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Various conditions affecting the cerebral vasculature may lead to cumulative damage and thus dete-
rioration of brain function, in what has been called vascular cognitive impairment (Gorelick et al.,
2011). Consequently, it makes sense that an increase in glucose and oxygen produced by an increase
in blood flow may augment brain function. Since its rediscovery some years ago transcranial direct
electric stimulation (tDCS) has attracted interest as potential therapy for patients with neurological
impairments. This opinion article aims to succinctly review themechanisms involved in neurogenic
control of the cerebral blood flow (CBF) highlighting the potential of direct electrical stimulation
targeting cerebral micro vessels to enhance brain function.

With the highest oxygen consumption than any other organ in the body, the brain utilizes
around 20% of the total resting oxygen, making it an organ highly dependent on blood supply
(Hossmann, 1994). Moreover, a direct relationship between the development of neurodegenerative
diseases and impairment of CBF has been postulated (Farkas and Luiten, 2001).

The appropriate delivery of nutrients and oxygen to the brain tissue is regulated by mechanisms
including cerebral autoregulation, vascular reactivity and neurovascular coupling. The autoregula-
tory properties of cerebral circulation make CBF independent of systemic blood pressure. There-
fore, over a physiological range of pressure cerebral arteries relax when systemic pressure decreases
and constrict when systemic pressure increases (Heistad and Kontos, 1983). Similarly, reactivity of
the brain blood vessels to pH and CO2 has been suggested to link neuronal metabolic changes to
cerebral blood flow.

The Neurovascular Unit

One of the unique characteristics of the brain circulation is the intimate contact between blood
vessels, neurons, and glia. Thus, neurons, glia, and vascular cells are structurally and function-
ally related in what is called the “neurovascular unit” (Iadecola, 2004). Since brain PO2 is tightly
regulated in relation to local brain activity, the neurovascular unit provides a framework for the
functional interactions responsible for this concerted regulation. Thereby, functional hyperemia
means that blood flow will increase in brain areas with increased activity.

From an anatomical point of view, pial arteries traveling on the surface of the brain are highly
innervated with terminals coming from the peripheral nervous system (extrinsic innervation)
(Hamel, 2006). These vessels are surrounded by the Virchow-Robin’s space which gradually dis-
appears as vessels enter the brain parenchyma. Cerebral arteries entering the brain parenchyma
lose extrinsic innervation and come into intimate contact with neuronal and glial cells (intrinsic
innervation) (Iadecola, 2004). Functions of these two vascular compartments, macro and micro
vessels, involve regulation of global blood supply, as wells as control of local CBF and brain blood
barrier permeability respectively.
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It is currently accepted that postsynaptic increases in [Ca++]i
due to activation of glutamate receptors during synaptic trans-
mission activate the production of vasoactive mediators.

Several mediators such as neurotransmitters, adenosine,
arachidonic acid metabolites, nitric oxide (NO), hydrogen and
potassium, have been suggested to mediate increases in CBF
(Iadecola, 2004).

Due to their close contact with blood vessels, astrocytes are
suggested to play an important role in functional hyperemia.
Astrocyte’s end-feet surround brain micro capillaries, and may
mediate neuron-blood vessel communication and thus neu-
ronal activity-induced blood flow changes (Zonta et al., 2003).
Vasodilatory as well as vasoconstrictor activities have been
ascribed to glial cells (Metea and Newman, 2006), with an impor-
tant role for glial eNOS inmediating vasodilatation (Stobart et al.,
2013). New evidences also point to astrocytes as relevant compo-
nents of the recently described “glymphatic pathway,” an impor-
tant mechanism for clearance of solutes from the brain (Iliff et al.,
2012). Thus, aquaporin water channels in astrocyte’s end feet
would couple paravascular pathways for the vectorial convec-
tive flow of waste products from arterial toward venous routes,
with solutes ultimately clearing the brain through the lymphatic
system (Nedergaard, 2013).

The brain endothelium is a highly specialized tissue mediat-
ing several physiological functions, such as thrombosis, adhesion,
permeability and angiogenesis (Daneman and Prat, 2015). A pro-
tective function against cerebral dysfunction has been proposed
for the brain vessel’s endothelium consistent with the predom-
inant role of endothelial dysfunction in several cerebrovascu-
lar diseases. Importantly, in vivo experiments have shown that
endothelial cell-derived NOmediates cortical hyperemia induced
by basal forebrain electrical stimulation (Zhang et al., 1995).

Pericytes, cells located outside of the microvessels in intimate
contact with endothelium and astrocyte end-feet, are more fre-
quent on microvessels of the retina and brain and thought to
regulate blood flow (Kutcher and Herman, 2009). Pericytes are
considered important components of the neurovascular unit as
regulators of the brain blood barrier function and also potential
mediators of brain vascular dysfunction (Hamilton et al., 2010).
Among the properties identified include contraction, hemosta-
sis and angiogenesis. Given their contractile properties, peri-
cytes may act as surrogates of smooth muscle cells in brain
microvessels.

Dysfunctional interactions within the neurovascular unit have
the potential to lead to brain pathophysiological alterations.
Impaired endothelial cell-astrocytes or endothelial cell-pericytes
signaling may cause brain blood barrier disruption (Zlokovic,
2008), whereas altered coupling between neuronal activity and
vascular responses may contribute to spreading depression
(Dreier, 2011).

tDCS and Brain Perfusion

Effects of electrical stimulation on the brain have been known
for centuries (Priori, 2003). Work in the rat primary motor
region showed that electrical stimulation may increase, decrease,
or silence neuron’s firing (Bindman et al., 1964; Purpura and

McMurtry, 1965).These animal studies showed that anodal stimu-
lation causeddepolarization,whereas cathodal stimulation caused
hyperpolarization, thus increasing the probability for a neuron
to produce an action potential. tDCS has been rediscovered as
a non-invasive promising tool to modulate brain activity and as
a potential treatment for psychiatric and neurological disorders
(Priori, 2003; Filmer et al., 2014). An increasing number of stud-
ies have reported that tDCS modulates synaptic transmission by
regulating levels of neurotransmitters such as GABA, glutamate,
serotonin, and dopamine, among others (Nitsche et al., 2008).

Reports showing that stimulation of cerebellar neurons
increased diameter of both adjacent arterioles and the upstream
vessels, provided a demonstration of the propagation of vascu-
lar responses induced by increased neural activity (Iadecola et al.,
1997). Importantly, cerebellar stimulation at the fastigial nucleus,
reduced ischemia induced by medial cerebral artery occlusion in
rats through NO-mediated hemodynamic mechanisms (Zhang
and Iadecola, 1993).

tDCS in humans is performed by applying direct current over
the scalp using electrodes and its effects depend on the size, polar-
ity and position of the electrodes, current intensity, duration of
stimulation, and tissue properties (DaSilva et al., 2011). Given
the intimate relationship between neuronal activity and CBF, it
is expected that tDCS will increase brain perfusion, as shown in
animal (Han et al., 2014) and human (Zheng et al., 2011) stud-
ies. The opinion presented in this article is that in addition to
the changes in neuronal-derived metabolites, evidences showing
responses to electrical stimulation in non-neuronal cells suggest
that tDCS acting on these cells has also the potential to modu-
late brain perfusion (Figure 1). Thus, understanding the vascular
effects of tDCS may improve the treatment of diseases associated
with vascular dysfunction.

FIGURE 1 | Functional interactions within the neurovascular unit and

potential influences of tDCS on specific cell types. tDCS-induced

electrical fields may increase, decrease or have no effects on neuronal firing

rates. Neuronal-derived metabolites directly or indirectly activate endothelial

cells (black arrows), inducing vasodilatation. Potential direct effects of tDCS on

glial, endothelial cells, and pericytes are indicated (red arrows). NO, nitric

oxide; VEGF, vascular endothelial growth factor; EET’s, epoxyeicosatrienoic

acids; 20-HETE’s, 20-hydroxyeicosatetraeonic acids.
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Direct effects of electric stimulation on neurons in vitro
include alignment of neurites perpendicular to the electric field,
increased growth and migration (Pan and Borgens, 2012). In
mouse coronal slices, a role for electrical stimulation-induced
synaptic plasticity was demonstrated, an effect that may under-
lie implications of tDCS on motor learning (Fritsch et al., 2010).
Results obtained in rat brain slices suggested that electrical stim-
ulation modulates long term potentiation in a polarity-specific
manner supporting a regulatory role of tDCS on synaptic plastic-
ity (Ranieri et al., 2012).

Described effects of electrical stimulation on astrocytes in vitro
include changes in metabolism depending on field polarization
and applied voltage (Huang et al., 1997), as well as migration
and perpendicular alignment (Pelletier et al., 2014). A theoretical
analysis concluded that tDCS has the potential to directly stim-
ulate glial cells since the tDCS-induced changes in membrane
potential are similar to the changes induced in astrocytes during
neuronal activation (Ruohonen and Karhu, 2012).

The effects of electric stimulation on endothelial cells in vitro
include the alignment perpendicular to the direction of the elec-
trical field, migration, and elongation (Zhao et al., 2012). These
effects are associated with increases in VEGF production, sug-
gesting that electrical stimulation may modulate angiogenesis
(Zhao et al., 2012). Conversely, the data from brain slices, includ-
ing effects on synaptic plasticity (Fritsch et al., 2010) are obtained
in the absence of circulation, which may indicate that there is no
endothelial contribution to the neuronal effects of electric stim-
ulation. However, endothelial cells in culture exposed to a low
physiological electrical field (3.3mV/mm) showed increased NO
production (Trivedi et al., 2013), suggesting a direct route by
which electric stimulation may increase brain perfusion. Mod-
eling of the electric properties of the brain suggests that the elec-
tric field generated during tDCS in humans is around 1mV/mm
(Neuling et al., 2012) indicating that endothelial cell-dependent
responses may be triggered during tDCS.

The proposed role of pericytes in the neurovascular unit
suggests that pericytes may transduce signals from neurons to
endothelial cells (Hall et al., 2014). Thus, during neuronal acti-
vation glutamate release produces prostaglandin E2 which in
turn will induce capillaries vasodilatation by activating K+ cur-
rents in pericytes. These are excitable cells and a direct effect
of tDCS on pericyte’s membrane potential may hyperpolarize
it and induce vasodilatory signals. Whether pericyte-mediated
responses to tDCS are playing a role in the tDCS effects remains
to be elucidated.

Although general agreement has been observed between ani-
mal and human studies (Bennabi et al., 2014), it is necessary to
note that stimulating parameters used in animal in vivo and in
in vitro protocols are higher than those used in humans where a
maximum current density of∼0.28 A/m2 is used (Im et al., 2012).
In contrast a maximum safe stimulation in rats was reported at
142.9 A/m2 (Liebetanz et al., 2009).

tDCS and Augmentation of Brain Function

In humans, evidences indicate the potential of tDCS to increase
cognitive, motor and memory function. For example, tDCS may

enhance gesture comprehension by improving gesture and lan-
guage integration (Cohen-Maximov et al., 2014), a result espe-
cially relevant in cases of autism where patients have difficulties
processing symbolic gestures (Baron-Cohen, 1988). Anodal tDCS
administered repeatedly facilitates language (Meinzer et al., 2014)
and motor skill learning (Zimerman et al., 2013). tDCS has also
been shown to produce long-lasting effects on number process-
ing (Cohen Kadosh et al., 2010) and there is increasing interest
in the applicability of tDCS for memory enhancement (Bennabi
et al., 2014).

However, not all tDCS studies have observed positive
effects. Thus, the rate of motor sequence learning is increased
by anodal tDCS and decreased by cathodal stimulation,
whereas tDCS applied prior to the motor task slowed learn-
ing (Stagg et al., 2011). Also cerebellar tDCS has been
shown to impair practice-dependent improvement in a work-
ing memory task (Ferrucci et al., 2008), whereas tDCS
applied to pre-frontal cortex disrupts sensory-motor training
(Filmer et al., 2013). Clearly, the research describing the effi-
cacy of tDCS for motor and cognitive improvement is still
inconclusive.

Brain blood flow responses to specific tasks may involve cor-
tical and subcortical structures, as seen in the attention-derived
effects on flow in both the visual cortex and the lateral geniculate
nucleus (O’Connor et al., 2002). Thus, it is relevant to point out
that tDCSmay also modulate blood flow in subcortical structures
(Lang et al., 2005; Nonnekes et al., 2014) demonstrating broader
effects of tDCS on CBF.

Recent technical developments applying tDCS simultaneously
with electroencephalography and brain blood flow measure-
ments (Dutta et al., 2015) will help to integrate tDCS with mod-
ulation of vascular function and ultimately changes in human
behavior.

Perspectives and Future Directions

In order to expand direct therapeutic applicability, tDCS needs
to overcome the challenges related to inter- and intra-subject
variability and parameters of stimulation impacting neuroplas-
ticity (i.e., short vs. long term stimulation), among others. Simul-
taneous determination of vascular signals and cognitive per-
formance during tDCS will help to integrate electrical stimu-
lation with vascular functioning and changes in behavior. The
relationships between neuronal and vascular effects are com-
plex and it is proven difficult to differentiate between the
effects of electrical stimulation on those two tissues, it is how-
ever conceivable that in addition to the vascular effects of
neuronal-derived metabolites, direct effects of tDCS on non-
neuronal cells especially glial and endothelial cells modulate brain
perfusion. Thus, a deeper understanding of the effects tDCS
have on non-neuronal members of the neurovascular unit is
essential.
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