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Bone marrow stem and progenitor cells can differentiate into
a range of non-hematopoietic cell types, including retinal
pigment epithelium (RPE)-like cells. In this study, we pro-
grammed bone marrow-derived cells (BMDCs) ex vivo by in-
serting a stable RPE65 transgene using a lentiviral vector. We
tested the efficacy of systemically administered RPE65-pro-
grammed BMDCs to prevent visual loss in the superoxide dis-
mutase 2 knockdown (Sod2 KD) mouse model of age-related
macular degeneration. Here, we present evidence that these
RPE65-programmed BMDCs are recruited to the subretinal
space, where they repopulate the RPE layer, preserve the photo-
receptor layer, retain the thickness of the neural retina,
reduce lipofuscin granule formation, and suppress microglio-
sis. Importantly, electroretinography and optokinetic response
tests confirmed that visual function was significantly improved.
Mice treated with non-modified BMDCs or BMDCs pre-pro-
grammed with LacZ did not exhibit significant improvement
in visual deficit. RPE65-BMDC administration was most
effective in early disease, when visual function and retinal
morphology returned to near normal, and less effective in
late-stage disease. This experimental paradigm offers a mini-
mally invasive cellular therapy that can be given systemically
overcoming the need for invasive ocular surgery and offering
the potential to arrest progression in early AMD and other
RPE-based diseases.
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INTRODUCTION
Systemic delivery of an adult cell population that has the ability to
home to dysfunctional tissue and differentiate into the correct cell
type would be amajor advance in therapeutic intervention for chronic
degenerative diseases. Hematopoietic stem cells and progenitor cells
offer such an approach because they are an endogenous source
of stem and progenitor cells, freely circulating throughout the
body, and are easily removed and re-administered.1,2 These bone
marrow-derived cells (BMDCs) can be used for autologous transplan-
tation and can be delivered to the systemic circulation via intravenous
injection, which is minimally invasive. Furthermore, BMDCs offer a
population of cells that can be manipulated ex vivo and have a
This is an open access article under the CC BY-N
>30-year history of established efficacy and safety in humans, as
shown by bone marrow transplantation.1,2 Additionally, more than
362 clinical trials using bone marrow (BM)-derived cells have been
registered with https://ClinicalTrials.gov, many of which have shown
efficacy in at least one clinical endpoint.

It is now well recognized that adult bone marrow-derived stem and
progenitor cells are not as lineage restricted as previously thought3

and have the capacity to differentiate into a number of non-hemato-
poietic cells, for example, in the heart (cardiomyocytes, vascular
smooth muscle cells, and myocardium),4–6 liver,7–9 pancreas,10 mus-
cle,11,12 and CNS (e.g., microglia and macroglia, oligodendrocytes,
neurons).13–15 The eye is no exception, and we and others have shown
that BMDCs have the capacity to differentiate into vascular endothe-
lial cells, pericytes, astrocytes, microglia, and retinal pigment epithe-
lial (RPE) cells.16–19 Although these events are relatively rare, they
occur in sufficient frequency to be detected by immunohistochem-
istry and can affect the physiology of the tissue. It has been proposed
that this plasticity represents an underlying reparative process in
response to tissue damage, and it is recognized that BMDCs are re-
cruited to sites of injury. However, the low level of differentiation
of BMDCs into non-hematopoietic lineages, even in the presence of
an acute injury, has rendered BMDCs of limited value for regenerative
medicine in the clinical setting. To address this, we have previously
reported that BMDCs can be programmed ex vivo using a lentiviral
vector to insert a stable RPE65 transgene, which encodes a protein
specific to RPE cell, to enhance differentiation to an RPE-like pheno-
type.20 We demonstrated that systemic delivery of these programmed
BMDCs in an acute mouse model involving chemical ablation of the
RPE cell layer regenerated an efficient and functional RPE layer that,
importantly, restored visual function in these animals.
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Figure 1. ERG Analysis Demonstrates Recovery of

Response to Flash Stimuli in SOD2-KD Mice

Treated with RPE65-Programmed BMDCs

C57BL6/J mice received subretinal injection of AAV1-Rz-

SOD2 or AAV1-Rz-inactive for 1, 3, or 6 months prior to

tail vein injections of naive BMDCs, LacZ-programmed

BMDCs (LV-LacZ), or RPE65-programmed BMDCs

(LV-RPE65). Scotopic full-field electroretinograms and

photopic electroretinograms were measured 3 months

after systemic delivery of BMDCs. Representative ERG

wave forms from dark-adapted mice in response to

flashes of intense white light (2.5 log cd-s/m2) are shown.

(A, E, and I) The typical average maximum a and b wave

ERG traces are shown for untreated normal, AAV1-

Rz-Inactive-treated mice, and SOD2-KD animals after

receiving naive BMDCs, LV-LacZ, or LV-RPE65. Scotopic

a and bwave of mice treated 1month (B andC), 3months

(F and G), and 6 months (J and K) post-SOD2-KD. Units

on the y-axes are microvolts. (F and G) Scotopic a and

b wave of mice treated 3 months post-SOD2-KD. Phot-

opic b wave of mice treated 1 month (D), 3 months (H),

and 6 months (L) post-SOD2-KD. Values are expressed

as mean ± SEM.
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Because RPE atrophy is a hallmark of age-related macular degenera-
tion (AMD), a leading cause of chronic visual loss in the elderly,21 we
now sought to determine if RPE65-programmed BMDCs could pre-
vent or slow the progression in a Sod2 knockdown animal model
that exhibits a chronic, progressive pathology with many of the fea-
tures of AMD.22,23 In this model, an adeno-associated virus (AAV)
expressing a ribozyme that targets the protective enzyme manganese
superoxide dismutase is injected beneath the retinas of adult mice. Pa-
thology includes morphologic changes in the RPE and Bruch’s mem-
brane, accumulation of oxidatively modified proteins, increased levels
of lipofuscin, RPE cell loss, and photoreceptor degeneration.22,23

These are all hallmarks of AMD.24,25 In this study, we were able to
demonstrate that systemically administered, RPE65-programmed
918 Molecular Therapy Vol. 25 No 4 April 2017
BMDCs localize to the subretinal space, repopu-
late the RPE layer, and restore visual function,
and this regeneration was most effective if
BMDC administration occurred early in the
progression of disease.

RESULTS
RPE65-Programmed BMDCs Ex Vivo

Prior to investigating the capacity of RPE65-
programmed BMDCs to repopulate the RPE
in the SOD2-KD model, we verified, using a
GFP-expressing control virus, that the lentivi-
ral vector used was capable of infecting
BMDCs with an efficiency of approximately
80% (Figures S1A and S1B). As we previously
reported, this results in an average SOD2
reduction of 50% compared with inactive ribo-
zyme control.22 We confirmed that transduc-
tion with the RPE65 lentiviral vector induced expression of RPE65
within 24 hr and, additionally, CRALBP, a marker of RPE cells
and Muller glia (Figures S1C–S1E).

RPE65-Programmed BMDCs Restore Visual Function in the

Sod2-Knockdown Mouse Model

By 1 month following Sod2 knockdown in the RPE, mice demon-
strated a significant loss of electroretinography (ERG) response, at
more than 75% (p < 0.01), compared with untreated animals, while,
animals receiving the inactive ribozyme demonstrated a robust
ERG response with strong a and b waves (Figure 1). This decreased
ERG response was maintained out to 6months following Sod2 knock-
down (Figure 1). Mice that received systemic RPE65-programmed



Figure 2. Visual Acuity Testing Demonstrates Recovery of Optokinetic Response in SOD2-KD Mice Treated with RPE65-Programmed BMDCs

C57BL6/J mice received subretinal injection of AAV1-Rz-SOD2 or AAV1-Rz-inactive for 1, 3, or 6 months prior to tail vein injections of naive BMDCs, LV-LacZ, or LV-RPE65.

Spatial frequency thresholds were calculated 3months after systemic delivery of BMDCs using an Optomotor behavioral test of optokinetic response. (A–C) A comparison of

average values for photopic activities in response to rotating sinusoidal gratings is shown for each group of mice (n = 5 per group) treated with cells (A) 1 month, (B) 3 months,

and (C) 6 months following SOD2 knockdown. Values are expressed as the mean ± SEM.
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BMDCs 1 month after Sod2 knockdown (early-stage degeneration)
demonstrated significant recovery of ERG response, which was man-
ifest in both the photopic and scotopic ERG (Figures 1A–1D). Such
recovery was not observed in Sod2-knockdown mice receiving naive
BMDCs or LacZ-programmed BMDCs. Mice that received systemic
RPE65-programmed BMDCs 6 months after Sod2 knockdown
(late-stage degeneration) demonstrated a modest but significant
recovery in ERG response (Figures 1I–1L) compared with mice
receiving naive BMDCs or LacZ-programmed BMDCs. Animals
receiving RPE65-programmed BMDCs 3 months after Sod2 knock-
down showed an intermediate ERG response between the 1- and
6-month groups (Figures 1E–1H).

AlthoughERG is a gold standard formonitoring electrical activity in the
retina, optokinetic response is commonly used in parallel, as it confirms
that the animals can actually see a moving target, in this case a rotating
grating. Whereas full-field ERG averages the electrical responses of the
whole retina, rescue of vision in part of the retina will be detected by the
optokinetic response. The spatial frequency of head turningwas greatly
reduced at all time points following Sod2 knockdown compared with
control mice (Figure 2). However, a significant improvement (>60%,
p < 0.05) in optokinetic response was observed in animals receiving
systemic RPE65-programmed BMDCs at both 1 and 3 months after
Sod2 knockdown (Figures 2A and 2B). No improvement was observed
in animals receiving systemic naive BMDCs or LacZ-programmed
BMDCs. No significant improvement was observed in animals
receiving RPE65-programmed BMDCs at 6 months after Sod2 knock-
down (Figure 2C). Collectively, these data indicate that treating early in
disease is likely to result in better recovery than treating at late stages,
which is current clinical practice in RPE transplantation studies.
RPE65-Programmed BMDCs Integrate into the RPE Layer of

Sod2-Knockdown Mice

We have previously confirmed that RPE65-programmed BMDCs
are recruited from the circulation and can restore the RPE layer
in mice pretreated with NaIO3 to ablate the RPE layer.20 Both
RPE flat mounts and retinal cross sections demonstrated GFP+

RPE65-BMDCs integrating into the existing RPE monolayer by
3 months after injection into the Sod2 knockdown model (Figure 3).
These GFP+ cells incorporated either as individual cells or as small
areas of three to seven cells and stained positive for both RPE65 and
CRALBP, both specific markers of RPE cells. We did not observe
GFP+ cells elsewhere in the neural retina or choroid at the time
points studied. Additionally, although we initially observed signif-
icant GFP expression in the spleen, we did not observe significant
expression of GFP in the lung, spleen, or bone marrow of mice
injected with BMDCs treated with TYF-RPE65 (a lentiviral vector
expressing RPE65) by 28 days after injection (Figure S2). Mice
receiving BMDCs transduced with a control lentivirus vector
(TYF-LacZ) did not demonstrate a significant signal (data not
shown).

Evaluation of the integrity of the RPE layer was determined by im-
munostaining RPE flat mounts for the tight junction protein ZO-1
(Figure 4A). ZO-1 demonstrated strong staining of the RPE lateral
cell membranes and excellent RPE integrity in normal untreated
eyes. However, RPE flat mounts from SOD2-knockdown animals
that received no BMDCs (data not shown) or LacZ-programmed
BMDCs showed weak ZO1 staining and a disorganized RPE layer
with cell loss and background autofluorescence consistent with lip-
ofuscin accumulation. By contrast, SOD2-knockdown animals that
Molecular Therapy Vol. 25 No 4 April 2017 919
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Figure 3. GFP+ BMDCs Expressing RPE65

Colocalize with the Host RPE and Express RPE

Markers

One month after SOD2-KD, animals were treated sys-

temically with naive BMDCs, LacZ-programmed BMDC,

or RPE65-programmed BMDCs. (A–C) Representative

fluorescent micrographs of flat-mounted posterior cups

RPE/choroid (A and B) and paraffin sections (C) were

stained for RPE65 (red) (A), CRALBP (B) (red), and GFP

(green) to demonstrate colocalization. Note the signifi-

cantly greater presence of GFP+ cells in animals receiving

RPE65-programmed BMDCs. The cross-section of the

RPE in (C) shows colocalized green (GFP+) and red

(RPE65 or CRALBP+) cells at the RPE layer. Note the

percentage of GFP+ cells that are mature and express

CRALBP is much higher in the animals receiving RPE65-

programmed BMDCs than in untreated control or LacZ-

programmed BMDCs.
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received RPE65-programmed BMDCs showed the typical ZO-1
staining of the host RPE lateral cell membranes, good RPE
morphology, and minimal background autofluorescence. GFP-pos-
itive RPE65-programmed RPE cells are clearly seen inserted in
the host RPE layer and show ZO-1 staining at their later mem-
branes (Figure 4A). On average, between 65% and 85% of the whole
RPE flat mount shows GFP+ cells, and this RPE cell density is high-
est in the nasal quadrants closest to the subretinal injection site.
Analysis of the number of BMDCs taken between 0.2 and
1.2 mm adjacent to the optic nerve head showed that up to 25%
of the total RPE population consisted of GFP+ cells in animals
receiving RPE65-programmed BMDCs, whereas this value was
only about 1% for LacZ-BMDC (Figure 4B). We previously showed
in a different model that RPE65-programmed BMDCs, once estab-
lished on Bruch’s membrane, are capable of photoreceptor outer
segment phagocytosis.20 Immunostaining demonstrates rhodopsin-
positive phagosomes within the RPE of both host and GFP+ donor
cells (Figures 4C and 4D).
920 Molecular Therapy Vol. 25 No 4 April 2017
RPE65-Programmed BMDCs Reduce

Retinal Pathology in the Sod2-Knockdown

Mouse Model

Pathology was similar to that reported by Justi-
lien et al.22 (Figure S3). One month after Sod2
knockdown, the retinas began to exhibit loss
of pigmentation in the RPE. The neural
retina appeared relatively normal at this stage,
although some disorganization of the inner
and outer photoreceptor segments could be
observed. At 3 months following Sod2 knock-
down, more pronounced changes to the RPE,
such as vacuole formation and atrophy, were
observed, together with shortening and disorga-
nization of the outer and inner segments of the
photoreceptors (Figure S3), and this became
progressively more severe by 6 and 9 months
following Sod2 knockdown. Mice treated with control naive BMDCs
or BMDC-LacZ demonstrated similar progressive pathology to that
of untreated Sod2-knockdown mice, irrespective of the time adminis-
tered following Sod2 knockdown (Figures 5A–5C). In contrast, mice
receiving RPE65-programmed BMDCs demonstrated a mature,
highly pigmented epithelial layer with RPE morphology consistent
with the normal controls across all time points of systemic adminis-
tration following Sod2 knockdown (Figures 5A and 5C, insets).
Furthermore, the morphology of the neural retina was greatly
improved in animals receiving RPE65-programmed BMDCs
compared with controls. Reduced thinning of both the inner and
outer retina was observed in mice treated with RPE65-programmed
BMDCs at 1, 3, and 6 months after Sod2 knockdown (Figures 5
and S4). Preservation of the photoreceptor layer and inner retina
was most pronounced when mice were treated 1 month after Sod2
knockdown and was comparable with that of a normal eye. However,
as can be seen in Figures 5C and S4F, when RPE65-programmed
BMDCs were administered after the disease phenotype had fully



Figure 4. RPE65-Programmed BMDCs Enhance

Host RPE Morphology and Phagocytose

Photoreceptor Outer Segments

Representative photomicrographs are from animals

that received subretinal AAV1-Rz SOD2 for 1 month and

were then treated systemically with null BMDCs, LacZ-

BMDCs, or RPE65-programmed BMDCs. Eyes were

assessed 3 months later. (A) Immunostaining for the

tight junction protein, ZO-1 (red), and co-distribution with

BMDC-GFP+ cells in RPE flat mounts from normal

untreated animals and SOD2-knockdown animals that

received either LacZ- or RPE65-programmed GFP+

BMDCs (green). Animals receiving RPE65-programmed

BMDCs showed the typical ZO-1 staining of the host RPE

lateral cell membranes, while the RPE was disorganized,

compared with control, in animals receiving LacZ-pro-

grammed BMDCs. (B) Quantification of BMDC-GFP+

cells per unit area of a RPE flat mount taken between

0.2 and 1.2 mm adjacent to the optic nerve head. Up to

25% of the total RPE population consisted of GFP+

cells in animals receiving RPE65-programmed BMDCs,

whereas this value was only about 1% for LacZ-BMDCs

(mean ± SEM). (C) Immunostaining for rhodopsin in retinal

tissue sections from untreated animals showing intense

rhodopsin staining in the photoreceptor outer segments

above the RPE and in phagosomes within the RPE.

(D) High-magnification photomicrographs of the RPE

from untreated animals and SOD2-knockdown ani-

mals that received either LacZ- or RPE65-programmed

BMDCs showing phagosomes (red, arrows) both within

the host RPE and in GFP+ RPE65-programmed BMDCs

that have localized to the RPE layer.

www.moleculartherapy.org
developed, although the RPE layer appeared to be restored to a near
normal state, a significant reduction in the photoreceptor layer was
not recovered by treatment with RPE65-programmed BMDCs. Over-
all these data highlight that (1) early intervention prevents disease
progression, whereas late intervention in advanced diseases shows
only modest retinal regeneration, and (2) despite considerable
improvement in retinal morphology in late-stage disease, recovery
of visual function was only minimal.

Accumulation of the autofluorescent age pigment lipofuscin in the
RPE is a characteristic of aging and AMD,26 and as we previously
reported, lipofuscin accumulation is a key feature in the Sod2-knock-
down model.22,27 Sod2 knockdown resulted in a 6-fold increase in
autofluorescence by 6 months, which was reduced 2.6-fold by treat-
ment with RPE65-programmed BMDCs but not naive BMDCs or
LacZ-programmed BMDCs (Figures 6A and 6B). A second feature
of AMD is the appearance of activated microglia in the subretinal
space.28,29 Here, we show in retinal flat mounts
a significant numbers of Iba1+ microglia
6 months after Sod2 knockdown, and these
Iba1+ cells exhibited morphological charac-
teristics of ramified and activated microglia
(Figure 6C). Animals treated with RPE65-pro-
grammed BMDCs demonstrated a significant >2.5 fold reduction in
Iba1+ cells that was not observed in mice treated with either naive
BMDCs or LacZ-programmed BMDCs (Figures 6C and 6D). Because
SOD2 plays a vital role in cellular defense against oxidative damage
we assessed 4-hydroxynonenal (4-HNE) in tissue sections. Immuno-
histochemistry demonstrated that RPE65-programmed BMDCs re-
sulted in a reduction in 4HNE in the retina compared with mice
receiving null BMDCs or LacZ-BMDCs (Figure 6E).

DISCUSSION
AMD is a leading cause of severe, irreversible central vision loss
affecting more than 1.7 million Americans.30 There are two forms
of AMD: neovascular or “wet” AMD, which represents the most se-
vere form of the disease and affects about 15% of patients with
AMD and can be treated with anti-VEGF therapies, and the atrophic
or “dry” form, which affects 85% of patients with AMD and for which
there is currently no treatment. Advanced dry AMD is characterized
Molecular Therapy Vol. 25 No 4 April 2017 921
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Figure 5. SOD2-KD Mice Treated with RPE65-

Programmed BMDCs Show Improved Retinal

Morphology

(A–C)C57BL6/Jmice receivedsubretinal injectionofAAV1-

Rz-SOD2orAAV1-Rz-inactive1month (A), 3months (B), or

6 months (C) prior to tail vein injections of naive BMDCs,

LV-LacZ, or LV-RPE65. Histology was assessed 3 months

after systemic delivery of BMDC. Photomicrographs are

representative of 10 mM cross-sections of the retina/

choroid/sclerastainedwithH&E. Inserts showhigherpower

images of the RPE layer. It is evident that systemic admin-

istration of RPE65-programmed BMDCs shows normal

retinal thickness and near normal RPE morphology, which

is not apparent in eyes receiving either naive BMDCs or

LV-LacZ. RGC, retinal ganglion cell layer; INL, inner nuclear

layer; ONL, outer nuclear layer.
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by geographic atrophy and loss of the RPE in the central retina, fol-
lowed by subsequent degeneration of overlying photoreceptor cells.
There is currently no reliable therapy for dry AMD. Two broad ap-
proaches, antioxidants and cellular therapy, have been used to address
this major clinical problem. One established cell therapy involves RPE
cell transplantation or replacement and represents a realistic strategy
in the treatment of retinal degeneration,31,32 as it involves one cell
type and does not require the re-establishment of neural networks.

Both freshly isolated and cultured RPE cells have been transplanted
into the subretinal space of animal models and AMD patients.31–33

Although success has been observed in animal models with both inte-
gration of cells into the RPE layer and recovery of vision,31,32 results
have been limited in humans, with either a halt in progression or only
one or two lines of improvement.31,32 The poor outcomes have several
explanations: (1) the invasive surgery required to prepare the subre-
tinal space; (2) late-stage disease is associated with marked loss of
RPE and photoreceptors; (3) a change in myeloid activation and
glia activation in the aging retina, or (4) the source of RPE (i.e.,
advanced donor age).31,34 To overcome some of these problems, hu-
man embryonic stem cells (hESCs) or induced pluripotent stem cell
(iPSC)-derived RPE cells have been used for subretinal transplanta-
tion.33,35,36 Studies have reported success with both hESC- and
iPSC-derived RPE in restoring vision in animal models,35,36 but
although these RPE cell transplants in humans do not result in rejec-
tion or hyperproliferation, vision was not greatly enhanced post-
transplantation.35 Although extremely promising, concerns remain
regarding genetic stability, and this approach does not overcome
922 Molecular Therapy Vol. 25 No 4 April 2017
the necessity to invade the subretinal space or
limitations in disseminating cells across the
fundus. In 2015, an experimental study in
Japan was halted because of unanticipated mu-
tations accumulated in the iPSC-derived RPE
cells (http://www.nature.com/nbt/journal/v33/
n9/full/nbt0915-890.html). In general, however,
transplantation of RPE cells has been safe, and
that was the goal of the early-stage clinical trials.
Perhaps most important, the requirement for subretinal administra-
tion of human ESC/iPSC-derived RPE will not easily overcome the
ethical problems associated with using this approach to treat early
AMD, when the microenvironment is less hostile and there is only
minimal loss of overlying photoreceptors. Thus, our approach of sys-
temic delivery of adult cells that have the ability to home to dysfunc-
tional tissue (RPE) in early-stage AMD and to differentiate into the
correct cell type represents a major advance in the early therapeutic
intervention of this chronic vision threatening degenerative disease.
Furthermore, the systemic approach is potentially more amenable
to repeat treatments.

Here, in addition to confirming our previously published data
showing that RPE65-programmed BMDCs are capable of repairing
damaged RPE, protecting the photoreceptor layer, and retaining
retinal thickness,20 we have extended the model to include a closer
representation of the pathophysiology of human dry AMD, the
Sod2-KD model. We show that systemically administered RPE65-
programmed BMDCs can traverse across the retina into an intact,
albeit dysfunctional host RPE monolayer, either as individual cells
or small clumps, and that this is sufficient to retain visual function,
maintain the photoreceptor layer, preserve neural retina thickness,
maintain phagocytosis of photoreceptor outer segments, reduce
oxidative damage, suppress lipofuscin formation, and reduce micro-
gliosis. It is not clear to what extent these beneficial effects are due to
BMDCs’ forming a functional RPE (we show ZO-1 staining and outer
segment uptake), BMDCs’ secreting neuroprotective factors (e.g.,
PEDF or neurotrophins),37,38 or a combination of the two. Not
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Figure 6. RPE65-Programmed BMDCs Reduce

Lipofuscin Accumulation, Microglial Changes, and

Oxidative Damage in SOD2-Knockdown Mice

C57BL6/J mice received subretinal injection of AAV1-Rz-

SOD2 or AAV1-Rz-inactive for 1, 3, or 6 months prior to

tail vein injections of naive BMDCs, LV-LacZ, or LV-

RPE65. Lipofuscin accumulation and microglial changes

were assessed 3 months after systemic delivery of

BMDC. (A) Spectral profile study analyzed from lambda

scan for autofluorescence. Mean peaks located at an

emission wavelength of 523–573 nM. (B) Quantification of

autofluorescence in the RPE layer by lambda scan

showing a 6-fold induction of lipofuscin in the RPE of

SOD2-knockdown animals and a >2-fold reduction of

lipofuscin autofluorescence in the RPE of animals

receiving RPE65-programmed BMDCs (p < 0.05; mean ±

SEM; n = 5). (C) Representative confocal fluorescence

micrographs from flat-mounted retina showing that the

inactive Rz control retina contains just a fewmicroglia that

are scarcely distributed in the retina, while the retinas of

SOD2-KD animals demonstrate a significant increase in

the presence of microglia in the retina. This increase in

retinal microglia staining was not suppressed in eyes

treated with LacZ-programmed BMDCs but was greatly

decreased in animals receiving RPE65-programmed

BMDCs. (D) Quantitative analysis showed a 3-fold

upregulation in microglia staining following SOD-KD,

while animals treated with RPE65-programmed BMDCs

showed a greater than 50% decrease in microglia

compared with eyes treated with LacZ-programmed

BMDCs (p < 0.05; mean ± SEM; n = 5). (E) Immunohis-

tochemical detection of 4-HNE as a marker of oxidative

stress 3 months after BMDC treatment. The representa-

tive photomicrographs show a low level of 4-HNE im-

munostaining (red) in the retinas of animals receiving

inactive ribozyme alone, while SOD2-knockdown retinas

showed a dramatic increase in 4-HNE staining that was

not reduced by treatment with null BMPCs or LV-LacZ.

However, 4-HNE staining was dramatically reduced in the

retinas of SOD2-knockdown animals receiving RPE65-

programmed BMDCs.
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surprisingly, RPE65-programmed BMDC administration was most
effective in early disease, with visual function and retinal morphology
returning to near normal levels, and much less effective in late-stage
disease, in which BMDCs were attempting to repair more severe pa-
thology. Taken as a whole, our results suggest that RPE65-pro-
grammed BMDCs have a therapeutic effect on many aspects of dry
AMD development. Naive BMDCs or BDMCs pre-programmed
with LacZ did not exhibit significant improvement in visual deficit.

Twomajor concerns with regard to this type of systemic treatment are
localization of BMDCs to other organs and the potential for cell
fusion. The most likely localization of adoptively transferred BMDCs
will be the lung, spleen, and bone marrow. However, by both 7 and
28 days following administration, GFP expression (sensitive to ten
cells) was not significantly expressed in either lung or bone marrow.
There was some localization to the spleen at 7 days, but this had
declined to baseline at 28 days following administration. Animals
receiving BMDCs did not demonstrate any systemic symptoms at
any of the time points studied. Although our findings are promising,
a number of studies have highlighted that apparent re-differentiation
may result from cell fusion, leading to subsequent tissue regeneration
following treatment, as opposed to true fate switching of the cells.39–45

We have previously excluded the possibility of cell fusion, however, by
the use of fluorescent in situ hybridization to support the absence of
any BMDC fusion with host RPE,20 and there is little doubt that
BMDCs are recruited to sites of injury. In addition, it has been pro-
posed that the bone marrow contains cells expressing early markers
of non-hematopoietic cell types that are recruited to and promote
regeneration of non-hematopoietic tissue types upon injury to that
tissue.6,11 Howell et al.46 reported that cells termed “universal plurip-
otent stem cells”may be present in a number of tissues, including the
brain and the blood, which have the ability to generate cell types of a
different lineage from the tissue in which they reside under conditions
which support such differentiation; that is, cellular differentiation
Molecular Therapy Vol. 25 No 4 April 2017 923
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occurs when cells are in the correct microenvironment for the cell
type they are capable of becoming.

As successful fate switching of adult stem cells is inextricably linked to
the expression of markers present early in the development of the in-
tended cell type, cellular transcriptional status, and microenviron-
ment,6,46,47, our one-step protocol is thought to be successful because
of: (1) upregulation of a gene, RPE65, that is expressed in both early
RPE development and in terminally differentiated RPE cells; (2) the
fact that RPE65 encodes a protein (all-trans-retinyl-ester hydrolase)
that modulates retinoic acid, a transcriptional regulator and inducer
of differentiation;20 and (3) recruitment of the cells from the blood-
stream to the vasculature of the eye. We propose that the local micro-
environment in the eye “completes” the differentiation of BMDCs
into fully functional RPE-like cells following RPE-layer infiltration
and are currently investigating the role of RPE65 in promoting
RPE65-programmed BMDCs retention in the eye.

Given that expression of a single gene is capable of promoting differ-
entiation of BMDCs into RPE-like cells, we believe that it may be
possible to generate other cell types from BMDCs using a similar pro-
cess. Photoreceptor specific genes could be used to enhance differen-
tiation of progenitors capable of regenerating photoreceptors in
addition to treating dry AMD or inherited retinal degenerations,
for example. Alternatively, cell type-specific gene expression could
be used to target other disorders involving tissue degeneration. Theo-
retically, it may be possible that any cell type could be generated from
BMDCs by applying the principles used to select the RPE65 gene, as
long as the modified cell is recruited to the microenvironment correct
for the target cell type in vivo. Attempting to generate tissue in a cell
culture setting with modified BMDCs is perhaps not as likely to be
successful if the cell must be in its natural microenvironment for
the differentiation process to be finalized; therefore, modified BMDCs
should perhaps be tested in vivo during the early stages of developing
the modification strategy as opposed to characterizing cells in vitro as
is typical of current iPSC technology. Indeed, we have never observed
the generation of an RPE-like layer with RPE65-programed BMDCs
in vitro, yet the cells are clearly capable of forming one in vivo.

In conclusion, we have shown that genetically modified BMDCs are
recruited to sites of cellular dysfunction and are able to reverse pathol-
ogy. Not surprisingly, prevention of pathology by administration at
the early stages of disease was far more effective than administration
of programed BMDCs in late stages of disease with severe pathology.
Thus, modified BMDCs may provide an ideal therapy not only or
AMD but also other degenerative diseases, provided the correct pro-
gramming strategy can be identified.

MATERIALS AND METHODS
Materials

EasySep Mouse Hematopoietic Progenitor Cell Enrichment Kit
and EasySep Mouse SCA1 Positive Selection Kit were purchased
from STEMCELL Technologies. DMEM (high glucose) was pur-
chased from Life Technologies. Polybrene and paraformaldehyde
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were ordered from Sigma-Aldrich. The antigen retrieval solution
Rodent Decloaker 10� was purchased from Biocare Medical. For
the antibodies, anti-RPE65 (catalog sc-73616) was from Santa Cruz
Biotechnology; anti-CRALBP (MA1-813) was from Thermo Scienti-
fic; microglia detection antibody, anti-Iba1 (019-19741), polyclonal,
rabbit was purchased fromWako Chemicals USA; and the secondary
antibody with Alexa Fluor 594 (Z25007) was from Invitrogen. All sec-
tions were mounted with Vector Shield medium from Vector
Laboratories.

Animals

All animal studies were conducted under protocols approved by the
Institutional Animal Care and Use Committees at Indiana University
and the University of Florida and in accordance with guidelines set
forth by the National Institutes of Health and the Statement for the
Use of Animals in Ophthalmic andVisual Research of the Association
for Research in Vision andOphthalmology. Adult (7- to 10-week-old)
female C57BL/6J mice and homozygous GFP transgenic (C57BL/
6-Tg [UBC-GFP]) were purchased from Jackson Laboratories. For
ocular injections and electroretinography, mice were anesthetized
by ketamine (72 mg/kg)/xylazine (4 mg/kg) intraperitoneal injection
with topical anesthesia using proparacaine hydrochloride. Mice were
euthanized by isoflurane in a desiccation chamber in the fume hood
flowing by cervical dislocation.

Preparation of RPE65-Programmed BMDCs

We programmed BMDCs ex vivo by inserting a stable RPE65
transgene using a lentiviral vector. In brief, Lin�Sca1+ BMDCs were
isolated aseptically from bone marrow from tibiae and femurs of
GFP+ mice according to our standard protocol20 using EasySep
Mouse Hematopoietic Progenitor Cell Enrichment Kit followed by
EasySep Mouse Sca1 Positive Selection Kit. Lentiviral constructs ex-
pressing RPE65 (TYF-RPE65) and LacZ (TYF-EZ-LacZ) were pre-
pared as previously described.20 Lin�Sca1+ BMDCs were suspended
in DMEM (high glucose), polybrene (8 mg/ml) plus 10% fetal bovine
serum to a final cell concentration of 5 � 104 cells/mL. For the infec-
tion, the BMDCs were split into three 1 � 105 cell aliquots. Two ali-
quots were infected with 5 mL of recombinant lentivirus expressing
TYF-EZ-LacZ or 2 mL of lentivirus expressing TYF-RPE65 respec-
tively at a multiplicity of infection of �50. The third aliquot received
5 mL of PBS (pH 7.4) as vehicle control. After washing and resuspen-
sion, cells were injected into mice as described below.

Subretinal Injection

C57BL/6J mice were anesthetized with a mixture of ketamine and xy-
lazine; phenylephrine and a topical anesthetic were applied to the
eyes. All procedures were performed under a Nikon high-resolution
dissecting microscope. We used a 28-gauge blunt-tipped needle
with bevel up to puncture the pars plana to make an opening into
the vitreous cavity. Then, a 33-gauge blunt needle was inserted
through the opening made into the vitreous chamber. Subsequently,
the needle was angled to point slightly nasally and guided posteriorly
into the eye toward the injection site. Upon penetration of the retina,
1 mL of sample with fluorescein mixture was slowly deposited
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subretinally, and the small retinal bleb formed was visible with the
green fluorescein located subretinally.

Generation of SOD2-Knockdown Mice

The right eyes of C57BL/6J mice were injected subretinally with 1 mL
of 2.5 � 1012 particles/mL of recombinant AAV1 constructs on the
basis of the pTR-UF2 vector expressing SOD2-specific hammerhead
ribozyme, Rz432, driven by RPE-specific VMD2 promoter (AAV1-
Rz-SOD2), to drive ribozyme gene expression efficiently in the RPE
layer as previously described.22 Control injections of rAAV-inactive
ribozyme (AAV1-Rz-inactive) were performed in the right eyes of
additional animals. The inactive ribozyme, although catalytically
inert, retains sequence complementarity to Sod2 mRNA and thus
may retain some limited antisense activity.

Systemic Administration of BMDCs

At 1, 3, and 6 months following SOD2-knockdown mice received a
systemic injection of 5 � 104 Lin�Sca1+GFP+ BMDCs (either naive
BMDCs, BMDC-LacZ, or BMDC-RPE65) in 100 mL of sterile saline
systemically administered into the tail vein (n = 5 per group). Nega-
tive controls included injection of the inactive ribozyme and un-
treated age-matched wild-type C57BL/6J mice.

Visual Function Tests

Two visual function tests were performed 3 months following injec-
tion of BMDCs: ERG and optokinetic nystagmus (OKN) response,
as previously described.29,48

For ERG, mice were dark-adapted overnight, and full-field electrore-
tinograms were recorded with a visual electrodiagnostic system
(UTAS-E 2000; LKC Technologies) using gold wire loop electrodes
placed on each cornea and a reference electrode placed subcutaneously
between the eyes. Scotopic rod recordings were performed with stim-
uli presented at intensities of 0.025, 0.25, and 2.5 log cd-s/m2 at 10, 20,
and 30 s intervals, respectively. Ten responses were recorded and
averaged at each light intensity. Photopic cone recordings were per-
formed after mice were light-adapted to a white background light of
100 cd-s/m2 for 5 min. Recordings were performed with four
increasing flash intensities of 0, 5, 10, and 25 log cd-s/m2 in the pres-
ence of a constant 100 mcd-s/m2 rod suppressing background light.
Fifty responses were recorded and averaged at each intensity. The a
waves were measured from the baseline to the peak in the cornea-
negative direction, and b waves were measured from the cornea-nega-
tive peak to themajor cornea-positive peak. ERG data are presented as
comparisons between treatment conditions for the mean of the max-
ima for a wave and b wave responses.

To evaluate the optokinetic response, we used a computer-based
visual acuity response test (OptoMotry 1.7.7; Cerebral Mechanics).
In brief, mice were tested for visual acuity by observing optokinetic
responses of mice to rotating sinusoidal gratings.48 Mice were placed
on the platform and allowed to settle for 2 min. The virtual drum was
rotated for 1 min, and the mice were observed for a head-tracking
response. Initially, the 100% contrast pattern had a spatial frequency
of 0.200 cycles/degree for both directions of rotation. The OptoMotry
program changed spatial frequency on the basis of the observer’s re-
sponses and tracked the responses according to direction of pattern
rotation to assess the two eyes independently.

Immunohistochemical Analysis of RPE65 and CRALBP Protein

Expression in BMDCs Ex Vivo

For immunohistochemistry, BMDCs-RPE65 and controls were
cultured overnight at 37�C, and the following day, cells were washed
with PBS and fixed in freshly prepared 4% paraformaldehyde. After
three washes in PBS, cells were permeabilized with 0.1% Triton
X-100 for 10 min at room temperature. Samples were then blocked
by incubation with 5% normal goat serum in PBS for 1 hr at room
temperature and incubated with mouse anti-RPE65 (1:200 in block-
ing solution) (Santa Cruz Biotechnology) and mouse anti-CRALBP
(1:200) (Thermo Scientific) overnight at 4�C. Cells were then incu-
bated with Alexa Fluor 594 goat anti-mouse IgG (1:600 in blocking
solution) (Invitrogen) for 1 hr at room temperature. After extensive
washing with PBS, cells were mounted with VectaShield DAPI (Vec-
tor Laboratories) for nuclear staining. Negative control samples were
processed with the omission of the primary antibody. The cells were
examined using an Axiovert 135 fluorescence microscope (Carl Zeiss)
with identical settings for laser intensity, gain, and so on.

Flat-Mount RPE and Neural Retina Imaging

Eyes were enucleated and cleaned of fat and muscle, and the lens, vit-
reous, and cornea were carefully removed. Four shallow incisions
were then made in the eyeball, allowing for separation of the retina
from the RPE/choroid with minimal cross-contamination. The
RPE/choroid was then flattened on a glass slide with the RPE facing
upward and gently covered with a glass coverslip. The same proced-
ure was carried out for the retina.

Quantitative RT-PCR for Localization of BMDCs in Different

Tissues

C57BL6/J mice received 50,000 GFP+ BMDCs transduced with TYF-
RPE65 or the control TYF-LacZ virus via tail vein injection 7 and
28 days prior to sacrifice and organ harvest. Lung, spleen, and bone
marrow were harvested immediately and incubated at 4�C overnight
in 5 volumes of RNALater (Life Technologies). Up to 30 mg of tissue
was homogenized in RLT Lysis Buffer (Qiagen), and mRNA was iso-
lated as per directions for animal tissue using the Qiagen RNAEasy
Mini Kit. Following isolation, mRNA was quantified (ThermoScien-
tific NanoDrop 2000), and cDNA was synthesized from 1 mg RNA
per sample as per directions using iScript Reverse-Transcription
Supermix (BioRad). To quantify GFP expression in all tissues by
qRT-PCR, 1 mL cDNA per sample was combined with 5 mL SsoFast
Advanced (BioRad), 3.5 mL dH2O, and 0.5 mL each of GFP forward
(AAGCTGACCCTGAAGTTCATCTGC) and GFP reverse (CTTGT
AGTTGCCGTCGTCCTTGAA) primers (10 mM stock; Integrated
DNA Technologies), or 0.5 mL GAPDH primer (BioRad PrimePCR
GAPDH, Mmu) as an internal control, and run on the BioRad
CFX96 qRT-PCR machine as per manufacturer’s directions (SsoFast
Advanced, BioRad). GFP expression was calculated as fold of control
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using the 2-DDCT method. The sensitivity of this method is sufficient
to detect as few as ten cells in a tissue sample.

Histological Analysis

Eyes were fixed with 4% paraformaldehyde (Wako) and embedded in
paraffin, and 10-mm sections were stained with hematoxylin and
eosin according to standard protocols. For histological sections, we
view a complete cross-section of the retina, but measurements were
taken between 0.2 and 1.2 mm adjacent to the optic nerve head.
The thickness of the neural retina (from inner limiting layer to
photoreceptor inner/outer segments) was evaluated as previously
described.20

Immunofluorescence and Immunostaining

Retina and RPE/choroid flat mounts, and embedded sections, were
deparaffinized and processed for antigen-epitope retrieval. Samples
were incubated in a streamer autoclave at 120�C for 10 min in antigen
retrieval solution (Histofine, Nichirei Biosciences) and then allowed
to cool. Sections were then incubated with protein-blocking serum-
free solution (Dako). For double staining, the anti-RPE65 and
anti-CRALBP antibodies (Calbiochem) were added to the slides
and incubated overnight at 4�C. We also stained additional sections
with the following antibodies: anti-4 hydroxynonenal antibody
(catalog #STA-035, Cell Biolabs), anti-rhodopsin antibody (catalog
#ab3267, Abcam), and anti-ZO-1 antibody (catalog #40-2300,
Thermo Fisher Scientific). After washing the slides the following
day, the secondary antibodies Alexa Fluor-labeled (594 nm) and
red goat anti-rabbit IgG (Molecular Probes) were added and incu-
bated at room temperature for 1 hr. Slides were washed, and anti-
fade reagent with DAPI (Prolong Gold antifade reagent with DAPI,
Molecular Probes) was added. Pictures were taken within 24 hr using
a fluorescence microscope (Leica). Confocal imaging was taken by us-
ing an Olympus Fluroview unit and an Olympus BX50 confocal mi-
croscope (Olympus).

Statistical Analysis

All experiments were repeated at least three times. Results are
expressed as mean ± SEM. Unpaired two-tailed Student’s t test and
ANOVAwith Bonferroni post hoc tests were carried out to determine
significance of results in the ex vivo assay (Figure S1), in vivo assays,
and all functional tests. Statistical analysis was performed using Prism
5 version 5.01 (GraphPad Software) with p values < 0.05 considered to
indicate statistical significance.

SUPPLEMENTAL INFORMATION
Supplemental Information includes four figures and can be found
with this article online at http://dx.doi.org/10.1016/j.ymthe.2017.
01.015.
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