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A B S T R A C T

The cytoprotective transcriptor factor nuclear factor erythroid
2– related factor 2 (NRF2) is part of a complex regulatory net-
work that responds to environmental cues. To better under-
stand its role in a cluster of inflammatory and pro-oxidative
burden of lifestyle diseases that accumulate with age, lessons
can be learned from evolution, the animal kingdom and proge-
roid syndromes. When levels of oxygen increased in the atmo-
sphere, mammals required ways to protect themselves from the
metabolic toxicity that arose from the production of reactive
oxygen species. The evolutionary origin of the NRF2–Kelch-like
ECH-associated protein 1 (KEAP1) signalling pathway from
primitive origins has been a prerequisite for a successful life on
earth, with checkpoints in antioxidant gene expression, inflam-
mation, detoxification and protein homoeostasis. Examples
from the animal kingdom suggest that superior antioxidant de-
fense mechanisms with enhanced NRF2 expression have been
developed during evolution to protect animals during extreme
environmental conditions, such as deep sea diving, hibernation
and habitual hypoxia. The NRF2–KEAP1 signalling pathway is
repressed in progeroid (accelerated ageing) syndromes and a
cluster of burden of lifestyle disorders that accumulate with age.
Compelling links exist between tissue hypoxia, senescence and a
repressed NRF2 system. Effects of interventions that activate
NRF2, including nutrients, and more potent (semi)synthetic
NRF2 agonists on clinical outcomes are of major interest. Given
the broad-ranging actions of NRF2, we need to better under-
stand the mechanisms of activation, biological function and reg-
ulation of NRF2 and its inhibitor, KEAP1, in different clinical
conditions to ensure that modulation of this thiol-based system
will not result in major adverse effects. Lessons from evolution,
the animal kingdom and conditions of accelerated ageing clarify
a major role of a controlled NRF2–KEAP1 system in healthy
ageing and well-being.
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N R F 2 E M E R G E D I N E V O L U T I O N I N
R E S P O N S E T O O X Y G E N

Oxygen is critical for survival and cellular metabolism in all
mammals. However, oxygen is also a toxic gas and during evo-
lution mammals needed to develop efficient antioxidant sys-
tems to defend themselves against a constant bombardment
from chemicals and reactive oxygen species (ROS), such as the
by-products of oxidative metabolism, nutrients, ultraviolet radi-
ation and the toxic metabolites of xenobiotics. Among several
defense systems that evolved, such as autophagy and heat shock
proteins, the nuclear factor erythroid 2–related factor 2 (NRF2)
system was a dominant one. The network of hundreds of anti-
oxidative, anti-inflammatory and bioenergetic genes regulated
by NRF2 [1] is estimated to account for >1% of the total ge-
nome [2]. The subsequent evolution of cysteine-rich Kelch-like
ECH-associated protein 1 (KEAP1) provided mammals with a
more cultivated way to regulate NRF2 activity (like a molecular
dimmer switch) in higher organisms [3]. Exposure to oxidants
disrupts the interaction between NRF2 and KEAP1, which leads
to translocation of NRF2 to the nucleus, which in turn increases
the transcription of a battery of hundreds of cytoprotective
genes that affect the proteasome [4]. In consideration of NRF2
and nuclear factor (NF)-jB being engaged in crosstalk, NRF2
also plays an important anti-inflammatory role [5].
Phylogenetic analyses of NRF2 sequences have shown that the
major divergence in NRF2 occurred when the oceans released
free oxygen to the atmosphere [6]. Thus, since rising levels of at-
mospheric oxygen in the Palezoic period (about 540 to 250
million years ago) appear to have driven the divergence of
NRF2, the evolutionary origin of NRF2 is allied to the timing of
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the global transition from anaerobic to aerobic conditions. It
can be assumed that the effective handling of powerful environ-
mental electrophilic challenges and detoxification were prereq-
uisites for the successful evolution from primitive short-lived
organisms to long-lived mammals.

E N H A N C E D N R F 2 E X P R E S S I O N — A
S U R V I V A L M E C H A N I S M I N T H E A N I M A L
K I N G D O M

The conservation of NRF2, both in function and structure
across species, implies that NRF2 plays a major role in protect-
ing against the cytotoxic stress that occurs with the accumula-
tion of damaged proteins, lipids and genetic material that
promotes organ damage (Figure 1). The evolutionary develop-
ment of the NRF2–KEAP1 pathway and its actions on protein
turnover and glucose metabolism seems central for the cytopro-
tective signalling pathway [7]. Studies in Caenorhabditis elegans
show that the NRF2 functional ortholog skinhead-1 (SKN-1) is
involved in many homoeostatic functions and exerts consider-
able influence on the lifespan and healthspan of mammals [8].
A more elaborate system, evident in lower organisms and

invertebrates (including model organisms Drosophila and
zebrafish), has been conserved throughout the animal kingdom
[9]. Compelling evidence for the importance of NRF2 for cyto-
toxic protection is provided by studies showing that mice lack-
ing the NRF2 gene display enhanced sensitivity to toxins,
carcinogens and organ damage [4]. Although the NRF2–
KEAP1 system has not yet been extensively studied in the ani-
mal kingdom, there are cases exemplifying its importance for
survival in extreme conditions (Figure 1).

Hibernation is a survival strategy that has evolved in certain
species to conserve energy during periods of nutrient shortfall.
To survive long periods of hypoxia, cold weather and fasting
(and increased oxidative stress that occurs during arousal in
spring when organs are reperfused), hibernating animals are
forced to maintain a careful balance between metabolic demand
and supply. Food deprivation increases oxidative stress by in-
creasing mitochondrial oxidant generation and depletion of
antioxidants with decreased antioxidative capacity [10]. How
hibernating species cope with ensuing increased oxidative stress
is not well understood. While hibernating ground squirrels
(Ictidomys tridecemlineatus) undergo repeated ischaemia–re-
perfusion cycles, which lead to high basal levels of reactive

FIGURE 1: Since oxygen homoeostasis is of crucial importance to maintain survival, vertebrates developed a way to coordinate the oxygen lev-
els in the intracellular compartments in order to maintain homoeostasis. In the living organism, hypoxia and inflammation commonly occur
together and there is significant crosstalk between the transcription factors that are classically understood to respond to either hypoxia or in-
flammation. The evolutionary origin of NRF2 is allied to the timing of the global transition from anaerobic to aerobic condition. Superior anti-
oxidant defense mechanisms with enhanced NRF2 expression may protect animals during extreme environmental conditions, such as deep sea
diving, hibernation and habitual hypoxia. Studies of rare progeric diseases, such as HGPS, have increased our understanding of mechanisms
that drive ageing and imply that therapeutic strategies that stimulate NRF2–KEAP1 could open up new avenues to slow down senescence and
prevent diseases of ageing. Compelling evidence for a role of NRF2 in the susceptibility of numerous chronic burden of lifestyle diseases associ-
ated with inflammation and oxidative stress has been provided by studies that have shown associations between disease risk and genetic varia-
tions of the NRF2 gene. Thus, targeting the cytoprotective transcription factor NRF2 may have a positive effect on a cluster of burden of
lifestyle diseases.

NRF2 and cytoprotection 2037



oxygen and nitrogen species, this does not seem to harm them
[11]. As NRF2 exhibits elevated transcript levels in hibernating
squirrels and NRF2 axis-associated micro ribonucleic acid
(miRNA), miR-200a displays altered levels during hibernation
[11], an interplay between non-coding RNAs and targets associ-
ated with oxidative stress may be operative. Thus, since NRF2
and Forkhead box O transcription factors, which play a role in
ruling the expression of genes involved in proliferation, cell
growth and longevity, have been shown to play major roles in
the regulation of antioxidant defenses in the hibernating bat
brain [12], an upregulation of the NRF2–KEAP1 system may
be required to avoid organ damage during hibernation.

Seals (Phociade) have developed a remarkable capacity to
protect their organs during prolonged periods of hypoxaemia.
It has been reported that elephant seals can descend as far as
2000 m during diving for periods that can extend to up to
100 min per dive [13]. In order to secure sufficient perfusion of
the brain and heart during apnoea-induced hypoxaemia in div-
ing, there is an intense arterial constriction of peripheral vascu-
lar beds and splanchnic organs, including the kidneys [14]. The
sustained vasoconstriction activated during diving leads to al-
most total discontinuation of kidney function—inulin clearance
decreases >90% [15]—followed by reperfusion after diving
[16]. Compared with the dog kidney, the seal kidney is ex-
tremely tolerant to repetitive ischaemia and acute kidney injury
(AKI) [17] due to their highly developed antioxidant defense
mechanisms [18]. As prolonged natural periods of fasting acti-
vate NRF2–KEAP1 in elephant seals [19], upregulation of the
NRF2–KEAP1 pathway during fasting may contribute to seals’
capacity to protect their kidneys. Mammalian models that help
us to study hypoxia–anoxia tolerance have relevance since we
lack effective treatments to thwart ischaemia and hypoxia.

Another species that has developed a remarkable resistance
to hypoxia is the naked mole rat (Heterocephalus glaber).
During evolution they adapted to severe constant hypoxia in
underground burrows and can survive prolonged periods of an-
oxia due to fructose-driven glycolysis [20]. The naked mole rat
has emerged as a model organism for studies of ageing-related
diseases and negligible senescence [21]. In contrast to other
mammals, naked mole rats do not conform to the Gompertzian
law of age-related mortality risk [22]. Naked mole rats live 7–10
times longer than similarly sized rodents of other species and,
along with superior anoxia tolerance, they seem resistant to
age-related diseases such as cancer, cardiovascular disease
(CVD) and neurodegeneration [13]. In addition, naked mole
rats experience no changes in body composition or decline in
genomic and proteomic integrity due to elevated proteasome
quality control mechanisms [23]. Whereas several mechanisms
may contribute to the mole rats’ exceptional resilience and effi-
cient breakdown and clearance of damaged proteins [24], in-
creased expression of NRF2–KEAP1 was reported to be a major
factor responsible for maintaining their damage control mecha-
nisms [21].

Studies of other long-lived animals have provided valuable
insights into mechanisms that characterize ageing [14]. In the
long-lived (>500 years) ocean quahog (Arctica islandica), in-
creased resistance to oxidative stress and maintenance of

protein homoeostasis preserves cardiac function [25], a prereq-
uisite for extreme longevity [26]. In accordance, a trans-
criptomics-based screening recently identified that inhibition of
Hsp90 defers ageing by improved protein homoeostasis in C.
elegans [27]. Since inhibition of Hsp90 protects against athero-
sclerosis via cytoprotective mechanisms that are NRF2
dependent [28] and SKN-1/NRF2 is essential for the healthspan
benefits of metformin in C. elegans [29], a role for NRF2 as a
pro-longevity signalling pathway across phyla is supported.

S T U D I E S O F R A R E P R O G E R O I D D I S O R D E R S
I D E N T I F Y N R F 2 A S A T A R G E T O F
P R E M A T U R E A G E I N G

ROS-induced premature cellular senescence is believed to
contribute to ageing and age-related diseases. NRF2 activity
decreases with ageing in mice [30] and when the NRF2 gene
is inhibited, this promotes stress-induced premature senes-
cence [31]. The senescence-associated decline of NRF2 in en-
dothelial cells is mediated by miRNAs [32]. As both NRF2
deficiency [33] and hypoxia [34] exacerbate senescence, and
endothelial senescence is protected via Klotho and NRF2 acti-
vation [35], the relationships between senescence, hypoxia
and repressed NRF2 activity during ageing deserve attention.
Studies in rare progeroid syndromes help us to better under-
stand the role of NRF2 in the protection against oxidative
stress–driven premature ageing (Figure 1). Recently Zamponi
et al. [36] reported a key role for NRF2–KEAP1 stabilization
in cellular homoeostasis in Down syndrome. Hutchinson–
Gilford progeria syndrome (HGPS) is a rare premature ageing
disorder due to an accumulation of progerin (mutant lamin
A) in which carriers die of CVD as teenagers. Kubben et al.
[37] identified the NRF2 antioxidant pathway as a driving
mechanism in HGPS and showed that trapping of NRF2 at
the nuclear periphery by progerin recapitulated the ageing
defects and that reactivation of NRF2 reversed the progerin-
associated nuclear ageing defects [37]. Taken together, studies
of rare progeric diseases have helped to explain mechanisms
that drive ageing and imply that therapeutic strategies that
stimulate NRF2–KEAP1 may attenuate senescence and abro-
gate or ameliorate diseases of ageing.

C H R O N I C B U R D E N O F L I F E S T Y L E D I S E A S E S
I S R E L A T E D T O L O W N R F 2 E X P R E S S I O N

While the primary causes of ageing are not fully understood, an
implicit component of many hypotheses to explain ageing is
that ROS-mediated tissue and organ damage is likely to play a
critical role [38]. Diseases of ageing are influenced by mecha-
nisms that show strong evolutionary conservation and contrib-
ute to cancer, CVD and neurodegenerative diseases [39]. While
worldwide life expectancy has nearly doubled in the last century
due to improved hygiene and nutrition and better treatment for
infectious diseases and CVD, further gains in life expectancy
have stalled because of lifestyle diseases, including chronic kid-
ney disease (CKD), obesity and type 2 diabetes mellitus—condi-
tions in which inflammation and oxidative stress are prominent
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(Figure 2). It has been estimated that the proportion of the
world population >60 years old will increase from 20% to 40%
by 2050; the prevalence of burden of lifestyle diseases will in-
crease with advanced age. Current approaches (i.e. addressing
single problems within individual disease systems) will need to
change in order to handle a growing burden of ageing-related
diseases (Figure 2). This approach may lead to the alleviation of
symptoms and organ damage, and limited prolongation of life,
but since burden of lifestyle diseases occur in clusters and accu-
mulate with age [39], the current strategy may not dramatically
reduce the gap between lifespan and healthspan. The majority
of chronic diseases that accumulate with age share common
molecular mechanisms, such as inflammation, oxidative stress,
mitochondrial dysfunction, metabolic imbalances and senes-
cence [40] (Figure 3). An alternative strategy to improve health
would be to target the whole ‘diseaseome’ simultaneously
through a fundamental approach targeting underpinning
mechanisms common to all burden of lifestyle diseases deemed
related to ‘inflammaging’ (Figure 2). In our opinion, a strategy
that targets the whole cluster of burden of lifestyle diseases si-
multaneously is more likely to significantly decrease the gap be-
tween ‘healthspan’ and ‘lifespan’. Since burden of lifestyle
diseases usually manifest a repressed NRF2–KEAP1 signalling
pathway [41], cytotoxic stress may play a role in predisposition
and progression of the NRF2 diseasome. The introduction of

modern Western diets with a high inflammatory index [42] to-
gether with the loss of ingredients in ancient foods that activate
NRF2 [43] may in part contribute to burden of lifestyle disor-
ders. As it has been hypothesized that centenarians in ‘Blue
Zones’ have a constitutively upregulated NRF2 system [44], nu-
tritional targeting of NRF2 may decrease the overall burden of
lifestyle disorders.

C H R O N I C B U R D E N O F L I F E S T Y L E D I S E A S E S
I S R E L A T E D T O T I S S U E H Y P O X I A

Considering that the NRF2 system evolved as a protective
mechanism against oxidative stress when the oceans released
free oxygen [6], it is evident that tissue hypoxaemia is a feature
of age-associated burden of lifestyle diseases such as CKD [45],
diabetes [46], obesity [47], cancer [48] and depression [49]. It is
likely that mitochondria are a major target in hypoxic/ischae-
mic injury, as diseases that accumulate with age lead to dysregu-
lation of mitochondrial molecular pathways [50]. Considering
that NRF2 activation supports cell survival during hypoxia [51,
52], it could be hypothesized that adequate regulation of the
NRF2–KEAP1 system may reduce the risk of tissue hypoxia in
burden of lifestyle diseases. In fact, activation of NRF2 has been
promoted as a prophylactic therapeutic strategy for acute
mountain sickness [53]. It is pertinent to note that compared

FIGURE 2: Burden of lifestyle diseases accumulate with age. The current approach in health care to target and treat individual burden of life-
style diseases in isolation may be effective in the short term, but since burden of lifestyle diseases tend to cluster, this approach may not in-
crease the number of healthy years of living much, with little impact on the gap between ‘lifespan’ and ‘healthspan’. An alternative approach
would be to investigate if age-related diseases associated with inflammation and oxidative stress could be treated more effectively by modulat-
ing some fundamental mechanisms of ageing per se and decrease the risk of a cluster of burden of lifestyle diseases simultaneously. Since de-
creased expression of NRF2–KEAP1 characterizes burden of lifestyle diseases, studies should be conducted to find out if long-term NRF2
stimulation could maintain redox, protein and metabolic homoeostasis and prevent the ‘NRF2 diseasome’ cluster and increase the number of
years of healthy living by reducing the risk of multiple diseases simultaneously.
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with other organs, the kidneys are particularly susceptible to
hypoxia.

A C U T E K I D N E Y D I S E A S E — A M O D E L O F A
C L I N I C A L C O N D I T I O N O F T I S S U E H Y P O X I A

Most major causes of AKI produce conditions of hypoxia
within the kidney. It was recently proposed that an intermittent
decline in kidney function due to episodes of transient renal is-
chaemia, toxins, drug toxicity volume depletion (in other
words, episodes of AKI), with improved management of hyper-
tension and diabetes, are responsible for driving CKD progres-
sion more so than a decline in kidney function related to the
primary disease process [54]. As NRF2–KEAP1 determines the
sensitivity of kidneys to various insults that can result in AKI
[55] and T-lymphocyte activation of NRF2 protects against
AKI [56], a patient with preserved NRF2–KEAP1-based cyto-
protective pathways may better resist repetitive minor episodes
of AKI. Recent data showing that a youthful systemic milieu di-
minished renal ischaemia injury in elderly mice reperfusion
[57] and that NRF2 activation conferred protection from
ischaemic AKI in mice [58] support such a hypothesis.

M O D U L A T I O N O F T H E N R F 2
T R A N S C R I P T I O N F A C T O R — I S I T S A F E ?

As NRF2 is dysregulated in numerous human conditions that
often occur in clusters, it represents an attractive target for
modulation. Since arresting the ageing process per se limits the
overall burden of chronic diseases, it would be of interest to tar-
get fundamental mechanisms of ageing (Figure 2). It is still

unexplored whether activation of NRF2 increases lifespan,
delays ageing or prevents burden of lifestyle diseases. It has
been suggested that targeting NRF2 with diverse natural phyto-
chemicals and/or synthetic compounds may be an option to
prevent a cluster of age-related chronic inflammatory diseases.
Although there are at least 30 patents for NRF2 modulators
[41], their clinical benefit has not yet been realized. Some im-
portant considerations need to be taken into account when tar-
geting NRF2. Since there is compelling evidence that
polymorphisms [59] and epigenetic mechanisms [60] modulate
the transcriptional activity of the NRF2 promoter, these factors
need to be taken into account. Animal studies on deactivation
of KEAP1 show that activation of NRF2 signalling modulates
pathways beyond detoxification and cytoprotection, with the
major cluster of genes associated with lipid metabolism [61].
Moreover, in keeping with the theory of reductive stress [i.e. a
harmful disturbance in the redox state and overproduction of
reduced glutathione and nicotinamide adenine dinucleotide
phosphate (NADPH)] and the observation that NRF2 activity
varies significantly depending on the physiological and patho-
logical context, properly timed manipulation of the NRF2 path-
way is critical [62]. Studies are needed to evaluate if the ‘hit and
run’ approach, shown to be effective for senolytics [63], should
also be used when NRF2–KEAP1 is targeted. The seasonal
changes in NRF2–KEAP1 expression that occur in the animal
kingdom may support such an approach [19]. The correct dos-
age of activators for stress sensors and their putative interac-
tions with disease-related pathways remains a concern [64].
NRF2 hyperactivation could promote oncogenesis [4]; therefore
safety signals for increased risk of cancer should be taken seri-
ously and the ‘sweet spot’ for NRF2 activation needs to be

FIGURE 3: Physiological clustering of cell senescence, tissue hypoxemia and repressed NRF2–KEAP1 expression seem to be drivers of a state
of inflammation, increased oxidative stress, mitochondrial dysfunction and metabolic imbalance that drives a cluster of burden of lifestyle dis-
eases that associate with premature ageing. Novel approaches to intervene in this scenario include nutraceutical and synthetic senolytic and
NRF2-stimulating therapies, as well novel interventions targeting tissue hypoxia, such as sodium glucose cotransporter 2 inhibitors, stimulators
of mitochondrial biogenesis and hypoxia-inducible factor (HIF) stabilizers.
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identified. Moreover, different NRF2 agonists have different
potentials for carcinogenic effects [65]. As constitutive over-
activation of NRF2 may be oncogenic, promote hyperplasia and
increase susceptibility to atherosclerosis [3], NRF2 may have
evolved in response to different selective pressures during evo-
lution. Thus, as the global characterization of NRF2 activation
is biphasic [3], both increased and depressed NRF2 expression
should be avoided.

Nutrients that stimulate NRF2

Since a recent systematic analysis from 195 countries
showed that 22% of all global deaths are attributable to the indi-
vidual’s diet [66], the impact of the “foodome” on age related
health deserves more attention. Several naturally occurring
chemicals extracted from plants with anti-inflammatory and
antioxidative properties have NRF2-inducing effects [67], and
humans have been safely ingesting NRF2 activators as part of
their diet for millennia. Not surprisingly, Sardinian and
Okinawan diets are both rich in pickled foods that contain alkyl
catechols [68]. Alkyl catechols are known NRF2 agonists [43]
and it can be hypothesized that NRF2 activation might be re-
sponsible, in part, for prolonged life expectancy in these popula-
tions. Additionally, alkyl catechols such as quercetin [43] are
proven senolytic agents, which might be expected to enhance
healthspan via nutritional intake. Compared with synthetic
chemicals that stimulate NRF2, the stimulatory effect of phyto-
chemicals, such as flavonoids and diterpenoids, has been
regarded as relatively weak. However, in a comparative study of
54 natural compounds, 7 were more potent than the classic syn-
thetic NRF2 activator tert-butylhydroquinone [69] (Table 1).
As a diet low in starch may result in impaired NRF2 activity in
mice [70], and as the bioavailability of polyphenols and dietary
fibres can be affected by molecular interactions between bioac-
tive compounds and the food matrix [71], the impact of the gut
microbiota on these factors relative to NRF2 activation deserves
attention. Recent studies show that natural NRF2 activators
have significant clinical effects. Urolithin, a microbial metabo-
lite derived from polyphenolics of pomegranate fruits and ber-
ries, upregulated epithelial tight junctions and attenuated
colitis via stimulation of NRF2-dependent pathways [72].
Sulphoraphane (provided as concentrated broccoli sprout ex-
tract), an electrophilic activator of NRF2, reduced fasting blood
glucose and glycated hemoglobin in obese patients with dysre-
gulated type 2 diabetes [73]. Moreover, >100 clinical trials

report that curcumin from the turmeric plant is safe and effec-
tive in a number of burden of lifestyle diseases [74], and its po-
tential as a potent NRF2 activator has been discussed [75].
Several other natural agents, including carnosol, andrographo-
lide and trans-chalone, stimulate NRF2. For nephrologists, it is
of interest that cocoa flavanol mitigated endothelial dysfunction
in haemodialysis patients [76].

It is conceivable that some nutrients downregulate the
NRF2–KEAP1 pathway (Figure 4). Indeed, radical changes in
food preservation of our Western diet have resulted in the ab-
sence of alkyl catechols found in traditionally fermented foods
and may have resulted in serious negative consequences for
NRF2-mediated cell protection [43]. Fermented cabbage (kim-
chi) stimulates NRF2, reduces lipid peroxidation and alleviates
hepatic steatosis in mice [80]. Increased intake of red and proc-
essed meat is associated with premature ageing [81] and burden
of lifestyle diseases such as CKD [82]. NRF2-dependent antioxi-
dant responses appear to be involved in the resistance of pre-
neoplastic colon cells to cytotoxic and genotoxic stressors in
beef-fed rats [83]. Since red meat stimulates the production of
uraemic toxins by the gut microbiota and indoxyl sulphate
downregulates the expression of NRF2 [84], the link between
red meat and NRF2 may be indirect. The increase in the
consumption of sugar-added foods and sweetened beverages
with a high fructose content correlates with an increased risk of
burden of lifestyle diseases. Notably, plant-based flavone pre-
vented high fructose–induced metabolic syndrome by inhibit-
ing the binding of KEAP1 to NRF2 [85]. While a good deal of
evidence has been accumulated to date, more studies are re-
quired to fully understand the effects of various dietary compo-
nents and specific foods on the NRF2–KEAP1 pathway and
links to human disease.

Klotho and hydrogen sulphide—emerging NRF2
activators

Klotho protects cells from inflammation and oxidative stress
and in mice klotho promotes longevity and protects against
CVD and CKD [86]. Klotho exerts its anti-ageing mechanism
via multiple mechanisms. Although the premature ageing phe-
notype of Klotho�/� mice has been attributed to the absence of
Klotho-mediated suppression of the insulin–insulin-like growth
factor-1 pathway [86], it was also reported that Klotho exerts its
protective effects by augmenting NRF2 expression and inacti-
vating NF-jB activation, both in vitro and in vivo [87]. Since

Table 1. Ranking NRF2 activating efficacy (based on an increase in the luminal signal in the AREc32 cell line) of 2 synthetic and 54 natural products

Potency Family Substance Source

1 CDDO-lm Synthetic
2 Diterpenoid Andrographolide Herbaceous plant
3 Diterpenoid trans-chalcone Tomato skin
4 Isothiocyanates Sulforaphane Broccoli
5 Zingiberaceae Curcumin Tumeric
6 Flavonoid Flavone Spices and red-purple plant foods
7 Diterpenoid Kahweol Coffee beans
8 Diterpenoid Carnosol Rosemary (herb)
9 tBHQ Synthetic

Natural compounds that did not activate NRF2: resveratrol and oleanolic acid. CDDO-lm, 2-cyano-3,12-dioxooleana-1,9(11)-diene-28-oic acid-limidazole; tBHW, tert-
butylhydroquinone.
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restored NRF2 activity reversed Klotho deficiency and attenu-
ated inflammation and oxidative stress in rats with CKD [88],
the relation between NRF2 and Klotho may be bidirectional.
Thus, as soluble Klotho protected against angiotensin II–medi-
ated apoptosis and senescence in human vascular smooth muscle
cells (VSMCs) via NRF2 [89], targeting NRF2 represents a novel
therapeutic strategy against VSMC dysfunction. Activation of
the NRF2 signalling pathway prevented hyperphosphataemia-
induced vascular calcification by inducing autophagy in
VSMCs [90].

Hydrogen sulphide (H2S), previously considered a toxic air
pollutant, is now recognized as an important signalling mole-
cule that modulates thiol-based redox switches that promote
anti-inflammatory and antioxidative effects [91]. The beneficial
effects of protein restriction on ageing in the animal kingdom

[92] are believed to be mediated by the sulphur-containing
amino acid methionine and activation of the trans-sulphuration
pathway. During cellular stress, H2S-mediated trans-
sulphuration of KEAP1 promotes nuclear translocation of
NRF2 and stimulates the NRF2–KEAP1 pathway. Since H2S
attenuates ageing-related kidney dysfunction by enhancing
NRF2 nuclear translocation [93] and attenuates VSMC calcifica-
tion via activation of NRF2–KEAP1 [94], this gas should be of
definite interest to nephrologists.

Synthetic NRF2 agonists

Among synthetic NRF2 activators, bardoxolone methyl
(BARD) has the highest potency towards NRF2 [95]. Dimethyl
fumarate (DMF) is the only Federal Drug Administration
(FDA)- and European Medical Agency (EMA)- approved drug
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FIGURE 4: An unhealthy lifestyle may, via continuous depression of NRF2, affect redox, protein and metabolic homoeostasis and increase the
risk of burden of lifestyle diseases. Whereas the typical Western diet seems to inhibit NRF2 cell defense pathways, diets based on bioactive
compounds and fermented products have been shown to activate this cytoprotective system. While physical activity stimulates NRF2–KEAP1
[77] and contributes to stress resilience, cigarette smoking [78] and psychological stress [79] blocks the protective expression of the NRF2–
KEAP1 pathway. NRF2 and KEAP1 can be seen as having a ‘yin and yang’ relationship in which graded inhibition of KEAP1 increased the ex-
pression of NRF2, which in turn increases the expression of hundreds of cytoprotective genes. A comprehensive overview of the molecular
mechanisms governing the functions of KEAP1 and NRF2 was published by Yamamoto et al. [5]. Studies need to test if the various synthetic
NRF2 stimulators (such as BARD) and KEAP1 inhibitors (such as itaconate) can protect against the plethora of inflammatory diseases that ac-
cumulate with age.
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currently registered as an NRF2 activator. It is used clinically
for the treatment of psoriasis and multiple sclerosis [41], but
since activation of NRF2 by DMF attenuated vitamin D3–
induced vascular calcification in an in vivo mouse model [96],
its role in the prevention of vascular stiffness deserves attention.
Among a number of synthetic triterpenoids based on oleanolic
acid, BARD has attracted interest in the renal community, since
it increases estimated glomerular filtration rate (eGFR) due to a
presumed increase in the glomerular surface area for filtration
and suppression of fibrosis, glomerulosclerosis and interstitial
fibrosis in rodent models of CKD. These renal protective effects
were confirmed when BARD increased eGFR in a study (Trial
to Determine the Effects of Bardoxolone Methyl on eGFR in
Patients With Type 2 Diabetes and Chronic Kidney Disease) of
type 2 diabetics with CKD Stage 3 [97]. However, when the
Bardoxolone Methyl Evaluation in Patients With Chronic
Kidney Disease and Type 2 Diabetes (BEACON) trial in 2185
type 2 diabetics with CKD 4 was terminated because of a signifi-
cant increase in congestive heart failure (CHF) in patients
treated with BARD [98], the interest was dampened. The
BEACON trial shows that NRF2 stimulation can have harmful
effects. Since the post hoc analysis shows that CKD 4 patients
who developed CHF had elevated mean B-type natriuretic pep-
tide concentrations before randomization (BARD modulation
of the endothelin pathway promotes acute water and sodium
retention), patients at increased risk could be identified [99].
The possibility to identify patients at risk for CHF together with
the post hoc analysis of BEACON, which showed that BARD
improved kidney function [100], has renewed the hope to arrest
progression of kidney disease with BARD. As the NRF2-
mediated oxidative stress pathway serves as the hub for clusters
of inflammation- and metabolism-related transcriptional net-
works associated with impaired kidney function from multiple
a etiologies [101], the NRF2–KEAP1 system seems to affect a fi-
nal common pathway of CKD progression independent of aeti-
ology. Clinical studies with BARD in patients with Alport
syndrome, immunoglobulin A nephropathy, autosomal domi-
nant polycystic kidney disease, type 1 diabetes and focal seg-
mental glomerulosclerosis are ongoing.

S U M M A R Y

To better identify new therapeutic targets for burden of lifestyle
diseases and decrease the gap between ‘lifespan’ and ‘health-
span’, we need a mechanistic-based approach linking prema-
ture ageing to a whole cluster of chronic inflammatory diseases
(geroscience) rather than the organ-based approach to disease
that we apply today. Accumulating evidence based on observa-
tions from survival mechanisms developed during evolution in
the animal kingdom and rare progeroid syndromes suggests
that low expression of the cytoprotective and DNA repair sys-
tem NRF2–KEAP1 contributes to an age-related diseasome. As
a master regulator of cellular homoeostasis, NRF2 represents an
attractive target for a cluster of chronic diseases characterized
by inflammation, oxidative stress and tissue hypoxia. The NRF2
‘drugome’ includes both nutraceuticals (such as sulphoraphane)
and synthetic NRF2 agonists (such as BARD). Better under-
standing of the biological function, activation and regulation of

NRF2–KEAP1 should help us identify the ‘sweet spot’ of opti-
mal activity and identify those patients in whom NRF2 should
be targeted with caution. Considering the physiological cluster-
ing of tissue hypoxia, senescence and a repressed NRF2–
KEAP1 system, it would be of interest to study whether a com-
bination of NRF2 agonists, senolytics [63] and drugs that re-
duce cortical renal hypoxemia, such as sodium glucose
cotransporter 2 inhibitors [102], would have salubrious effects
in CKD and other burden of lifestyle diseases than each therapy
in isolation (Figure 3).
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