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Abstract: Most existing wall-climbing robots have a fixed range of load capacity and a step distance
that is small and mostly immutable. It is therefore difficult for them to adapt to a discontinuous
wall with particularly large gaps. Based on a modular design and inspired by leech peristalsis and
internal soft-bone connection, a bionic crawling modular wall-climbing robot is proposed in this
paper. The robot demonstrates the ability to handle variable load characteristics by carrying different
numbers of modules. Multiple motion modules are coupled with the internal soft bone so that they
work together, giving the robot variable-step-distance functionality. This paper establishes the robotic
kinematics model, presents the finite element simulation analysis of the model, and introduces the
design of the multi-module cooperative-motion method. Our experiments show that the advantage
of variable step distance allows the robot not only to quickly climb and turn on walls, but also to
cross discontinuous walls. The maximum climbing step distance of the robot can reach 3.6 times the
length of the module and can span a discontinuous wall with a space of 150 mm; the load capacity
increases with the number of modules in series. The maximum load that N modules can carry is
about 1.3 times the self-weight.

Keywords: wall-climbing robot; modular; variable step distance; variable load; internal soft bone;
payload power factor

1. Introduction

Wall-climbing robots have attracted great interest from researchers because of their
potential application value, including in building and ship inspection, materials transporta-
tion, search and rescue, and other tasks [1]. Generally, wall-climbing robots need to be able
to carry a variety of sensors or transport required materials; therefore, load capacity is an
important performance index for these robots. A variable load capacity renders the robot
more adaptable to tasks. In addition, when such a robot faces a discontinuous wall with
particularly large spaces, the ability to adjust its step distance and use a larger step allows a
wall-climbing robot to adapt to complex environments. Therefore, studying variable loads
and variable step distances with wall-climbing robots is highly pertinent.

Many scholars have tried to improve the load capacity of wall-climbing robots. The
wall-climbing robots proposed earlier have mainly been cleaning robots [2–6]. Zhang
et al. [3] proposed the Sky Cleaner 3 robot, which is a relatively mature wall-climbing
cleaning robot based on suction-cup adsorption. The robot can carry about 60 kg of payload,
including its own weight (45 kg). Lee’s team [7] developed a series of multilinked caterpillar
track (MCT)-type climbing robots with different objectives. The robots range from small
(180 g) to large (70 kg), while payloads range from 0.5 kg to 15 kg. Huang et al. [8]
introduced a crawler wall-climbing robot using magnetic adsorption for ship detection. The
payload of the robot is 6 kg and has strong adaptability to the ship environment. Eto et al. [9]
proposed a new wheeled wall-climbing robot, which also relies on magnetic attachment to
the ferromagnetic wall for complex welding of metal hull. The robot weighs 7.4 kg and can
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carry 4 kg of welding tools. A detection robot capable of climbing concrete structures has
been proposed by Garrido et al. [10]. It relies on permanent magnet absorption and wheel
drive, which makes it highly loadable. The above-mentioned wall-climbing robots using
vacuum and magnetic adsorption as their adsorption principle have relatively strong load
capacity; however, the author found that this capacity is usually related to the size and
weight of the robot itself; that is, if you want to increase their load capacity, you need to
add more hardware equipment yourself. This can meet load demand, but it increases the
complexity of self-control and the risks of operation. A modular wall-climbing robot can
share the load among its own modules, and by slightly increasing the complexity of the
machine, its load capacity can be greatly improved.

Climbing robots have to be provided with a proper locomotion and adhesion system
with respect to the surface they have to climb [11]. The advantages and disadvantages of dif-
ferent ways of moving and sticking have been studied in detail by some researchers [11,12].
However, the increasingly complex designs of wall-climbing robots entail new require-
ments for terrain–environment adaptability. For complex wall climbing, wall-climbing
robots relying on foot motion [13–19] generally have higher degrees of freedom and
have higher adaptability to the environment than wheeled and crawler wall-climbing
robots. Guan et al. [18] proposed a wall-climbing robot with bipedal motion. Its unique
inchworm motion enables it to move on discontinuous discrete surfaces with high flex-
ibility. The Hexapod wall-climbing robot designed by Gao et al. [14] can span different
walls. Bionic wall-climbing robots using peristaltic, inchworm, crawling, and other motion
modes [1,20–25] can also move on complex walls by adapting to rough, uneven, and irreg-
ular contact surfaces. Although the above-mentioned wall-climbing robots have strong
adaptability to continuous climbing environments, in each case, their movement ability is
restricted to small steps, and it remains a challenge for these robots to cross discontinuous
contact surfaces with very large spaces. When a space is close to or larger than the length of
the mobile unit of the robot, a single robot cannot cross, whereas a modular wall-climbing
robot with a large step distance has the potential to do so.

Therefore, based on previous research, this paper proposes a bionic crawling modular
wall-climbing robot based on internal soft bone (ISB-MWCR), which is used to improve
load capacity and to span large gaps in discontinuous contact surfaces. The robot can
respond to variable load characteristics by carrying different numbers of modules to
increase its payload range. It can also manifest the functionality of variable step distance
via the cooperative operation of multiple motion modules and internal soft bones to span
large spaces in a discontinuous wall.

The main contributions of this paper are as follows:
By analyzing the movement mode of the leech, a bionic crawling modular wall-

climbing robot based on internal soft bone was designed. The motion planning for the
robot is presented, and the internal soft-bone and multiple-motion modules are coupled in
series to enable flexible climbing, steering, and spanning motions. The kinematics analysis
and finite element simulation of the robot module are also presented.

The climbing, steering, space-spanning, and load-movement experiments on the
modular climbing robot are described. Our experiments show that the modular climbing
robot can climb quickly and turn on smooth and flat walls. The load capacity increases with
the number of modules in series. The maximum load that N modules can carry is about
1.3 times the self-weight. On the premise of stable movement, the mobile walking distance
of the robot can reach up to 3.6 times the length of the module. Furthermore, it can span a
discontinuous wall with 150 mm spacing, and the effective variable step distance is 0 mm
to 400 mm. In addition, we also propose a performance index for the load performance of
the ISB-MWCR, which is called the payload power factor. The maximum payload power
factor of the robot module is 0.582.



Sensors 2021, 21, 7538 3 of 20

2. Materials and Methods
2.1. Robot Structure Design

The wonders of the natural world are a constant source of inspiration. Through the
observation of leeches (Figure 1), it is not difficult to see that they are able to move about in
water and on land only by use of their suction cups and muscles. In the water, they spread
out their bodies and perform wave swimming by stretching their muscles. On land, they
can perform peristaltic or inchworm motion [21].
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Figure 1. A leech.

Inspired by and based on the unique peristaltic mode of the leech, this paper presents
the design of an ISB-MWCR (Figure 2a provides an overview). As shown in the figure,
which presents two modules for the purposes of example, the entire robot is composed
of two module units: internal soft bone, and rotary adsorption mechanisms on the top
of the internal soft bone. The structure of the rotary adsorption mechanism is shown in
Figure 2b,d. It simulates the functions of biological suction cup adsorption and muscle
torsion of a leech head through a suction cup and a micro-stepping motor. The internal
soft bone of the robot and the module units connected in series (as shown in Figure 2c,e)
simulate the functions of the body muscles and tail suckers of leeches. The relative motion
between the module unit and the internal soft bone is generated through the meshing
transmission of the polylactic acid (PLA) gear, driven by the reduction motor on the module
and the internal soft bone, as well as the alternating adsorption of the suction cups on the
top of the module and the internal soft bone. The one-way shape-memory alloy (SMA)
on the module unit can bend the module and internal soft bone in a way that mirrors the
torsion of leech body muscles. The degrees of freedom of this robot have the following
relationship: Do f = 3N + 1, where N is the number of modules.

2.2. Motion Planning

The movement mode of the robot resembles that of many crawling creatures in nature,
especially leeches, with their biological suction cups at the head and tail. They all carry out
the process of repeated extension/contraction, grasping/releasing, and offset/correction of
the body. Therefore, we planned two basic motions for the robot, namely, climbing motion
and steering motion, taking two module units in series as an example.

The climbing movement is shown in Figure 3. The left side of the figure shows
the schematic diagram of one cycle and four periods of the robot’s climbing movement,
and the right side shows the state of each functional component of the robot in five
stages. ‘A–D’ refer to the four periods of the robot, ‘+’ represents the working state
of the parts, ‘-’ represents the non-working state of the parts, ‘r’ represents the reverse
rotation of the deceleration/stepping motor, and ‘c’ represents the forward rotation of the
deceleration/stepping motor. When the component is in the working state, the suction
cup is in the adsorption state, the two-way SMA is in the power-on extension state, and
the one-way SMA is in the power-on contraction state. When the component is in the
non-working state, the suction cup does not adsorb, while the two-way SMA is in the state
of power-off contraction, and the one-way SMA is in the power-off state and stretched by
external force.
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Figure 3. Climbing motion planning of ISB-MWCR and the status of its corresponding components.

The steering movement is shown in Figure 4, which presents steering movement to
the left as an example. In the table on the right side of Figure 4, ‘1.1’ or ‘1.2’ represent
the number of one-way SMAs; for example, ‘2.1’ represents the one-way SMA at the first
position of the second module of the robot, as marked in Figure 2c. The step length of the
climbing movement of the entire robot or module unit is controlled and adjusted by the
working time of the reduction motor and the data fed back by the displacement sensor. The
speed of the reduction motor is known, and the adsorption state of the suction cup is fed
back by the embedded pressure sensor. The steering movement adds the contraction of the
one-way SMA based on the climbing movement, which directly leads to the bending of the
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module unit to indirectly bend the internal soft bone, thus realizing the steering movement.
The steering deflection is controlled and adjusted by the working time of the one-way SMA
and the data fed back by the angle sensor.
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2.3. Kinematics Analysis and Simulation
2.3.1. Kinematics Analysis

By studying the creeping of a leech on a two-dimensional plane, this paper presents
two forms of ISB-MWCR plane motion: one is climbing motion and the other is steering
motion. The former only needs mutual movement between the module unit and the
internal soft bone for climbing, while the latter also adds the bending function of the
module unit based on climbing. To provide a theoretical basis for robot motion, kinematics
modeling and analysis of robot climbing and steering was carried out.

Climbing kinematics: the robot generates climbing motion by relying on the reduction
motor on the module unit and driving along the internal soft-bone guide rail by means
of gears. Accordingly, the climbing motion can be simplified into the model shown in
Figure 5.
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The model accords with the gear transmission law:

S = ctbn (1)

where S is the movement distance on the internal soft-bone guide rail, c is the speed of the
DC motor, t is the working time, b is the gear tooth pitch, and n is the number of gear teeth.

Steering kinematics: the robot bends the module itself and the internal soft bones
through the contraction of the one-way SMA on the module unit to deflect the top of the
robot. Therefore, we scale the steering motion of the robot to the bending motion of the
module for kinematic modeling and analysis.

The three-dimensional simplified model of the module unit is shown in Figure 6. L1,
L2, L3, and L4 represent eight springs connecting three plates, which are simplified to four
in this model. The central axis of the module is marked as L, and O′; O, and O′′ are the
intersections of the three faces and the central axis, respectively. Pi and P′i (i = 1, 2, 3, 4)
are the connection points between each one-way SMA in the module and the upper and
lower plates, respectively; the line connected with the central axis is the distance from
these to the central axis, and they are all equal. The included angle between the upper
plate plane, the lower plate plane, and the middle plate plane due to module bending is
marked as α. Q is the intersection of two plane extension lines. When the module is bent,
the force generated by the contraction and tension of one-way SMA is bidirectional, and
the positions and specifications of the springs installed above and below are consistent.
Therefore, the tensile force on the upper plate and the lower plate during the contraction
and tension of one-way SMA can be approximately equal; that is, the bending kinematics
of the upper and lower modules of the middle plate have a symmetrical relationship. Take
the plane of angle α and springs L1 and L3 as the reference plane, which is defined as
Reference Plane 1. If the three-dimensional model of Figure 6 is projected onto Reference
Plane 1, the two-dimensional bending model of the module can be represented as shown
in Figure 7a.
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model of module element in bending.

In Figure 7a, due to projection, the springs L2 and L4 coincide with the central axis,
which is not shown in the figure. The distance from the contact point between each one-way
SMA and the upper and lower plates to the central axis is R, such as O′P2 = R. The nearest
distance from each spring to the central axis is r, such as the distance from spring L1 to
point O of the central axis. In Figure 7b, li (i = 1, 2, 3, 4) is the connection point between
each spring and the upper plate; that is, the distance from these four points to point O′ is r.
Taking the straight line where O′l1 is located as the reference, the projection of P1 and P2 is
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P12, the projection of P3 and P4 is P34, ∠P2OP1 and ∠P3OP4 are right angles, and ∠β = 45◦,
yielding the following geometric relationship:

lOP12 = lOP34 = R1 =

√
2

2
R (2)
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Because the frame structure of the module unit is symmetrically designed, after
simplifying the model, the upper and lower parts of the module unit can be taken as
exhibiting approximately mirror motion when the module is bent. Therefore, the upper
half of the module will be taken as an example for bending kinematics analysis. As shown
in Figure 8a, when the upper half of the module is bent to the right, the motion can be
regarded as: (1) the distance of the upper plate plane moving downward ∆H [26], (2) then
moving to the right ∆x, and (3) finally generating a bending motion with angle α. Therefore,
the amount of change in the vertical direction when each point module is bent is as follows:

P12 : ∆LS12 = R1sinα + ∆H
P34 : ∆LS34 = R1sinα− ∆H

l1 : ∆LP1 = rsinα + ∆H
l3 : ∆LP3 = rsinα− ∆H

l24 : ∆LP24 = ∆H

(3)
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In Equation (3), point l24 represents the projection point of l2 and l4 on Reference Plane
1, which coincides with point O′ in Figure 8a. ∆LS12 represents the displacement change of
P12.

In the stress analysis diagram of Figure 8b, F is the resultant force generated against
the upper plate when two one-way SMAs contract. Due to the object characteristics and
installation mode of one-way SMA, the direction of resultant force F is always vertically
downward. F1 is the reaction force obtained by stretching two one-way SMAs, and the
direction is also always vertically downward. F2 is the reaction force received by the module
when bending the internal soft-bone, and the direction is upward along the plane of the
upper plate. FK1 and FK3 are the reaction forces of compression and tension of springs L1
and L3 between the upper plate and the middle plate, respectively, and the direction is
always perpendicular to the plane of the upper plate. FK24 is the compression reaction force
of springs L2 and L4 between the upper plate and the middle plate (i.e., FK24 = FK2 + FK4),
and the direction is always perpendicular to the plane of the upper plate.

According to the force balance, the direction of the projection line perpendicular to
the upper plate plane has the following relationship:

(F + F1)cosα + FK3 = FK24 + FK1 (4)

The directions along the projection line of the upper plate plane are

(F + F1)sinα = F2 (5)

According to Hooke’s Law:

FKi = k∆Lpi, i = 1, 2, 3, 4 (6)

In Equation (6), k is the spring coefficient of the selected spring, and ∆Li is the change
in the vertical direction of each spring, for which:

∆LP2 = ∆LP4 = ∆LP24 (7)

By assuming torque balance for point O′ in Figure 8b, where clockwise is positive, the
following is obtained:

FR1cosα− F1R1cosα− FK1r− FK3r = 0 (8)

Simultaneous Equations (4) and (8) are then{
(F + F1)cosα + FK3 = FK24 + FK1

FR1cosα− F1R1cosα− FK1r− FK3r = 0
(9)

Equation (9) is the kinematic model of the robot module when bending. The closing
force F belongs to the main force, and its size is related to the voltage and time required
to energize the SMA. The reaction force F1 is a passive force, and its size is related to the
tensile properties of the SMA. In Section 3.2 of this paper, we will test the SMA used by the
robot and obtain expressions of F and F1.

2.3.2. Motion Simulation

To better understand the bending motion of the robot based on the established kine-
matics model, finite element simulation analysis of the module unit of the robot was
conducted using the simulation module of SolidWorks. To simplify the analysis process,
the one-way SMA is replaced by load in the simulation model, and other components not
related to the simulation are omitted, as shown in Figure 9a. Firstly, when defining the
material, the composition of the spring is defined as 65 Mn high-quality carbon structural
steel, and that of the upper, middle, and lower plates is defined as ABS plastic. Then, the
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joint connection mode in global contact is adopted between parts. Next, the load is defined.
In practice, the middle plate is relatively fixed, so the middle plate is fixed in the analysis.
The effect of one-way SMA and internal soft bone is replaced by direct force according
to the force analysis in Figure 8b. The application of each force during the simulation is
shown in Figure 9a. The values of forces F, F1, and F2 can be taken according to the test of
materials, F = 10 N, F1 = 3.6 N, F2 = 4 N. Finally, the grid is generated and analyzed. The
simulation results of stress and displacement are shown in Figure 9. From the simulation
results, we can see the bending of the module. At the two end points on the right side
of the upper plate, the maximum displacement is about 16.8 mm, while the result of the
kinematic model is 19.4 mm, the difference between them is 2.6 mm, and the error is about
13.4%. This error may be caused by the nonlinear deformation of the spring.
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3. Experimental Results
3.1. Hardware System Design

Before starting the climbing experiment of the ISB-MWCR, to enable its motion func-
tion, we designed a robot control system for the robot, as shown in Figure 10. The system
is mainly divided into four parts: the control section, the driving device, the actuator and
perception layer, and its control core, which is an STM32 microcontroller. This study uses a
USB connection between the microprocessor and a PC to send and receive control instruc-
tions. Then, the sensors and various control modules are controlled and connected through
the signal port of the microprocessor to receive data and transmit control instructions. The
corresponding driving device is controlled by various driving modules, and finally, the
actuator is activated. While the actuator is operating, the sensing layer composed of various
sensors feeds the robot’s pose and state back to the STM32 microcontroller in real time, after
which the PC analyzes and displays the data, and sends new control instructions to the
microprocessor, which controls and adjusts the robot according to the target instructions.

The sensor part of perception layer is mainly composed of three kinds of sensors. The
first is the posture angle measuring modules (JY901) that are equipped with MPU9250,
which is mainly used to measure the bending angle of the module and the top of the
internal soft bone. And the second is the membrane pressure sensors (IMS-C04A), which is
used to measure the adsorption force generated when the suction cup adsorbs the wall.
The last one is the three-dimensional Hall sensing module (CJMCU-90393) equipped with
MLX-90393, which can be used to measure the displacement of the module and the internal
soft bone. The sensors transmit the collected data to STM32 microcontroller through TTL
(when controlling a single module) or IIC (when controlling multiple modules).
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According to the hierarchical principle of the control system in Figure 10, we have
established a hardware system suitable for the robot, as shown in Figure 11. The hardware
system includes a control section and driving device.
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3.2. One-Way SMA Test Experiment

The one-way SMA is a vital part of the ISB-MWCR. To obtain the expression of force
F and time t at a specific voltage and the expression of force F1, as shown in Figure 12,
we designed two test platforms to test the passive stretch and active contraction of the
one-way SMA.
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Figure 12. One-way SMA test platforms. (a) One-way SMA passive tensile test platform. (b) One-way SMA active shrinkage
test platform.

In Figure 12a, one end of the SMA is affixed to the tension sensor, and the other end
is affixed to the mobile platform controlled by the stepping motor, which is connected to
the stepping motor by a screw rod on the slide rail. This device can adjust how far the
SMA is stretched, adjust its initial length to Ls34 ≈ 90 mm, and make it so that the SMA
produces no tension on the tension sensor. When the stepper motor directs the mobile
platform to approach it, the SMA is elongated. The tensile force generated by the SMA
(tensile force) and the step progress number of the stepper motor (which can be converted
into the stretched amount of SMA) are then recorded. The SMA is in a state of power
failure during stretching. The respective results of the test data are shown in Figure 13a.
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between its tensile force and length change. (b) The relationship between the tensile force generated by SMA active
contraction and the time when 2V voltage is applied at both ends of SMA.

In Figure 12b, one end of the SMA is affixed to the aluminum profile, and the other
end is connected to the spring dynamometer by thin steel wire. If we adjust the length of
the stretched SMA to Ls34 ≈ 90mm, there is no tension on the spring dynamometer when
the SMA is not powered on; however, the SMA will shrink when powered on. When a
constant voltage of 2V is applied to the SMA, the SMA will contract. The tensile force
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(contraction force) generated by the SMA and the corresponding time are recorded. The
respective results of the test data are shown in Figure 13b.

The curves in Figure 13a,b can be described as Equations (10) and (11), respectively:

f (x) = a0 + a1cos(xw) + b1sin(xw) + a2cos(2xw) + b2sin(2xw) (10)

f1 (x1) = a3e(−(
x1−b3

c1
)

2
)
+ a4e(−(

x1−b4
c2

)
2
) (11)

Their coefficients are recorded in Table 1. In Equation (10), f (x) is the length change
after the one-way SMA is stretched, and x corresponds to the tensile force required to
stretch a single SMA. Thus, there have:{

f (x) = 2∆Ls34
x = 0.5F1

(12)

Table 1. Parameters of the respective function coefficients of SMA passive tensile and active shrinkage
data.

Description Value Description Value

a0 34.58 a3 5.066
a1 −31.81 b3 20.43
b1 −2.051 c1 8.616
a2 −2.796 a2 2.729
b2 4.485 b2 11.21
w 0.5904 c2 5.08

In Equation (11), f1(x) represents the tensile force generated when a single SMA
shrinks, and x1 represents the time t, where the combined tensile force F = 2 f1 (x1). Thus
far, the expressions of F and F1 have been obtained, and the kinematics model of the
bending robot module has been completed.

3.3. Exercise Experiment

To verify the correctness of motion planning and the feasibility of ISB-MWCR wall
climbing, in this paper, experiments for climbing, steering, load movement, and span
distance of ISB-MWCR are presented. The experiments can be seen in video (https://www.
bilibili.com/video/bv1fq4y1V7w8 (accessed on 11 October 2021)). Refer to Table 2 for the
mechanical structure parameters of the robot.

3.3.1. Climbing Experiment

The most basic movement of the wall-climbing robot is adsorption to the wall for
climbing. We conducted an experiment that involved climbing up and turning along a
glass surface using the ISB-MWCR two-module prototype, as shown in Figure 14. The
experimental glass wall is installed at an angle of 80◦ to the ground, and the subsequent
experimental wall is also a plane with an angle of 80◦. The body length of a single module
unit of the robot is about 110 mm. It can be seen from the figure that during the climbing
process with the internal soft bone and module unit facing the glass (a–j represent the
motion process of the robot), the maximum displacement step can reach 200 mm, which
is about 1.8 times the length of the module. When moving down along the glass face, the
maximum displacement step can reach 250 mm, which is about 2.3 times the length of the
module.

https://www.bilibili.com/video/bv1fq4y1V7w8
https://www.bilibili.com/video/bv1fq4y1V7w8
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Table 2. ISB-MWCR mechanical structure parameter table.

Description Value

DC motor speed c 133 rpm
Gear tooth pitch b 4.5 mm
Number of gear teeth n 9
Distance from one-way SMA to central axis R 70 mm
Distance from spring to central axis r 24 mm
Spring coefficient k 0.835 N/mm
Length of one-way SMA after stretching Ls34 90 mm
Body length of robot module 110 mm
Weight of robot module 300 g
Weight of internal soft bone 40 g
Weight of internal soft bone tip mechanism 60 g
Total weight of robot 700 g
Spring specification 1 × 12 × 50 mm
Thickness of upper, middle and lower plates 4 mm
Weight of upper and lower plates 25 g
Diagonal length of upper and lower plates 160 mm
Weight of middle plate 10 g
Side length of middle plate 60 mm
External diameter of internal soft bone 32 mm

 

1 

 
Figure 14. Experimental process of climbing and returning of two-module prototype on glass surface. (a–j) represents the
motion of the robot.

3.3.2. Steering Movement

In addition to analyzing the climbing movement, this study also carried out a series of
steering experiments on the ISB-MWCR. The steering movement of the ISB-MWCR mainly
relies on the contraction of one-way SMAs to bend the module, force the internal soft bone
to bend, and finally, deflect the top of the robot to implement the steering movement. At
the same time, the rotation of the top of the internal soft bone can also be used to offset the
center of gravity to achieve the steering movement of the robot.

First, we used the single module prototype to conduct a preliminary experiment on
the bending effect of the robot, as shown in Figure 15. In the initial state, the top of the
internal soft bone is hardly at an angle to the axis in the figure. The one-way SMA is also in
the state of power failure and the angle between the upper and lower plates of the module
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is about 88◦. The robot makes use of the bending of the module unit and the adjustment of
the internal soft bones and the module unit position so that the front end of the robot has a
deflection of about 9◦ to the left, and the angle between the upper and lower plates of the
final module is about 60◦.
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Figure 15. The process of robot attitude change during steering motion of single module prototype.
(a–c) represents the motion of the robot.

Then, we prepared a two-module prototype and used it to test the offset effect that the
ISB-MWCR can produce when it mainly depends on the center of gravity offset, as shown
in Figure 16. The premise of the experiment is that the internal soft bone of the robot does
not coincide with the direction of the center of gravity. The principle of this method is to
extend the top of the internal soft bone and direct the stepping motor at the top to rotate to
cause the top center of gravity to deviate from the original direction, to cause the robot to
offset, and thus to enable the function of steering. As shown in Figure 16, the prototype
has an offset of about 14◦ after a period of displacement.
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Finally, after testing the deflection ability of the ISB-MWCR, we also designed a
deflection-correction experiment, as shown in Figure 17. The experiment uses a two-
module prototype for operation. At the initial stage, the body of the prototype is tilted
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about 25◦ and the internal soft bone is used as a reference. After motion adjustment, the
robot straightened its upper body.
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Figure 17. Two-module prototype used for tilt correction. (a–e) represents the motion of the robot.

3.3.3. Load Experiment

Load capacity is an important performance index of wall-climbing robots. Therefore,
this study first conducts a load test with a total weight of 450 g on the two-module prototype
of ISB-MWCR, as shown in Figure 18. The total weight of the two-module prototype is
about 700 g (excluding the wires connecting the robot); the weight of a single module is
about 300 g, and the weight of the internal soft bone is about 100 g. In this experiment,
(1) we carried 225 g weights on the two module units of the robot; (2) the load of the
module is only 0.75 times the weight of the module itself; and (3) the uplink speed of the
module can reach 38.2 mm/s.
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In the experiment, it was found that it is easy for a single module of the ISB-MWCR
to carry a 225-g weight. To measure the maximum load capacity of a single module, we
gradually increased the load size on the single module prototype. On the premise of
ensuring the normal movement of the module, we increased the maximum load to 400 g, as
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shown in Figure 19. The payload of the module reached 1.33 times the module’s self-weight,
and its uplink speed was about 35 mm/s.
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3.3.4. Spanning Experiment with Discontinuous Surface

To test the adaptability of the ISB-MWCR to discontinuous walls, a discontinuous
wall with adjustable spacing was designed in this study, as shown in Figure 20. The robot
completed the crossing challenge of 150-mm spacing, which is about 1.37 times the length
of the module (the body length of the robot module is 110 mm). The reason the robot
is able to span such a relatively large distance is mainly due to the effective adsorption
of the suction cup at the top of the robot, which benefits from the rigidity of the internal
soft bone. When the robot transfers the internal soft bone upward, it is able to maintain
stability so that the suction cup at the top can achieve good contact with the wall. The
stable transmission distance is about 400 mm, which is about 3.6 times the length of the
module. Therefore, the variable step distance of the robot is about 0 mm to 400 mm.
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Figure 20. Two-module prototype spans discontinuous surface with large spacing. (a–f) represents
the motion of the robot.

3.4. Payload Power Factor

To evaluate the load performance of the ISB-MWCR, it is convenient for scholars
to compare. We propose a new performance metric for the load capacity of ISB-MWCR
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modules called the payload power factor (PPF). PPF refers to the driving unit of the ISB-
MWCR under the same voltage and type. The ratio of the difference between the load
power and the no-load power of the mobile module of the robot to the no-load power. The
expression is defined as:

W =
P− K

K
(13)

W is the payload power factor; P is the load power, which is the product of the
total weight of the load and the self-weight of the moving module and the average speed
when the moving module moves upward; K is the no-load power, which is the product of
the dead weight and the average speed of the moving module when it is unloaded and
moving upwards. The units of P and K are N·m/s. PPF can be used to evaluate the load
performance of the ISB-MWCR and also to reflect the utilization of driving force by the
structure of the ISB-MWCR. The larger the value, the better the load performance of the
robot and the higher the utilization of driving force in the structural design.

We will calculate the PPF of the ISB-MWCR. Because the load of the robot depends
on the module, and the moving speed of the module is different from that of the internal
soft bone, the PPF of the robot is scaled to a single module for calculation and description.
According to Section 3.3.3, we conducted load and speed tests under three conditions. The
results are shown in Table 3. The average speed is the average value of multiple tests.

Table 3. The no-load or load power of a module unit of the ISB-MWCR under three conditions.

Load
Condition Total Weight Average Velocity The No-Load or

Load Power PPF

No-load 3 N 0.051 m/s 1.53 N·m/s —-
Load 225 g 5.25 N 0.038 m/s 1.995 N·m/s 0.304
Load 400 g 7 N 0.035 m/s 2.42 N·m/s 0.582

The maximum payload of a single module of the ISB-MWCR is 400 g, and its corre-
sponding PPF value is 0.582, so the maximum payload power factor of each robot module
is 0.582.

4. Discussion

Single-module or two-module robots can perform basic climbing and steering move-
ments. In the steering movement, the two-module robot was found to be more stable
than the single-module robot and was able to make a complex attitude, as shown in the
correction experiment in Figure 17. This action is impossible for a single module robot.

In the load experiment, the maximum payload of a single module of ISB-MWCR was
400 g (about 1.33 times the self-weight of the module). In theory, if the internal soft bones
are long enough to allow each module to be directed upward and downward separately,
the other modules will be adsorbed on the wall without allowing the heavy weight to cause
plastic deformation inside the cartilage. Therefore, the robot can carry a virtually unlimited
amount of weight, which demonstrates the variable load capacity of ISB-MWCR. When
more and more modules are connected in series, the maximum weight of N modules are
about 1.3 times that of the robot itself. Thus, the robot can greatly improve its load capacity
by slightly increasing the complexity of the machine. According to the load performance
index set in this paper, the maximum PPF of the robot module is 0.582.

In the experiment of crossing the discontinuous surface, the robot completed the
crossing challenge of 150 mm (about 1.37 times the length of the module), and the maximum
effective step distance reached 400 mm (about 3.6 times the length of the module). The
experimental results show that it is feasible for the ISB-MWCR to span a discontinuous
surface with large spacing. In the experiment, we also found that due to the characteristics
of the internal soft bone materials, uncertain tilt sometimes occurs during movement. As
shown in Figure 19, the top of the robot tilts in the process from e to g, which is caused by
environmental interference. The flexibility of the internal soft bone makes it easy to deviate
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from the original motion direction due to external interference. In addition, the main factor
affecting the maximum effective step distance of the robot is a material property of the
internal soft bone, namely, its rigidity (the ability to maintain its original upright state).
Another factor is the ability of the control system to adjust the posture of the internal soft
bone. To this end, we can use a simple PID to adjust the attitude. To control the robot more
accurately, more complex control algorithms can also be introduced, such as a boundary
controller and a disturbance observer [27,28], which can reduce the uncertainty of flexible
materials being affected by environmental disturbances, enhance the anti-interference
adjustment ability of the robot during movement, and allow a greater breakthrough in the
ability of the robot to span very large distances.

The purpose of this paper is to highlight the advantages of the structural design
and motion mode of the robot in handling variable loads and deploying variable step
distances. The robot utilizes suction cup adsorption and modular crawling motion. Due to
the disadvantages of suction cup adsorption and crawling movement, the load of the robot
is less than that of wall-climbing robots relying on grasping and magnetic adsorption. In
terms of moving speed, it is far slower than wall-climbing robots using wheeled and tracked
motion. However, the combination of these two adsorption and mobility modes provides
significant advantages. The existing wall climbing robot can improve the load capacity
by increasing the driving device or driving capacity, which usually greatly increases the
complexity of the robot structure. By adding modules, ISB-MWCR slightly increases the
complexity of the robot structure, but greatly improves the load capacity of the robot.
Furthermore, the robot has the characteristic of variable step distance and can span a large
distance on a discontinuous wall, which is difficult for other types of wall-climbing robots.
Experiments demonstrated the load capacity of the robot and its ability to span a large
distance.

5. Conclusions

In this study, a new bionic crawling modular wall-climbing robot based on internal soft
bone was designed. The robot has variable load and variable step distance capability. The
load capacity of this robot increases with the number of modules in series. The maximum
load that N modules can carry is about 1.3 times the self-weight to allow movement. On
the premise of stable movement, (1) the mobile walking distance of the robot can reach
3.6 times the length of the module; (2) it can span a discontinuous wall with 150 mm
spacing; and (3) the effective variable step distance is 0 mm to 400 mm. In addition, we
also proposed a performance index for the load performance of the ISB-MWCR’s modules,
which is called the payload power factor. In the future, we will improve the adsorption
created by the robot and implement an integrated design. The working environment of the
robot will be modeled with a camera to plan the motion trajectory for the robot. Moreover,
a trajectory-tracking controller [29] will be used to keep the robot system stable. Finally,
to address the uncertain dynamics of the robot in the motion process, an adaptive fuzzy
control scheme [30] will be adopted to track the desired trajectory.
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