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In this paper, we analyze the global asymptotic behaviors of a mathematical susceptible-
infected(SI) age-infection-structured human immunodeficiency virus(HIV) model with
heterogeneous transmission. Mathematical analysis shows that the local and global dy-
namics are completely determined by the basic reproductive number R 0. If R 0 < 1,
disease-free equilibrium is globally asymptotically stable. If R 0 >1, it shows that disease-
free equilibrium is unstable and the unique endemic equilibrium is globally asymptotically
stable. The proofs of global stability utilize Lyapunov functions. Besides, the numerical
simulations are illustrated to support these theoretical results and sensitivity analysis of
each parameter for R 0 is performed by the method of partial rank correlation
coefficient(PRCC).

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acquired Immunodeficiency Syndrome (AIDS) is a malignant infectious disease caused by HIV with high mortality rate.
AIDS has become a serious public health problem worldwide and sexual transmission is the main transmission mode. 39
million people in the world were living with HIV in 2022, this seriously affect healthy development of society, with stronger
challenges to health care issues (World health organization). Therefore, it is necessary to further study AIDS transmission
from mathematical theory to provide theoretical guidance for medical and health decision-making. Epidemiological and
behavioral factors are crucial to the dynamics of HIV model. In recent years, many scholars have been keen to use mathe-
matical methods to establish and analyze HIV models. The truth is many of the issues have been extensively studied based on
classical texts and documentation. Nowak andMay (Nowak&May 2000), Perelson and Nelson (Perelson&Nelson,1999) gave
a basic model of infection that included a variety of mathematical expressions (Wang et al., 2015).

In (Frioui et al., 2020), the aimwas to investigate a general infection model of age, in which infectivity was age-dependent
from the time of infection, and where some quarantined individuals could be returned to the infectious class after some time.
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The HIV model taking into account the dependence of HIV/AIDS progression on infection age and chronological age was
developed. The results of numerical simulations were used to demonstrate the impact of an impulsive treatment strategy on
HIV/AIDS dynamics in (Liu et al., 2008). In (Huang et al., 2012), it investigated the basic population age structure model of HIV
infection process and determined the dynamic properties without (or with) medical treatment by using the direct Lyapunov
method and the corresponding Lyapunov functions. Using integrated semigroup and Lyapunov functions was used to show
that the unique endemic equilibrium was globally stable in (Magal et al., 2010). In (Wu & Zhao, 2020), a multidimensional
model was developed to study HIV prevalence in various high-risk groups, including men who have sex with men, foreign
residents, female sex workers and injecting drug users. In (Thomas et al., 2015), an alternative method that deconstructed the
larger system into smaller subsystems and captured the interactions between the smaller systems as external forces using an
approximate model was presented. In (Chen et al., 2018), a generalized model of SIS-type diseases including age-dependent
infections; birth and death in a heterogeneous network was to analyze the transmission mechanism and dynamic behaviour
of infectious diseases in a realistic way. The proposal of a new age and spatially structured model which includes both ages of
infection, spatial transmission and highly active treatment aimed to analyze the global dynamics of HIV/AIDS and study the
prevalence of transmission among men who have sex with men as a group in (Wu & Zhao, 2021). In (Chekroun & Kuniya,
2020), the global asymptotic behavior of the SIR epidemic model with age-structured infection and diffusion in a general
n-dimensional restricted spatial domain with a homogeneous Dirichlet boundary condition was concerned. The basic
reproduction number was derived in an epidemic model in which infected individuals were initially asymptomatic and
structured according to time since infection in (Barril et al., 2021).

In (Sun, 2010), using ordinary differential equation systems was to study multi-group SIR models with nonlinear inci-
dence. But many diseases show differential infectivity concerning the age of infection as the disease progresses. Differential
infectivity was important for studying different infectious pathologies during disease transmission (Chen et al., 2018).
Analyzing linear systems at equilibria and checking the eigenvalues of characteristic equations, local stability of age structure
models usually part of formulated as first-order partial differential equations could be demonstrated. However, the analysis of
global stability becomes a complicated mathematical problem due to the complexity of the models. To obtain global stability,
a common approach has been to construct a Lyapunov function (Wang et al., 2015).

Age structure models are usually a system of partial differential equations and their mathematical analysis is particularly
complex. Although the dynamical analysis is hard, by constructing Lyapunov functions (Kuniya et al., 2016; Magal et al., 2010;
Shen & Xiao, 2016; Zhang & Xu, 2016), global stability was investigated for several types of age structure models (Zhang &
Guo, 2018). In (Shen & Xiao, 2016), the epidemiological system of SVEIR in different groups according to age at vaccina-
tion and age at infection was investigated using a graph-theoretic approach with Lyapunov functional.

To our knowledge, some researchers such as Martcheva (Martcheva, 1999; Martcheva & Milner, 1999; Wang et al., 2020)
and Inaba (Inaba, 1993, 2000) had studied some properties of models with age-structured two-sex populations. Some re-
searchers studied global dynamics of infection-age-structured HIV model (Shen et al., 2015, 2019; Wang et al., 2016). Some
researchers had studied HIV transmission by building models of infectious disease compartments, most of the work focused
on the traditional trend of HIV prevalence in high-risk populations. However, there were few conclusions corresponding to
global characteristics of HIV model with age-infection-structured describing complex processes of interconnected infection
ages with heterogeneous transmission. In this paper, a goal is to illustrate the disease dynamics relying on an age-dependent
factor. Furthermore, the dynamic behaviour entirely depends on the basic reproduction number.

This paper is structured as follows. In Section 2, the age-infection-structured HIV model with heterogeneous transmission
is introduced. In Section 3, we analyze the existence of equilibria and obtain the basic reproductive number. In Section 4, local
stabilities of disease-free equilibrium and endemic equilibrium are showed. In Section 5, we present the global stabilities of
disease-free equilibrium and endemic equilibrium using Lyapunov functions, respectively. In Section 6, numerical simulations
and sensitivity analysis are showed. In Section 7, a summary is stated to conclude this work.

2. Model formulation

In HIV model, considering the different impacts for each gender, the total population can be divided into four compart-
ments: susceptible female, infectious female, susceptible male and infectious male. Let Sf (t), If (t), Sm(t) and Im(t) denote the
total numbers of susceptible female, infectious female, susceptible male and infectiousmale population at time t, respectively.
And let N(t) denote the total numbers of all compartments.

Because the infection rate of infected people varies with the time of infection (Martcheva, 2015), the infectious
compartment is further classified according to the age of infection. Let a denote time-since-infection of female individuals,
and t denote time-since-infection of male individuals. Let if (0, t) and im(0, t) respectively denote the numbers of female and
male population who become infected at time t. And if (a, t) and im(t, t) respectively denote the density of female population
with infection-age a and male populationwith infection-age t at time t. The total infected female population in the infectious
compartment is

If ðtÞ ¼
Z ∞

0
if ða; tÞda;
and the whole infected male population is
438
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ImðtÞ ¼
Z ∞

0
imðt; tÞdt:
Assuming the lifespan of all the individuals is exponentially distributed (Martcheva, 2015), so each individual leaves the
system due to a constant m as natural death rate. Moreover, individuals can leave infected population with the disease-death
rate a and the transition rate g from infection class to AIDS class. Thus, equation for the number of individuals leaving in-
fectious female compartment in time Dt is

if ðaþDt; tþDtÞDa� if ða; tÞDa ¼ �ðmþaþgÞDtif ða; tÞDa: (2.1)
If the partial derivatives of if exists and continuous, we can divide both sides of equation (2.1) by DaDt and take the limit as
Dt / 0. Then we could obtain equation for infectious female individuals

vif
va

ða; tÞ þ vif
vt

ða; tÞ ¼ �ðmþaþgÞif ða; tÞ;

defined on domain {(a, t): a � 0, t � 0}.
Similarly, equation for infectious male individuals is

vim
vt

ðt; tÞ þ vim
vt

ðt; tÞ ¼ �ðmþaþgÞimðt; tÞ;

defined on domain {(t, t): t � 0, t � 0}.
Next, to derive equations for newly infected population, we let bf (a) denote the incidence of infection susceptible men

infected by women of infection-age a and bm(t) denote incidence of infection susceptible women infected by men of
infection-age t. Thus, all newly infected female individuals are

if ð0; tÞ ¼ Sf ðtÞ
Z ∞

0
bmðtÞimðt; tÞdt;
and all newly infected male individuals are

imð0; tÞ ¼ SmðtÞ
Z ∞

0
bf ðaÞif ða; tÞda:
Assuming recruitment rate Lf into female population and recruitment rate Lm into male population is to derive formulas
giving the transmission process of susceptible population. So equations of susceptible female and male individuals become

_Sf ðtÞ ¼ Lf � Sf ðtÞ
Z ∞

0
bmðtÞimðt; tÞdt� mSf ðtÞ;

_
Z ∞
SmðtÞ ¼ Lm � SmðtÞ
0

bf ðaÞif ða; tÞda� mSmðtÞ;
respectively. The flow chart is displayed in Fig. 1.
Equations for the susceptible female, infectious female, susceptible male and infectious male population define a system,

which we shall consider
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Fig. 1. Flow chart of age-infection-structured HIV model.
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_Sf ðtÞ ¼ Lf � Sf ðtÞ
Z ∞

0
bmðtÞimðt; tÞdt� mSf ðtÞ;

vif
va

ða; tÞ þ vif
vt

ða; tÞ ¼ �ðmþ aþ gÞif ða; tÞ;

_SmðtÞ ¼ Lm � SmðtÞ
Z ∞

0
bf ðaÞif ða; tÞda� mSmðtÞ;

vim
vt

ðt; tÞ þ vim
vt

ðt; tÞ ¼ �ðmþ aþ gÞimðt; tÞ;

if ð0; tÞ ¼ Sf ðtÞ
Z ∞

0
bmðtÞimðt; tÞdt;

imð0; tÞ ¼ SmðtÞ
Z ∞

0
bf ðaÞif ða; tÞda;

(2.2)
with initial conditions

Sf ð0Þ ¼ Sf0;
if ða;0Þ ¼ if0ðaÞ;
Smð0Þ ¼ Sm0;

imðt;0Þ ¼ im0ðtÞ:
(2.3)
For convenience, we let d ¼ mþ aþ g, vif
vaþ

vif
vt ¼ ifa þ ift ,

vim
vt þ vim

vt ¼ imt þ imt and for each nonnegative and integrable initial
conditions (2.3), we could know that system (2.2) has a unique nonnegative solution by Theorem 2.2 in (Soufiane& Touaoula,
2016).

Lemma 2.1. The solutions of system (2.2) with the initial conditions (2.3) are bounded.

Proof Integrating with respects to a and t the partial differential equations in system (2.2), respectively. And assuming
lima/∞if (a, t) ¼ 0 and limt/∞im(t, t) ¼ 0, we can obtain

_If ðtÞ ¼ if ð0; tÞ � dIf ðtÞ ¼ Sf ðtÞ
Z ∞

0
bmðtÞimðt; tÞdt� dIf ðtÞ;

_ImðtÞ ¼ imð0; tÞ � dImðtÞ ¼ SmðtÞ
Z ∞

0
bf ðaÞif ða; tÞda� dImðtÞ:

(2.4)
Adding equation (2.4) to equations for _Sf ðtÞ and _SmðtÞ from system (2.2), we have

_NðtÞ ¼ _Sf ðtÞ þ _If ðtÞ þ _SmðtÞ þ _ImðtÞ � Lf þLm � mNðtÞ:
Thus, the numbers of total population N(t) satisfies
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NðtÞ � max
�
N0;

Lf þLm

m

�
;

where N0 ¼ Sf0 þ
R∞
0 if0ðaÞdaþ Sm0 þ

R∞
0 im0ðtÞdt.

A pivotal quantity associated with the survival of infectious female individuals is p(a) and that associated with the survival
of infectious male individuals is p(t). Then, if Îf female individuals become infected at a given time, after a time units, the
number still infectious is ÎfpðaÞ. The number changes for a short period of time Da after infection by those left the system

ÎfpðaþDaÞ � ÎfpðaÞ ¼ �dÎfpðaÞDa;
and p(a) satisfies

_pðaÞ ¼ �dpðaÞ;
whose solution with assuming that p(0) ¼ 1 is

pðaÞ ¼ e�da:
similarly, p(t) satisfies

pðtÞ ¼ e�dt:
3. Equilibria and basic reproduction number

We now look for time-independent solutions (Sf, if (a), Sm, im(t)) as equilibria of system (2.2). We have

Lf � Sf

Z ∞

0
bmðtÞimðtÞdt� mSf ¼ 0;

ifaðaÞ ¼ �dif ðaÞ;

Lm � Sm

Z ∞

0
bf ðaÞif ðaÞda� mSm ¼ 0;

imtðtÞ ¼ �dimðtÞ;
if ð0Þ ¼ Sf

Z ∞

0
bmðtÞimðtÞdt;

imð0Þ ¼ Sm

Z ∞

0
bf ðaÞif ðaÞda:

(3.1)
System (3.1) consists of two first-order ordinary differential equations with solutions dependent initial conditions and two
algebraic equations. It is clear that solution E 0 ¼ ðLf

m ;0;
Lm
m ;0Þ is a always existent disease-free equilibrium in which the age

distribution after infection is zero. Then, a nontrivial solution E * ¼ ðS*f ; i*f ðaÞ; S*m; i*mðtÞÞwill give an endemic equilibrium. We
first solve differential equations in system (3.1) whose solutions are

i*f ðaÞ ¼ i*f ð0ÞpðaÞ; i*mðtÞ ¼ i*mð0ÞpðtÞ:

* * * *
These are not explicit solutions, since if ð0Þ depends on if ðaÞ and imð0Þ depends on imðtÞ.
And the female and male total infectious population are

I*f ¼ i*f ð0Þ
Z ∞

0
pðaÞda; I*m ¼ i*mð0Þ

Z ∞

0
pðtÞdt;

respectively.
Then we let i*f ð0Þ ¼ i*mð0Þ and we can get equations of endemic equilibrium for susceptible population

S*f ¼
1Z ∞

0
bmðtÞpðtÞdt

; S*m ¼ 1Z ∞

0
bf ðaÞpðaÞda

:

We use the first and third equations in system (3.1), which become
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Lf � i*f ð0Þ � mS*f ¼ 0; Lm � i*mð0Þ � mS*m ¼ 0:
Next, we can obtain

i*f ð0Þ ¼ Lf

 
1� 1

R 0f

!
; i*mð0Þ ¼ Lm

�
1� 1

R 0m

�
:

In addition, we have

i*f ð0Þ ¼
Lm � mS*m

S*m

Z ∞

0
bf ðaÞpðaÞda

¼
Lm

�
1� 1

R 0m

�

S*m

Z ∞

0
bf ðaÞpðaÞda

;

 !

i*mð0Þ ¼

Lf � mS*f

S*f

Z ∞

0
bmðtÞpðtÞdt

¼
Lf 1� 1

R 0f

S*f

Z ∞

0
bmðtÞpðtÞdt

;

where

R 0f ¼
Lf

mS*f
¼ Lf

m

Z ∞

0
bmðtÞpðtÞdt;

Lm Lm
Z ∞
R 0m ¼
mS*m

¼
m 0

bf ðaÞpðaÞda:
Thus, we define R 0 as

R 0 ¼ max
�
R 0f ;R 0m

�
¼ max

�
Lf

m

Z ∞

0
bmðtÞpðtÞdt;

Lm

m

Z ∞

0
bf ðaÞpðaÞda

�
:

We can claim that the disease dies out if R 0 <1 and the unique endemic equilibrium exists when R 0 >1 in system (2.2).

4. Local stabilities of equilibria

Linearizing system (2.2) is to analyze the local stabilities of equilibria. We let Sf (t) ¼ Sf þ xf (t), if (a, t) ¼ if (a) þ yf (a, t),
Sm(t) ¼ Sm þ xm(t) and im(t, t) ¼ im(t) þ ym(t, t), where xf (t), yf (a, t), xm(t) and ym(t, t) are the perturbations, and (Sf, if (a), Sm,
im(t)) denotes a generic equilibrium. Then we can obtain

ðSf þ xf ðtÞÞ0 ¼ Lf � ðSf þ xf ðtÞÞ
Z ∞

0
bmðtÞðimðtÞ þ ymðt; tÞÞdt� mðSf þ xf ðtÞÞ;

ðif ðaÞ þ yf ða; tÞÞa þ ðif ðaÞ þ yf ða; tÞÞt ¼ �dðif ðaÞ þ yf ða; tÞÞ;

ðSm þ xmðtÞÞ0 ¼ Lm � ðSm þ xmðtÞÞ
Z ∞

0
bf ðaÞðif ðaÞ þ yf ða; tÞÞda� mðSm þ xmðtÞÞ;

ðimðtÞ þ ymðt; tÞÞt þ ðimðtÞ þ ymðt; tÞÞt ¼ �dðimðtÞ þ ymðt; tÞÞ;
if ð0Þ þ yf ð0; tÞ ¼ ðSf þ xf ðtÞÞ

Z ∞

0
bmðtÞðimðtÞ þ ymðt; tÞÞdt;

imð0Þ þ ymð0; tÞ ¼ ðSm þ xmðtÞÞ
Z ∞

0
bf ðaÞðif ðaÞ þ yf ða; tÞÞda:

(4.1)
Using these formulas, we get
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x0f ðtÞ ¼ Lf � Sf

Z ∞

0
bmðtÞimðtÞdt� Sf

Z ∞

0
bmðtÞymðt; tÞdt� xf ðtÞ

Z ∞

0
bmðtÞimðtÞdt

�xf ðtÞ
Z ∞

0
bmðtÞymðt; tÞdt� mSf � mxf ðtÞ;

ifaðaÞ þ yfaða; tÞ þ yftða; tÞ ¼ �dif ðaÞ � dyf ða; tÞ;

x0mðtÞ ¼ Lm � Sm

Z ∞

0
bf ðaÞif ðaÞda� Sm

Z ∞

0
bf ðaÞyf ða; tÞda� xmðtÞ

Z ∞

0
bf ðaÞif ðaÞda

�xmðtÞ
Z ∞

0
bf ðaÞyf ða; tÞda� mSm � mxmðtÞ;

imtðtÞ þ ymtðt; tÞ þ ymtðt; tÞ ¼ �dimðtÞ � dymðt; tÞ;
if ð0Þ þ yf ð0; tÞ ¼ Sf

Z ∞

0
bmðtÞimðtÞdtþ Sf

Z ∞

0
bmðtÞymðt; tÞdt

þxf ðtÞ
Z ∞

0
bmðtÞimðtÞdtþ xf ðtÞ

Z ∞

0
bmðtÞymðt; tÞdt;

imð0Þ þ ymð0; tÞ ¼ Sm

Z ∞

0
bf ðaÞif ðaÞdaþ Sm

Z ∞

0
bf ðaÞyf ða; tÞda

þxmðtÞ
Z ∞

0
bf ðaÞif ðaÞdaþ xmðtÞ

Z ∞

0
bf ðaÞyf ða; tÞda:

(4.2)
Using two techniques is to further simplify system (4.2). First, this approach simplifies equations for equilibria in system
(3.1) to

x0f ðtÞ ¼ �Sf

Z ∞

0
bmðtÞymðt; tÞdt� xf ðtÞ

Z ∞

0
bmðtÞimðtÞdt

�xf ðtÞ
Z ∞

0
bmðtÞymðt; tÞdt � mxf ðtÞ;

yfaða; tÞ þ yftða; tÞ ¼ �dyf ða; tÞ;

x0mðtÞ ¼ �Sm

Z ∞

0
bf ðaÞyf ða; tÞda� xmðtÞ

Z ∞

0
bf ðaÞif ðaÞda

�xmðtÞ
Z ∞

0
bf ðaÞyf ða; tÞda� mxmðtÞ;

ymtðt; tÞ þ ymtðt; tÞ ¼ �dymðt; tÞ;
yf ð0; tÞ ¼ Sf

Z ∞

0
bmðtÞymðt; tÞdtþ xf ðtÞ

Z ∞

0
bmðtÞimðtÞdt

þxf ðtÞ
Z ∞

0
bmðtÞymðt; tÞdt;

ymð0; tÞ ¼ Sm

Z ∞

0
bf ðaÞyf ða; tÞdaþ xmðtÞ

Z ∞

0
bf ðaÞif ðaÞda

þxmðtÞ
Z ∞

0
bf ðaÞyf ða; tÞda:

(4.3)
Note that after this transformation, nonlinear system (4.3) contains only perturbation terms. Assuming that the pertur-
bations are small, another technique for simplifying system (4.3) is to neglect much smaller quadratic terms. The linear
system in terms of perturbations is
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x0f ðtÞ ¼ �Sf

Z ∞

0
bmðtÞymðt; tÞdt� xf ðtÞ

Z ∞

0
bmðtÞimðtÞdt� mxf ðtÞ;

yfaða; tÞ þ yftða; tÞ ¼ �dyf ða; tÞ;

x0mðtÞ ¼ �Sm

Z ∞

0
bf ðaÞyf ða; tÞda� xmðtÞ

Z ∞

0
bf ðaÞif ðaÞda� mxmðtÞ;

ymtðt; tÞ þ ymtðt; tÞ ¼ �dymðt; tÞ;
yf ð0; tÞ ¼ Sf

Z ∞

0
bmðtÞymðt; tÞdtþ xf ðtÞ

Z ∞

0
bmðtÞimðtÞdt;

ymð0; tÞ ¼ Sm

Z ∞

0
bf ðaÞyf ða; tÞdaþ xmðtÞ

Z ∞

0
bf ðaÞif ðaÞda:

(4.4)
Linear system (4.4) for xf (t), yf (a, t), xm(t) and ym(t, t) has exponential solutions like linear ordinary differential equations.
Thus, it is possible to look for solutions xf ðtÞ ¼ x

̄
f e

lt , yf ða; tÞ ¼ y
̄
f ðaÞelt , xmðtÞ ¼ x

̄
melt and ymðt; tÞ ¼ y

̄
mðtÞelt , where x

̄
f ,

y
̄
f ðaÞ, x

̄
m, y

̄
mðtÞ and l have to be determined that x

̄
f , y

̄
f ðaÞ, x

̄
m and y

̄
mðtÞ are not all zero. System for x

̄
f , y

̄
f ðaÞ, x

̄
m, y

̄
mðtÞ

and l (the bars have been omitted) is

lxf ¼ �Sf

Z ∞

0
bmðtÞymðtÞdt� xf

Z ∞

0
bmðtÞimðtÞdt� mxf ;

yfaðaÞ þ lyf ðaÞ ¼ �dyf ðaÞ;

lxm ¼ �Sm

Z ∞

0
bf ðaÞyf ðaÞda� xm

Z ∞

0
bf ðaÞif ðaÞda� mxm;

ymtðtÞ þ lymðtÞ ¼ �dymðtÞ;
yf ð0Þ ¼ Sf

Z ∞

0
bmðtÞymðtÞdtþ xf

Z ∞

0
bmðtÞimðtÞdt;

ymð0Þ ¼ Sm

Z ∞

0
bf ðaÞyf ðaÞdaþ xm

Z ∞

0
bf ðaÞif ðaÞda:

(4.5)
To obtain an equation for l, we will eliminate xf, yf (a), xm and ym(t) by considering disease-free equilibrium and endemic
equilibrium.

4.1. Local stability of disease-free equilibrium

Theorem 4.1. If R 0 <1, disease-free equilibrium E 0 is locally asymptotically stable. If R 0 >1, disease-free equilibrium E 0 is
unstable.

Proof System (4.5) simplifies to the following system in disease-free equilibrium E 0

lxf ¼ �S0f

Z ∞

0
bmðtÞymðtÞdt� mxf ;

yfaðaÞ þ lyf ðaÞ ¼ �dyf ðaÞ;

lxm ¼ �S0m

Z ∞

0
bf ðaÞyf ðaÞda� mxm;

ymtðtÞ þ lymðtÞ ¼ �dymðtÞ;
yf ð0Þ ¼ S0f

Z ∞

0
bmðtÞymðtÞdt;

ymð0Þ ¼ S0m

Z ∞

0
bf ðaÞyf ðaÞda:

(4.6)
It is easy to see that the equations for yf (a) and ym(t) are independent of xf and xm, respectively. Solving the differential
equations in system (4.6), we have

yf ðaÞ ¼ yf ð0Þe�lapðaÞ; ymðtÞ ¼ ymð0Þe�ltpðtÞ: (4.7)
Substituting solutions (4.7) into boundary conditions of system (4.6), we obtain
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yf ð0Þ ¼ S0f

Z ∞

0
bmðtÞymð0Þe�ltpðtÞdt; (4.8)

0
Z ∞

�la
ymð0Þ ¼ Sm
0

bf ðaÞyf ð0Þe pðaÞda: (4.9)
By (4.7) and yf (a, t)¼ yf (a)elt, we could know that yf (0)s 0. Similarly, ym(0)s 0. Multiplying by equations (4.8) and (4.9),
then canceling yf (0)ym(0), we get characteristic equation

S0f S
0
m

Z ∞

0
bmðtÞe�ltpðtÞdt

Z ∞

0
bf ðaÞe�lapðaÞda ¼ 1: (4.10)
Equation (4.10) is a transcendental formula that can have many solutions. To prove that all solutions l of equation (4.10)
have negative real parts, the stability of disease-free equilibrium can be showed. Next, we define

G ðlÞ ¼ S0f S
0
m

Z ∞

0
bmðtÞe�ltpðtÞdt

Z ∞

0
bf ðaÞe�lapðaÞda:
If R 0 <1, then for all l ¼ c þ bi with c � 0, we have

jG ðlÞj � S0f S
0
m

Z ∞

0
bmðtÞje�ltjpðtÞdt

Z ∞

0
bf ðaÞje�lajpðaÞda

0 0
Z ∞

�ct
Z ∞

�ca
� Sf Sm
0

bmðtÞe pðtÞdt
0

bf ðaÞe pðaÞda � R 0 <1:
We conclude that when l is a non-negative real part, it fails to satisfy G ðlÞ ¼ 1. So disease-free equilibrium is locally
asymptotically stable with R 0 <1. If, alternatively, R 0 >1, endemic equilibrium E * exists, system (2.2) could go to E *.
Consequently, disease-free equilibrium is unstable in this case.

4.2. Local stability of endemic equilibrium

Now we turn to consider system (4.5) with endemic equilibrium to obtain its stability.

Theorem 4.2. If R 0 >1, endemic equilibrium E * is locally asymptotically stable.

Proof From system (4.5) and equation (4.7), we obtain

lxf ¼ �S*f ymð0Þ
Z ∞

0
bmðtÞe�ltpðtÞdt� xf

Z ∞

0
bmðtÞi*mðtÞdt� mxf ;

lxm ¼ �S*myf ð0Þ
Z ∞

0
bf ðaÞe�lapðaÞda� xm

Z ∞

0
bf ðaÞi*f ðaÞda� mxm;

yf ð0Þ ¼ S*f ymð0Þ
Z ∞

0
bmðtÞe�ltpðtÞdtþ xf

Z ∞

0
bmðtÞi*mðtÞdt;

ymð0Þ ¼ S*myf ð0Þ
Z ∞

0
bf ðaÞe�lapðaÞdaþ xm

Z ∞

0
bf ðaÞi*f ðaÞda:

(4.11)
We notice that
R∞
0 bmðtÞi*mðtÞdt and

R∞
0 bf ðaÞi*f ðaÞda are positive numbers and we denote

Bf ¼
Z ∞

0
bmðtÞi*mðtÞdt; Bm ¼

Z ∞

0
bf ðaÞi*f ðaÞda:
Requiring that the determinant be zero to solve system (4.11) to find a nontrivial solution
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�����������������

lþ mþ Bf 0 0 S*f

Z ∞

0
bmðtÞe�ltpðtÞdt

�Bf 1 0 �S*f

Z ∞

0
bmðtÞe�ltpðtÞdt

0 S*m

Z ∞

0
bf ðaÞe�lapðaÞda lþ mþ Bm 0

0 �S*m

Z ∞

0
bf ðaÞe�lapðaÞda �Bm 1

�����������������

¼ 0:
Then we obtain���������������

lþ m 1 0 0

�Bf 1 0 �S*f

Z ∞

0
bmðtÞe�ltpðtÞdt

0 0 lþ m 1

0 �S*m

Z ∞

0
bf ðaÞe�lapðaÞda �Bm 1

���������������
¼ 0:
Expanding the determinant, we have

ðlþ mÞ2
�
1� S*f S

*
m

Z ∞

0
bmðtÞe�ltpðtÞdt

Z ∞

0
bf ðaÞe�lapðaÞda

�
þ ðlþmÞðBf þBmÞ þ Bf Bm ¼ 0:
We shall know that the characteristic equation of endemic equilibrium is

1þ Bf þ Bm
lþ m

þ Bf Bm

ðlþ mÞ2
¼ S*f S

*
m

Z ∞

0
bmðtÞe�ltpðtÞdt

Z ∞

0
bf ðaÞe�lapðaÞda: (4.12)
We now show that equation (4.12) cannot have solutions l with positive real part. Let l ¼ c1 þ b1i with c1 � 0, we get�����1þ Bf þ Bm
lþ m

þ Bf Bm

ðlþ mÞ2
�����>1:
On the other hand, for c1 � 0 we have����S*f S*m
Z ∞

0
bmðtÞe�ltpðtÞdt

Z ∞

0
bf ðaÞe�lapðaÞda

����
� S*f S

*
m

Z ∞

0
bmðtÞej�ltjpðtÞdt

Z ∞

0
bf ðaÞej�lajpðaÞda

� S*f S
*
m

Z ∞

0
bmðtÞpðtÞdt

Z ∞

0
bf ðaÞpðaÞda ¼ 1:
It indicates that the left-hand side is still strictly greater than 1, while the right-hand side is less than 1 for non-negative
real part l. Therefore, such l does not satisfy the characteristic equation (4.12). We come to this conclusion: endemic equi-
librium is locally asymptotically stable.

5. Global stabilities of equilibria

In this section, we use Lyapunov functions to demonstrate global stabilities of equilibria. First, solving the second equation
along the characteristic curve t � a ¼ constant in system (2.2), we can get

if ða; tÞ ¼
�
if0ða� tÞe�dt ; a � t;

if ð0; t � aÞe�da; a< t:
(5.1)
Similarly, we can get
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imðt; tÞ ¼
�
im0ðt� tÞe�dt ; t � t;
imð0; t � tÞe�dt; t< t:

(5.2)
Then we know the function h(z) ¼ z � 1 � lnz, z 2 Rþ has the global minimum at z ¼ 1 and h(1) ¼ 0.

5.1. Global stability of disease-free equilibrium

Theorem 5.1. If R 0 <1, disease-free equilibrium E 0 is globally asymptotically stable.

Proof First, we define positive functions as

xf ðaÞ ¼
Z ∞

a
S0mbf ðqÞe

�
Z q

a
dds

dq; xmðtÞ ¼
Z ∞

t
S0f bmðlÞe

�
Z l

t
dds

dl:
And we can know that

xf ð0Þ ¼
Z ∞

0
S0mbf ðqÞe

�
Z q

0
dds

dq ¼ R 0m;

Z l
xmð0Þ ¼
Z ∞

0
S0f bmðlÞe

�
0
dds

dl ¼ R 0f :
The derivatives of xf (a) and xm(t) satisfy

_xf ðaÞ ¼ �S0mbf ðaÞ; _xmðtÞ ¼ �S0f bmðtÞ:
Then we define a function V(t)

VðtÞ ¼ VfsðtÞ þ VfiðtÞ þ VmsðtÞ þ VmiðtÞ;
let

VfsðtÞ ¼ Sf ðtÞ � S0f � S0f ln
Sf ðtÞ
S0f

; VfiðtÞ ¼
Z ∞

0
xf ðaÞif ða; tÞda;

VmsðtÞ ¼ SmðtÞ � S0m � S0mln
SmðtÞ
S0m

and VmiðtÞ ¼
Z ∞

0
xmðtÞimðt; tÞdt:
We could know that function V(t) is nonnegatively defined for disease-free equilibrium E 0, which has a global minimum.
By (5.1), we have

VfiðtÞ ¼
Z t

0
xf ðt� rÞif ð0; rÞe�dðt�rÞdr þ

Z ∞

0
xf ðtþ rÞif0ðrÞe�dtdr:
And by (5.2), we obtain

VmiðtÞ ¼
Z t

0
xmðt� rÞimð0; rÞe�dðt�rÞdr þ

Z ∞

0
xmðtþ rÞim0ðrÞe�dtdr:
Calculating the time derivatives of Vfs(t), Vfi(t), Vms(t) and Vmi(t) along with system (2.2), respectively. We have
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_VfsðtÞ ¼ �mðSf ðtÞ � S0f Þ
2

Sf ðtÞ
� if ð0; tÞ þ S0f

Z ∞

0
bmðtÞimðt; tÞdt;

_VfiðtÞ ¼ R 0mif ð0; tÞ � S0m

Z ∞

0
bf ðaÞif ða; tÞda;

_VmsðtÞ ¼ �mðSmðtÞ � S0mÞ
2

SmðtÞ � imð0; tÞ þ S0m

Z ∞

0
bf ðaÞif ða; tÞda;

and

_VmiðtÞ ¼ R 0f imð0; tÞ � S0f

Z ∞

0
bmðtÞimðt; tÞdt:
Thus, the time derivative of V(t) is

_VðtÞ ¼ �mðSf ðtÞ � S0f Þ
2

Sf ðtÞ
þ ðR 0m �1Þif ð0; tÞ �

mðSmðtÞ � S0mÞ
2

SmðtÞ þ ðR 0f �1Þimð0; tÞ:

R 0 <1 ensures that R 0f <1 and R 0m <1 hold. Then _VðtÞ � 0 for all Sf (t), if (0, t), Sm(t) and im(0, t) � 0 with _VðtÞ ¼ 0 only at
Sf ðtÞ ¼ S0f , SmðtÞ ¼ S0m and if (0, t) ¼ im(0, t) ¼ 0. Hence, it follows from the LaSalle invariance principle (Salle, 1976) that
disease-free equilibrium E 0 is globally asymptotically stable.

5.2. Global stability of endemic equilibrium

Theorem 5.2. If R 0 >1, endemic equilibrium E * is globally asymptotically stable.

Proof First, we define positive functions as

4f ðaÞ ¼
Z ∞

a
S*mbf ðqÞe

�
Z q

a
dds

dq; 4mðtÞ ¼
Z ∞

t
S*f bmðlÞe

�
Z l

t
dds

dl:
And we can know that

4f ð0Þ ¼
Z ∞

0
S*mbf ðqÞe

�
Z q

0
dds

dq ¼ 1;

Z l
4mð0Þ ¼
Z ∞

0
S*f bmðlÞe

�
0
dds

dl ¼ 1:
The derivatives of 4f (a) and 4m(t) satisfy

_4f ðaÞ ¼ �S*mbf ðaÞ; _4mðtÞ ¼ �S*f bmðtÞ:
Then we define a function L(t) as L(t) ¼ Lfs(t) þ Lfi(t) þ Lms(t) þ Lmi(t),
let
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LfsðtÞ ¼ Sf ðtÞ � S*f � S*f ln
Sf ðtÞ
S*f

;

LfiðtÞ ¼
Z ∞

0
4f ðaÞ

 
if ða; tÞ � i*f ðaÞ � i*f ðaÞln

if ða; tÞ
i*f ðaÞ

!
da;

LmsðtÞ ¼ SmðtÞ � S*m � S*mln
SmðtÞ
S*m

;

and

LmiðtÞ ¼
Z ∞

0
4mðtÞ

�
imðt; tÞ � i*mðtÞ � i*mðtÞln

imðt; tÞ
i*mðtÞ

�
dt:

*
We could know that function L(t) is nonnegatively defined for endemic equilibrium E , which has a global minimum. By
(5.1), we obtain

LfiðtÞ ¼
Z t

0
4f ðt � rÞ

 
if ð0; rÞe�dðt�rÞ � i*f ðt � rÞ � i*f ðt � rÞln if ð0; rÞe�dðt�rÞ

i*f ðt � rÞ

!
dr

þ
Z ∞

0
4f ðt þ rÞ

 
if0ðrÞe�dt � i*f ðt þ rÞ � i*f ðt þ rÞln if0ðrÞe�dt

i*f ðt þ rÞ

!
dr:

And by (5.2), we get
LmiðtÞ ¼
Z t

0
4mðt � rÞ

 
imð0; rÞe�dðt�rÞ � i*mðt � rÞ � i*mðt � rÞln imð0; rÞe�dðt�rÞ

i*mðt � rÞ

!
dr

þ
Z ∞

0
4mðt þ rÞ

�
im0ðrÞe�dt � i*mðt þ rÞ � i*mðt þ rÞln im0ðrÞe�dt

i*mðt þ rÞ

�
dr:
Calculating the time derivatives of Lfs(t), Lfi(t), Lms(t) and Lmi(t) along with system (2.2), respectively. We have

_LfsðtÞ¼ �mðSf ðtÞ � S*f Þ
2

Sf ðtÞ
� S*f
Sf ðtÞ

i*f ð0Þþ
S*f

Sf ðtÞ
if ð0; tÞþ i*f ð0Þ� if ð0; tÞ;

_LfiðtÞ¼ if ð0; tÞ� i*f ð0Þ� i*f ð0Þln
if ð0; tÞ
i*f ð0Þ

�
Z ∞

0
S*mbf ðaÞ

 
if ða; tÞ� i*f ðaÞ� i*f ðaÞln

if ða; tÞ
i*f ðaÞ

!
da;

_LmsðtÞ¼ �mðSmðtÞ � S*mÞ
2

SmðtÞ � S*m
SmðtÞi

*
mð0Þþ

S*m
SmðtÞimð0; tÞþ i*mð0Þ� imð0; tÞ;

and

_LmiðtÞ¼ imð0; tÞ� i*mð0Þ� i*mð0Þln
imð0; tÞ
i*mð0Þ

�
Z ∞

0
S*f bmðtÞ

�
imðt; tÞ� i*mðtÞ� i*mðtÞln

imðt; tÞ
i*mðtÞ

�
dt:
Thus, the time derivative of L(t) is

_LðtÞ ¼ �mðSf ðtÞ � S*f Þ
2

Sf ðtÞ
þ
Z ∞

0
S*f bmðtÞi*mðtÞ

 
1þ ln

imðt; tÞ
i*mðtÞ

� S*f
Sf ðtÞ

� ln
if ð0; tÞ
i*f ð0Þ

!
dt

�mðSmðtÞ � S*mÞ
2

SmðtÞ þ
Z ∞

0
S*mbf ðaÞi*f ðaÞ

 
1þ ln

if ða; tÞ
i*f ðaÞ

� S*m
SmðtÞ � ln

imð0; tÞ
i*mð0Þ

!
da:
By

Z ∞

0
S*f bmðtÞi*mðtÞ

 
1� Sf ðtÞimðt; tÞi*f ð0Þ

S*f i
*
mðtÞif ð0; tÞ

!
dt ¼ 0;
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Z ∞

0
S*mbf ðaÞi*f ðaÞ

 
1� SmðtÞif ða; tÞi*mð0Þ

S*mi
*
f ðaÞimð0; tÞ

!
da ¼ 0;
we have

_LðtÞ¼ �mðSf ðtÞ � S*f Þ
2

Sf ðtÞ
�mðSmðtÞ � S*mÞ

2

SmðtÞ

þ
Z ∞

0
S*f bmðtÞi*mðtÞ

 
1þ ln

S*f
Sf ðtÞ

� S*f
Sf ðtÞ

þ1þ ln
Sf ðtÞimðt; tÞi*f ð0Þ
S*f i

*
mðtÞif ð0; tÞ

� Sf ðtÞimðt; tÞi*f ð0Þ
S*f i

*
mðtÞif ð0; tÞ

!
dt

þ
Z ∞

0
S*mbf ðaÞi*f ðaÞ

 
1þ ln

S*m
SmðtÞ�

S*m
SmðtÞþ1þ ln

SmðtÞif ða; tÞi*mð0Þ
S*mi

*
f ðaÞimð0; tÞ

� SmðtÞif ða; tÞi*mð0Þ
S*mi

*
f ðaÞimð0; tÞ

!
da:
We can know that L(t) has nonpositive derivative. Furthermore, the equality _LðtÞ ¼ 0 holds if and only if Sf ðtÞ ¼ S*f , if ða;tÞ ¼
i*f ðaÞ, if ð0; tÞ ¼ i*f ð0Þ, SmðtÞ ¼ S*m, imðt; tÞ ¼ i*mðtÞ and imð0; tÞ ¼ i*mð0Þ. Hence, it follows from the LaSalle invariance principle
(Salle, 1976) that E * is globally asymptotically stable.

6. Numerical simulations and sensitivity analysis of parameters for R 0

In this section, we illustrate the disease dynamics of age-infection-structured HIVmodel with heterogeneous transmission
in system (2.2) by performing numerical simulations. In the numerical simulation process, time and infection age are taken as
units of years. Following (Mukandavire et al., 2009), we fix the coefficients: m ¼ 0.013 and a ¼ 0.01. To further evaluate the
impact of each parameter(g, m, a, Lf, Lm, bf (a) and bm(t)) on R 0, sensitivity analysis of parameters is performed by the
method of partial rank correlation coefficient. Next, we take four special cases of the basic reproduction number to study how
R 0 affect the density and number of infectious female and male individuals.

Case 1. R 0f <1 and R 0m <1.

The infection rate function bf (a) is

bf ðaÞ ¼

8><
>:

0:0275*10�5:08; a<15;
0:0275*10�5:08 þ 0:0489ða� 15Þe�0:98ða�30Þ2*10�5:08; 15 � a<45;
0:0489*10�5:08; a � 45:
and bm(t) is

bmðtÞ ¼

8><
>:

0:03*10�5:08; t<15;
0:03*10�5:08 þ 0:05ðt� 15Þe�0:9ðt�30Þ2*10�5:08; 15 � t<45;
0:05*10�5:08; t � 45:
The infection rate functions chart is displayed in Fig. 2.
Fig. 3(a) and (f) show the three-dimensional diagrams with respect to infection-age and time of infectious female and

infectious male, respectively. From Fig. 3(b) and (c)(3(g) and 3(h)), we can see that the density and number of infectious
female(male) are all gradually falling to zero. From Fig. 3(d) and (e)(3(i) and 3(j)), we can see that the density and number of
infectious female(male) are quickly rising to the peak first and then slowly falling to zero.

Fig. 4 shows that Lf, Lm, bf (a) and bm(t) are positive influence, and m, a, g are negative influence on R 0. Among these
parameters, g, m and a are more negative impacts onR 0. Thus, reducingLm and bm(t) to more effectively control AIDS spread.

Case 2. R 0f <1 and R 0m >1.
The infection rate function bf (a) is

bf ðaÞ ¼

8><
>:

0:23*10�5; a<15;
0:23*10�5 þ 0:348ða� 15Þe�0:98ða�30Þ2*10�5; 15 � a<45;
0:348*10�5; a � 45:
and bm(t) is
450



Fig. 3. R 0f ¼ 0:9014 and R 0m ¼ 0:9104, where g ¼ 0.125, Lf ¼ 6000, Lm ¼ 6600, Sf (0) ¼ 12675, Sm(0) ¼ 13314, if (a, 0) ¼ 43(a þ 3)e�0.2(aþ3), im(t, 0) ¼ 47(t þ 3)
e�0.2(tþ3). (a) if (a, t) changes with a and t. (b) if (a, t) changes with a. (c) If (t) changes with t. (d) if (a, t) changes with t. (e) If (a) changes with a. (f) im(t, t) changes
with t and t. (g) im(t, t) changes with t. (h) Im(t) changes with t. (i) im(t, t) changes with t. (j) Im(t) changes with t.

Fig. 4. Tornado plot of PRCCs in regard to R 0.

Fig. 2. The infection rate functions.
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bmðtÞ ¼

8><
>:

0:015*10�5; t<15;
0:015*10�5 þ 0:029ðt� 15Þe�0:9ðt�30Þ2*10�5; 15 � t<45;
0:029*10�5; t � 45:
The infection rate functions chart is displayed in Fig. 5.
Fig. 6(a) and (f) show the three-dimensional diagrams with respect to infection-age and time of infectious female and

infectious male, respectively. From Fig. 6(b) and (c), we can see that the density and number of infectious female are firstly
decreasing, quickly rising to the peak and then slowly falling to steady state. From 6(g) and 6(h), we can see that the density
and number of infectious male are slowly rising to the peak and then gradually falling to steady state. From Fig. 6(d) and
(e)(6(i) and 6(j)), we can see that the density and number of infectious female(male) are gradually decreasing.

Fig. 7 shows that Lf, Lm, bf (a) and bm(t) are positive influence, and m, a, g are negative influence on R 0. Among these
parameters, g, m and a are more negative impacts onR 0. Thus, reducingLm and bf (a) to more effectively control AIDS spread.

Case 3. R 0f >1 and R 0m <1.
Fig. 5. The infection rate functions.

Fig. 6. R 0f ¼ 0:9814 and R 0m ¼ 15:8968, where g ¼ 0.0601, Lf ¼ 4920, Lm ¼ 5600, Sf (0) ¼ 12675, Sm(0) ¼ 13314, if (a, 0) ¼ 345(a þ 3)e�0.2(aþ3), im(t,
0) ¼ 360(t þ 3)e�0.2(tþ3). (a) if (a, t) changes with a and t. (b) if (a, t) changes with a. (c) If (t) changes with t. (d) if (a, t) changes with t. (e) If (a) changes with a. (f)
im(t, t) changes with t and t. (g) im(t, t) changes with t. (h) Im(t) changes with t. (i) im(t, t) changes with t. (j) Im(t) changes with t.
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Fig. 7. Tornado plot of PRCCs in regard to R 0.
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The infection rate function bf (a) is

bf ðaÞ ¼

8><
>:

0:03*10�5:32; a<15;
0:03*10�5:32 þ 0:048ða� 15Þe�0:98ða�30Þ2*10�5:32; 15 � a<45;
0:048*10�5:32; a � 45:
and bm(t) is

bmðtÞ ¼

8><
>:

0:25*10�5; t<15;
0:25*10�5 þ 0:49ðt� 15Þe�0:9ðt�30Þ2*10�5; 15 � t<45;
0:49*10�5; t � 45:
The infection rate functions chart is displayed in Fig. 8.
Fig. 9(a) and (f) show the three-dimensional diagrams with respect to infection-age and time of infectious female and

infectious male, respectively. From Fig. 9(b) and (c), we can see that the density and number of infectious female are slowly
rising to the peak and then gradually falling to steady state. From 9(g) and 9(h), we can see that the density and number of
infectious male are firstly decreasing, quickly rising to the peak and then slowly falling to steady state. From Fig. 9(d) and
(e)(9(i) and 9(j)), we can see that the density and number of infectious female(male) are gradually decreasing.
Fig. 8. The infection rate functions.
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Fig. 9. R 0f ¼ 13:6832 and R 0m ¼ 0:9990, where g ¼ 0.0715, Lf ¼ 4920, Lm ¼ 6600, Sf (0) ¼ 7675, Sm(0) ¼ 8314, if (a, 0) ¼ 245(a þ 3)e�0.2(aþ3), im(t,
0) ¼ 260(t þ 3)e�0.2(tþ3). (a) if (a, t) changes with a and t. (b) if (a, t) changes with a. (c) If (t) changes with t. (d) if (a, t) changes with t. (e) If (a) changes with a. (f)
im(t, t) changes with t and t. (g) im(t, t) changes with t. (h) Im(t) changes with t. (i) im(t, t) changes with t. (j) Im(t) changes with t.

J. Zhang, L. Wang and Z. Jin Infectious Disease Modelling 9 (2024) 437e457
Fig. 10 shows that Lf, Lm, bf (a) and bm(t) are positive influence, and m, a, g are negative influence on R 0. Among these
parameters, g, m and a are more negative impacts on R 0. Thus, reducing Lf, Lm and bm(t) to more effectively control AIDS
spread.

Case 4. R 0f >1 and R 0m >1.

The infection rate function bf (a) is

bf ðaÞ ¼

8><
>:

0:26*10�5; a<15;
0:26*10�5 þ 0:68ða� 15Þe�0:98ða�30Þ2*10�5; 15 � a<45;
0:68*10�5; a � 45:
and bm(t) is
Fig. 10. Tornado plot of PRCCs in regard to R 0.
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bmðtÞ ¼

8><
>:

0:35*10�5; t<15;
0:35*10�5 þ 0:79ðt� 15Þe�0:9ðt�30Þ2*10�5; 15 � t<45;
0:79*10�5; t � 45:
The infection rate functions chart is displayed in Fig. 11.
Fig. 12(a) and (f) show the three-dimensional diagrams with respect to infection-age and time of infectious female and

infectious male, respectively. From Fig. 12(b) and (c)(9(g) and 9(h)), we can see that the density and number of infectious
female(male) are firstly decreasing, quickly rising to the peak and then slowly falling to steady state. From Fig. 12(d) and
(e)(12(i) and 12(j)), we can see that the density and number of infectious female(male) are gradually decreasing.

Fig. 13 shows that Lf, Lm, bf (a) and bm(t) are positive influence, and m, a, g are negative influence on R 0. Among these
parameters, g, m and a are more negative impacts on R 0. Thus, reducing Lf and Lm to more effectively control AIDS spread.
Fig. 11. The infection rate functions.

Fig. 12. R 0f ¼ 10:6332 and R 0m ¼ 10:7094, where g ¼ 0.125, Lf ¼ 4920, Lm ¼ 6600, Sf (0) ¼ 7675, Sm(0) ¼ 8314, if (a, 0) ¼ 245(a þ 3)e�0.2(aþ3), im(t,
0) ¼ 260(t þ 3)e�0.2(tþ3). (a) if (a, t) changes with a and t. (b) if (a, t) changes with a. (c) If (t) changes with t. (d) if (a, t) changes with t. (e) If (a) changes with a. (f)
im(t, t) changes with t and t. (g) im(t, t) changes with t. (h) Im(t) changes with t. (i) im(t, t) changes with t. (j) Im(t) changes with t.
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Fig. 13. Tornado plot of PRCCs in regard to R 0.
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7. Conclusions and discussion

In this paper, we mainly focus on the derivation and analysis of an age-infection-structured HIV model with heteroge-
neous transmission. Under our assumptions, based on the characteristics of system (2.2), we obtain it is bounded. And the
local and global dynamics are shown to be completely determined by the basic reproduction number. The disease dies out if
R 0 is less than one, otherwise the disease exists. Local stabilities of disease-free equilibrium and endemic equilibrium can be
proved by linearizing systems at their equilibria. Meanwhile, we construct two Lyapunov functions to show that the global
stabilities of equilibria. Finally, we take four special cases of the basic reproduction number to study howR 0 affect the density
and number of infectious female and male individuals to support theoretical results and sensitivity analysis is performed by
the method of partial rank correlation coefficient to observe the significance of each parameter forR 0. By sensitivity analysis
of parameters, we could know that g, m and a are more negative impacts on R 0 and we could reduce recruitment rate into
population and infection incidence to more effectively control AIDS spread.

The establishment of HIV dynamic model by considering age-infection and heterogeneous transmission is helpful to
understand HIV transmission process. It improves the application value of HIV model in practice and provides clearer
guidance for taking preventive measures. However, this paper does not consider HIV other transmission modes such as
bisexual and vertical transmission. System (2.2) also applies only to sexually transmitted diseases and it is not universal.
Furthermore, we will consider other influencing factors such as the different mortalities between female and male in-
dividuals, chronological age and bisexuals transmission which help to more accurately analyze HIV transmission dynamics
and apply to other sexually transmitted diseases.
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