intervals (CI) of the parameters that change over the phases and the
correspondingR0.

βU ωI

phase median 95% CI median 95% CI

1 0.2640 [0.2475, 0.2825] 0.0059 [0.00537, 0.00648]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.3658 [0.3329, 0.3936] 0.00771 [0.00701, 0.00847]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.3449 [0.3223, 0.3685] 0.00933 [0.00849, 0.01018]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.2756 [0.2485, 0.2972] 0.00691 [0.00629, 0.00755]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.2421 [0.2202, 0.2658] 0.00496 [0.00445, 0.00537]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.1779 [0.1615, 0.1952] 0.00422 [0.00383, 0.00464]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.2093 [0.1906, 0.2307] 0.00340 [0.00309, 0.00373]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.1924 [0.1743, 0.2109] 0.00313 [0.00283, 0.00342]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.3052 [0.2780, 0.3354] 0.00309 [0.00281, 0.00339]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.2949 [0.2686, 0.3251] 0.00351 [0.00319, 0.00385]
ωH γT

phase median 95% CI median 95% CI

1 0.0132 [0.0121, 0.0146] 0.0760 [0.0691, 0.0837]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 0.0192 [0.0173, 0.0210] 0.1252 [0.1133, 0.1372]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 0.0223 [0.0202, 0.0243] 0.0886 [0.0793, 0.0958]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 0.0264 [0.0238, 0.0286] 0.1561 [0.1400, 0.1689]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 0.0259 [0.0233, 0.0281] 0.1673 [0.1517, 0.1830]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 0.0269 [0.0243, 0.0293] 0.1909 [0.1741, 0.2103]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 0.0263 [0.0238, 0.0286] 0.1900 [0.1726, 0.2079]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 0.0251 [0.0226, 0.0272] 0.1872 [0.1708, 0.2055]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 0.0244 [0.0223, 0.0269] 0.1924 [0.1729, 0.2086]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 0.0249 [0.0226, 0.0272] 0.1867 [0.1700, 0.2053]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(i) Simulating the second outbreak for Italian regions

The results obtained by simulating the epidemic at the national scale can indeed hide specific local
outbreaks. The SUIHTER model can also simulate the evolution of the epidemic for everyone in
the 20 Italian regions for which the same time-series data as those used for the national calibration
are available. Unfortunately, this is not true for the finer geographical level (the 107 provinces)
since only the number of total cases from the beginning of the epidemic is provided.

Following the same initialization and calibration strategies adopted at the national level, we
have carried out the simulation of the second epidemic outbreak in the six larger Italian regions,
namely Lombardy, Veneto, Emilia-Romagna, Lazio, Campania and Sicily. In figure 3, the expected
value for the time evolution of the three infectious compartments used for the calibration and the
corresponding 95% prediction intervals are reported for the former six regions. The calibration
has been carried out using the same setting as for the national level, i.e. calibrating the model
with the data available until 31 December 2020 and then simulating until 15 January 2021. The
results obtained by numerical simulations are in good agreement with the real data, with few
exceptions, namely the isolated compartment in Veneto (where the time series is clearly affected
by some reporting problems) and the hospitalized compartment in Emilia-Romagna.
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Figure 3. Expected values (solid lines) and 95%prediction intervals (shaded areas) for the isolated, hospitalized and threatened
compartments, from left to right, in the six larger Italian regions. (Online version in colour.)

(b) Predicting the peaks
Predicting the peak of an epidemic outbreak is a tremendous challenge for an epidemiological
model. Yet, the predictive capability of epidemiological models is of paramount importance to
inform policymakers about the dynamics of the disease and foresee the timing and levels of the
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Figure4. Peak forecast obtainedby theSUIHTERmodelwith different data ranges for the isolated,hospitalized, threatened
and extinct compartments. (Online version in colour.)

peaks of infected, hospitalized and ICU-treated individuals, as well as the potential effects of
policy responses.

With the goal of investigating to which extent our SUIHTER model is able to predict the
occurrence of the epidemic wave peak, we repeated the calibration using the data over limited
time ranges.

In particular, we have considered three different cases: in case 0 we used all the data time
histories available until 3 December, while in cases 1, 2 and 3, the data employed for the calibration
were limited to 23 November, 18 November and 9 November, respectively. For each case, the
simulations were run for the subsequent 30 days beyond the date associated with the last set of
data used for the calibration and the linear extrapolation carried out as indicated before.

In figure 4, we report the expected value for the time evolution of the four compartments used
for the calibration, and the 95% prediction intervals obtained by propagating input uncertainties
through the model. The accuracy of the forecast, as expected, improves when a richer set of
data are employed in the calibration. Our simulations show the occurrence of a peak for each
of the three compartments, not only for case 0, in which the time lapse of the data used for the
calibration covers the peaks, but also for cases 1, 2 and 3, when the time-series data employed for
the calibration are still rising. However, we should remark that if the model is calibrated with a
shorter time series, namely available data stop more than 30 days before the peak, the occurrence
of the peak cannot be correctly predicted.

As already noticed, because of the overall complexity of the problem and the limited data
available for its calibration, we do not intend here to certify in rigorous terms the actual values
of the future compartments. However, in spite of the widths of the predictive intervals (which
depend, to some extent, on the widths of the chosen prior distributions), we nonetheless observe
that the expected values (solid lines in figure 4) carry meaningful prediction capabilities.

To further assess the accuracy of the prediction, it is interesting to compare this peak
forecasting with respect to the actual data, i.e. the day and value that have been reported for
the different compartments at the end of November 2020. Moreover, we propose a comparison
with the predictions obtained using the two different strategies based on data fitting. The first is
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based on a simple polynomial fit of degree 2 on the last recorded 10 days, while the second is
obtained by using a curve registration (see [39] for an overview on this subject) by exploiting the
similarities between the first and second waves. The registration procedure is performed by first
computing the exponentially modified Gaussian (EMG) function that best fits the first wave. We
denote this function as w(t), t0 ≤ t ≤ t1, with t0 the first day of the recorded data (24 February) and
t1 equal to 1 August. Then a second minimization problem is solved to compute the time shift and
scaling factors to apply to the computed EMG function to best fit the rising portion of the second
wave in the time range [tk, tn], with tk coinciding with 15 October and tn with the last recorder
date. Namely, we look for the optimal time shift h̄ and the scaling factors s̄1 and s̄2 such that

(h̄, s̄1, s̄2) = arg min
h,s1,s2

tn∑
i=tk

(s1 w(s2 ti + h) − di)
2,

where di is the value of the considered data series at day ti.
For each data series, the fitted EMG function and the optimal values for the shift and scaling

factors are computed and, in this way, the shape of the first wave can be used to complete the
second wave for the different compartments.

A comparison between the peak forecast obtained with the SUIHTER model, the quadratic
extrapolation (based on the last 10 days) and the registration approach is displayed in figure 5,
for the isolated, hospitalized and threatened compartments. The curves show how the prediction in
terms of the day of peak occurrence and peak value changes when an increasing number of data
are used (the last data day is reported on the horizontal axis). To minimize the effect of daily data
noise, the reference value (dashed line) is obtained by smoothing the data with a Savitzky–Golay
polynomial smoothing filter of degree 3 [40].

By comparing the peak predictions with the day and value of the measured (smoothed)
data peak (shown with a dashed line in figure 5), we should first remark that the SUIHTER

prediction largely outperforms those obtained with polynomial extrapolation. Moreover, even
when compared with predictions based on the registration with the first epidemic wave, the
SUIHTER model is more accurate for most of the considered quantities. When making this
comparison, it is worth noticing that, while prediction based on the registration strongly depends
on the evolution of the different compartments during the first epidemic wave, the predictions
based on SUIHTER do not require any a priori knowledge of previous epidemic waves.

5. Conclusion and model limitations
In this paper, we have introduced a new mathematical model, named SUIHTER, to describe
the ongoing pandemic of COVID-19. This epidemiological model is constructed on seven
compartments—susceptible uninfected individuals (S), undetected (both asymptomatic and
symptomatic) infected (U), isolated (I), hospitalized (H), threatened (T), extinct (E) and recovered
(R)—and we exploit it to study and analyse the second Italian outbreak that emerged in autumn
2020 and is still ongoing. In particular, our model is suited for calibration against data made
available daily by the Italian Civil Protection Department [17]. On the basis of these data at the
national level, our calibration populates the compartments I, H, T, E and RD, which we purposely
use to determine transmission rates, rates of recovery, IFR, etc. In particular, SUIHTER allows
us to estimate the infected but undetected population, a compartment (U) that is crucial for
studying and understanding the epidemic, especially considering that large numbers of infected
individuals went uncounted during the first and even the second outbreaks in Italy. Moreover,
thanks to our approach, transmission rates, and thus the basic reproduction number R0, can be
estimated. Finally, our calibration is made robust by exploiting Bayesian estimation using the
MCMC method.

The SUIHTER model calibrated at the Italian national level is validated against data related
to the last part of the second outbreak. Comparisons are made against basic statistical models,
namely quadratic regression and registration of the first epidemic wave. The comparison
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demonstrates the better accuracy of SUIHTER for predictive purposes. This is made possible
by using extrapolated transmission rates that are calibrated at earlier times through regression
models, a feature that allows the peaks of the second Italian outbreak to be captured correctly
and enables SUIHTER to be used in a predictive fashion by leveraging data available at the current
date. This novel approach attempts to circumvent a common issue of the use of epidemiological
compartmental models for forecasting [7], that is, accurately capturing transmission rates.
However, as our approach is based on interpolating values of these transitions rates, the accuracy
of their extrapolation and, consequently, their exploitation for prediction within SUIHTER can
only be limited to restricted time windows, especially when government interventions and
citizen behaviours are changing. Note that, although the calibration procedure did not make



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210027

..........................................................

any assumptions about the temporal changes in parameters, the estimates accurately reflect the
policy changes: estimates of R0 decrease as control measures are tightened and increase when
they are relaxed. The results of the simulation of the second wave carried out at the national and
regional levels showed the capability of the model in predicting the time evolution accurately in
a time frame of 15 days past the data used in the calibration. In longer term predictions the model
should account for the possible changes in restriction rules that may occur in the future to supply
analyses of different scenarios (as recently done in [40] based on the SUIHTER model).

A further limitation of our approach is that we are currently calibrating the Italian epidemic
outbreaks at the national level, that is, as a whole, without summing up the different contributions
at the level of the 20 Italian regions for which data are available [17]; however, we performed
the calibration of the six larger Italian regions. Populating compartments at the national level
by summing up results obtained by tailored calibrations of each Italian region would allow the
spatio-temporal heterogeneity of the Italian outbreaks to be better captured, reflecting different
mobility patterns and densities of population. In this respect, several different approaches have
been proposed in the literature (e.g. [41] and the references therein), ranging from the use of
network-based models [42,43] to systems of ODEs on a network [44,45], as well as non-local
partial differential equations [46]. Among the contributions that appeared during the COVID-
19 pandemic, we also recall [2,4,13], where a meta-community SEIR-like model was proposed
and employed to reproduce the contagion in Italy. However, calibrating our SUIHTER model
at the regional level, and for all the regions, would require a more sophisticated design owing
to the intrinsic ill-posedness of the inverse problem, especially when taking mobility patterns
into account. Nevertheless, we plan to better address spatio-temporal heterogeneity of the Italian
outbreaks in the future by generalizing our SUIHTER model to incorporate suitable spatial–multi-
city mobility terms at the regional level. Even though a more spatially detailed compartment
model is desirable, to act, for example, at the provincial level (Italy comprises 107 provinces),
currently no detailed data for its calibration have been made available.

Although the SUIHTER model is very sophisticated and involves 14 time-dependent
parameters and functions to be determined based on available data, we limited our calibration
to a subset of the possible control variables, by forcibly setting to zero some parameters that we
deemed to be less relevant for the transmission of the epidemic and by assuming some others
as constants over time. We also neglected incubation time, and we implicitly assumed that all
distributions in the states are exponential, which is far from correct [47]. Still, we believe that
this qualifies as an acceptable compromise among the complexity of the SUIHTER model and its
calibration procedure, the associated computational costs and the accuracy of the results. Some
of the calibrated parameters assume values that are able to compensate for those parameters
prescribed a priori, even if their interpretation may not be straightforward in explaining the
outbreak. In this respect, we plan to assess the robustness of our approach by allowing the
calibration of additional parameters. Furthermore, our multi-compartment SUIHTER model does
not consider stratification of age groups within the compartments. This is an important aspect
as some compartments such as H, T and E are mostly populated by the elderly, while the
transmission mechanisms widely differ by age and context of infection (workplace, school,
family, etc.) [28,48]. We also plan to improve SUIHTER by considering age stratification within
its compartments.

Among the limitations of our work is the identifiability of model parameters as SUITHER

requires a relatively large set of such parameters to be calibrated. Although we acknowledge its
importance, the current study does not present a direct verification of the identification conditions
on model parameters nor, in general, an identifiability analysis. Some, albeit indirect, verification
of the identifiability properties of the model comes from the very large sets of time series on
which calibration has been successfully performed. These are however aspects that we may better
address in future studies.

Finally, in consideration of the ongoing emergency situation during the second Italian
outbreak, we believe that our SUIHTER model is well suited to being used in a predictive manner
to support and motivate public health measures. To the best of our knowledge, apart from [49],
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wherein a SEIRD model is used at the regional level, SUIHTER stands as one of the first models
used to analyse the second Italian COVID-19 outbreak and can readily serve the purpose of
predicting the short-term epidemic trends and perform longer term scenario analyses.
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