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Graphene, as a novel category of carbon nanomaterials, has attracted a great attention

in the field of drug delivery. Due to its large dual surface area, graphene can efficiently

load drug molecules with high capacity via non-covalent interaction without chemical

modification of the drugs. Hence, it ignites prevalent interests in developing a new

graphene/graphene oxide (GO)-based drug delivery system (GDDS). However, current

design of GDDS primarily depends on the prior experimental experience with the

trial-and-error method. Thus, it is more appealing to theoretically predict possible GDDS

candidates before experiments. Toward this end, we propose to fuse quantum genetic

algorithm (QGA) and quantum mechanics (QM)/semi-empirical quantum mechanics

(SQM)/force field (FF) to globally search the optimal binding interaction between the

graphene/GO and drug in a given GDDS and develop a free computational platform

“e-Graphene” to automatically predict/screen potential GDDS candidates. To make this

platform more pragmatic for the rapid yet relatively accurate prediction, we further

propose a cascade protocol via firstly conducting a fast QGA/FF calculation with fine

QGA parameters and automatically passing the best chromosomes from QGA/FF to

initialize a higher level QGA/SQM or QGA/QM calculation with coarse QGA parameters

(e.g., small populations and short evolution generations). By harnessing this platform

and protocol, systematic tests on a typical GDDS containing an anticancer drug

SN38 illustrate that high fabrication rates of hydroxyl, epoxy, and carboxyl groups

on a pristine graphene model will compromise the stability of GDDS, implying that

an appropriate functionalization rate is crucial for the delicate balance between the

stability and solubility/biocompatibility of GDDS. Moreover, automatic GDDS screen

in the DrugBank database is performed and elicits four potential GDDS candidates

with enhanced stability than the commonly tested GDDS containing SN38 from the
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computational point of view. We hope that this work can provide a useful program

and protocol for experimental scientists to rationally design/screen promising GDDS

candidates prior to experimental tests.

Keywords: graphene, graphene-based drug delivery system, GDDS, prediction, quantum genetic algorithm,

cascade protocol, QGA

INTRODUCTION

Pristine graphene, discovered by Geim and Novoselov, is a two-
dimensional (2D) nanomaterial consisting of a single layer of
carbon atoms (Novoselov et al., 2004). It has gained tremendous
interests in various research areas (e.g., energy storage and
sensors) due to its unique and impressive electrical, thermal,
and mechanical properties (Novoselov et al., 2012; Lightcap and
Kamat, 2013; Wassei and Kaner, 2013; El-Kady et al., 2016;
Georgakilas et al., 2016; Aditya et al., 2017; Yu et al., 2017).
Meanwhile, graphene has large dual surface area and high loading
capacity, excellent chemical and mechanical stability, and good
solubility and biocompatibility after simple fabrication on the
surface, consequently graphene and its common derivatives, such
as graphene oxides (GO) have exhibited considerable potential in
the drug delivery (Chung et al., 2013; Mao et al., 2013; Yang et al.,
2013; Goenka et al., 2014; Xianfeng and Feng, 2014; Reina et al.,
2017; Ghosal and Sarkar, 2018; Mohammad Omaish et al., 2019).

In 2008, Dai group reported the first case of using GO as
a nanocarrier to transport an anticancer drug SN38 (Liu et al.,
2008). In their work, they demonstrated that SN38 indeed binds
non-covalently with GO to form a stable GO/SN38 complex
that affords remarkable activity with IC50 of about 6 nM for
HCT116 cell line; hence, this pioneering work opens up a novel
application of graphene/GO in the field of drug delivery system.
Since then, more and more research works on the non-covalent
graphene/GO-based drug delivery system (GDDS) are surging
and summarized in the comprehensive reviews (Sun et al.,
2008; Yang et al., 2008, 2016; Pan et al., 2012; Liu et al., 2013;
McCallion et al., 2016; Shim et al., 2016; Zhang et al., 2017;
Yi et al., 2019). However, current design of GDDS still highly
relies on the traditional trial-and-error approach. Hence, it will
be more efficient if GDDS can be evaluated or predicted with the
computational methods before experiments.

Regarding the computational predictions of GDDS, molecular
dynamics (MD) simulation and quantum mechanics (QM)
programs are powerful to accurately investigate the non-bonded
interaction between the graphene/GO and ligand for a given
GDDS (Gráfová et al., 2010; Ramraj and Hillier, 2010; Calero
et al., 2013; Cho et al., 2013; Guo et al., 2013; Vovusha et al., 2013,
2018; Mudedla et al., 2014; Vincent and Hillier, 2014; Wang et al.,
2015; Mahdavi et al., 2016, 2020; Krepel and Hod, 2017; Safdari
et al., 2017; Ajala et al., 2019; Alkathiri et al., 2019; Azhagiya
Singam et al., 2019; Mason et al., 2019). However, both MD
and QM methods are usually time-consuming, need to know a
reasonable initial binding mode between the graphene/GO and
ligand before calculations and tend to entrap the graphene/GO
and ligand in a local minimum. To increase the chance of
escaping from the local minimum, meta-dynamics (MTD)

simulation method (Laio and Parrinello, 2002) is one of the most
popular enhanced sampling methods (Bernardi et al., 2015) and
extensively employed to promote the crossing of high energetic
barriers via gradual additions of the Gaussian potential over time.
According to the MTD method, the Grimme group developed
a very useful conformation search program CREST (Bannwarth
et al., 2019), where the root-mean-square deviation (RMSD) of
a small molecule is adopted as a reaction coordinate (RC) in the
MTD simulation, but this RC cannot capture the relative position
between the small molecule and graphene/GO. Alternatively,
semi-classical MD simulation method was proposed by the
Ceotto group to explore various minima on a potential energy
surface, which also is not a computationally cheap method and
mainly developed for the prediction of molecular spectroscopy
(Conte and Ceotto, 2020; Gandolfi et al., 2020). As a result, these
methods may be not very suitable for the rapid prediction/screen
of GDDS.

Alternatively, the fast molecular docking programs, such as
AutoDock (Morris et al., 2009), which were originally designed
to globally search the optimal conformations of a small molecule
within the pocket of a biological target, can be borrowed for
the quick docking of a small molecule to a graphene/GO
model if appropriate parameters for the graphene/GO can be
provided. Nevertheless, native scoring functions in these docking
programs, initially derived from protein/ligand binding affinities,
are also not dedicated to the prediction of drug/graphene (or
GO) binding interaction. In short, these molecular docking
programs seem not specialized for the accurate prediction/screen
of GDDS. Therefore, a single method, such as pure MD, QM,
or molecular docking, probably is not the best choice for the
fast yet relatively accurate prediction/screen of GDDS, and
combining the advantages of some of these methods would be
more promising.

So far there are no dedicated solutions for the
prediction/screen of GDDS. Toward this aim, in this work, we
propose to fuse quantum genetic algorithm (QGA) (Narayanan
and Moore, 1996) and QM/semi-empirical quantum mechanics
(SQM)/force field (FF) to predict the optimal drug/graphene (or
GO) interaction and further develop a specialized computational
platform “e-Graphene” (Figure 1) to predict/screen the potential
GDDS in an automatic fashion, which was implemented on
the basis of our previous visual FF derivation toolkit “VFFDT”
(Zheng et al., 2016). To well balance the speed and accuracy
of GDDS prediction/screen, we further suggest an efficient
cascade protocol: (1) firstly perform a cheap QGA/FF calculation
with fine QGA parameters (e.g., larger populations and longer
evolution generations); and (2) automatically pass the best
chromosomes from QGA/FF to evoke a higher level QGA/SQM
or QGA/QM calculation with coarse QGA parameters (e.g.,
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FIGURE 1 | The main interface of e-Graphene program for the automatic prediction/screen of graphene-based drug delivery system (GDDS) by quantum genetic

algorithm (QGA) and cascade protocol.

smaller populations and shorter evolution generations) and
also implement this protocol in e-Graphene. To the best of our
knowledge, the QGA method and cascade protocol were never
used to predict/screen GDDS.

Based on this proposed computational platform and protocol,
we organize “Methods” and “Discussion” sections as follows.
First, the implementation of main functions in e-Graphene
program is briefly introduced in “Methods” section. Second,
extensive tests on an exemplary GDDS containing an anticancer
drug SN38, which was reported in Liu et al. (2008), are
conducted to investigate the impact of different graphene-
functionalization rates and sites on the stability of GDDS in
“Discussion” section. Finally, drug molecules from DrugBank
database (https://go.drugbank.com/) (Wishart et al., 2017) are
used to computationally screen potential GDDS candidates for
a pristine graphene model, and their results are fully summarized
and analyzed in “Discussion” section.

METHODS

In e-Graphene program, six main functions have been
implemented and listed as follows: (1) generate graphene/GO
models with different sizes and shapes, which can be intuitively
visualized in three-dimensional (3D) viewer of e-Graphene;
(2) inspect whether graphene/GO models satisfy the Hückel’s
rule (4n + 2) and full connectivity of Pi-bonds; (3) remove
the duplicated GO models; (4) minimize graphene/GO
models or ligands by the use of the natively implemented

Tripos FF or external QM/SQM programs; (5) develop GDDS
prediction/screen functions based on QGA and FF/SQM/QM;
(6) implement an automatic and efficient cascade protocol
for the GDDS prediction/screen; and (7) visualize GDDS
prediction/screen results (Clark et al., 1989). For the sake of
conciseness, each function is succinctly introduced one by one.

Generation and Inspection of
Circular/Rectangular Graphene/Graphene
Oxide Models
For different computational methods, users have to generate
distinct graphene models with different sizes and shapes. e.g.,
in the QM studies, users often adopt a small circular graphene
model satisfying the Hückel’s rule (4n + 2). For the convenience
of users, four options for the automatic generation of a pristine
graphene model have been implemented in e-Graphene.

To improve the biocompatibility and solubility, pristine
graphene is usually subjected to the chemical modification to
become the GO material. However, the precise control of exact
functionalization sites/rates on the pristine graphene is still
quite challenging in the experiment. Therefore, an ensemble
of GO models is generated to approximately stand for the
fabricated GO material in the computational study. In our
current implementation, common chemical modification groups
(hydroxyl, epoxy, and carboxyl groups) can be automatically
added to a pristine graphene model. Furthermore, the number of
decoration groups (hydroxyl, epoxy, and carboxyl groups),
functionalization direction (upper/lower/dual-surface),
modification manner (random/systematic manner), and
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FIGURE 2 | Automatic generation of an ensemble of graphene oxide (GO) models for a given pristine graphene model.

maximum number of GO models (Figure 2) can be specified
by users. It is worth mentioning that for each GO model,
e-Graphene can automatically inspect both the Hückel’s rule
(4n + 2) and full connectivity of Pi-bonds for GO models
to ensure that the produced GO models still preserve the
aromatic property.

Elimination of Duplicated Graphene Oxide
Models
An ensemble of GO models can be automatically enumerated
in a random or systematic manner by e-Graphene; however,
some produced GO models are actually the same structure
after certain translations and rotations. Thus, it is necessary to
remove those duplicated GO models from the ensemble before
subsequent calculations. In this work, we firstly calculate a
large-diameter circular fingerprint “2048bit-ECFP10,” which is
one type of commonly used extended connectivity fingerprint
(ECFP) (Rogers and Hahn, 2010) to represent each GO

model and then eliminate the duplication if some GO
models share the same ECFP fingerprint, which has been
implemented on the basis of our previous work about
machine learning-guided bitterant prediction (Zheng et al.,
2018).

Minimization of Graphene/Graphene Oxide
Models
Before the GDDS prediction/screen, all the generated
graphene/GO models are usually subjected to the minimization.
For the rapid optimization, we have implemented Tripos
FF in e-Graphene to automatically minimize the models
by Powell minimization method that is natively coded in
e-Graphene. At the same time, we also have developed an
interface to call the external QM/SQM programs, such as
Gaussian03/09/16 (Frisch et al., 2016), ORCA4.2 (Neese,
2012), MOPAC2009/2012/2016 (Stewart, 2016), and XTB6.3
(Bannwarth et al., 2019) to further minimize the graphene/GO
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FIGURE 3 | Implementation workflow of the quantum genetic algorithm (QGA) guided prediction of graphene-based drug delivery system (GDDS).

model in a higher level of accuracy. In order to minimize all
the graphene/GO models in batch mode, automatic calculation
of the total formal charge for each model is developed in
e-Graphene, whereas the multiplicity for each model is set
to 1 by default due to our current focus on the ground state
of the graphene/GO model. It is of note that this module
in e-Graphene can also be utilized to minimize general
small molecules.

Implementation of QGA-Guided
Prediction/Screen of GDDS
Quantum genetic algorithm was proposed by Narayanan and
Moore for the first time in 1996 (Narayanan and Moore, 1996)
and introduced the concepts from quantum computation to the
genetic algorithm. However, QGA was never used to predict the
GDDS before. Thus, we combine QGA and QM/SQM/FF for
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this purpose. The whole implementation workflow of QGA is
displayed in Figure 3, and the key steps are detailed as follows.

First, all the freely rotatable bonds (except the single bonds in
the terminal groups, such as methyl group) for a small molecule
are automatically detected and recorded, and all the torsion
angles of the freely rotatable bonds, besides the overall translation
(three variables) and rotation (quaternions with four variables)
of the small molecule, are firstly encoded in a chromosome with
the form of real number. Then this real-coded chromosome,
reflecting one specific conformation of the small molecule,
is further converted to a binary-coded chromosome for the
subsequent QGA.

In QGA, each bit in each chromosome is referred to as a qubit,
which is the basic unit of information in a quantum computer,
and the corresponding state of each qubit is formulated by
Dirac notation |φ > = α|0> +β|1> with the constraint of
|α|2+|β|2 =1, where α and β refer to the probability amplitudes
of a qubit (Figure 4). For the simple description, each qubit
is denoted by (α, β) or (cosθ , sinθ). Obviously, each qubit
can be in the ground state (|0> or |1>), or the quantum
superposition state of both ground states. Once a qubit is
measured, it will be collapsed to the ground state |0> (or |1>)
with a probability of |α|2 (or |β|2). If |α|2 (or |cosθ |2) is larger
than |β|2 (or |sinθ |2), the qubit will be degraded to the ground
state |0>, otherwise, it will be collapsed to the ground state |1>.
Therefore, the concept “qubit” introduced in QGA provides the
vast searching space.

Before the evolution of each chromosome, each qubit (cosθ ,
sinθ) in each chromosome is initialized to [cos(π /4), sin(π /4)],
indicating that all the qubits initially have the same probability
of being collapsed to either ground state |0> or |1>. If a
randomly generated floating number between 0.0 and 1.0 is
less than | cos(π /4) |2, the qubit will be degraded to the bit
“1” (or |1>), otherwise, it will be collapsed to the bit “0” (or
|0>). After the measurement of all the qubits in a chromosome,
each chromosome is transformed to a conventional binary string
containing only the bit “1/0,” which can be further decoded for
the fitness calculation to update each chromosome for the next
round of evolution.

Quantum rotation gate operator (QRGO) is utilized to update
each chromosome with the rotation angle (1θ) by comparing
with the best chromosome in the whole population (Li et al.,
2018), which has been defined by Equation (1). All the qubits
in each chromosome are updated according to Equation (2), and
the detailed update scheme of quantum rotation angle (1θ) is
tabulated in Supplementary Table 1 (Li et al., 2018). Similarly,
quantum NOT gate operator (QNGO) is exerted to transform
the qubits (Equations 3, 4) for the mutation of a chromosome.
In addition, crossover operator is also applied to two different
chromosomes to exchange parts of qubits in one chromosome
with the corresponding qubits in the other chromosome.
Moreover, catastrophe operator is used to reinitialize all the
qubits in all the chromosomes if the whole population is trapped
in a local minimumwithout any change of average fitness score in
certain successive steps. After applying different operators with
certain probabilities, all the newly updated chromosomes are
decoded for the fitness calculation and the best chromosome are

FIGURE 4 | Schematic illustration of a qubit. For the convenience of

description, a qubit |φ > is simply denoted by (α, β) or (cosθ , sinθ ).

updated accordingly.

QRGO(1θ) =

(

cos1θ −sin1θ

sin1θ cos1θ

)

(1)

where QRGO refers to quantum rotation gate operator and 1θ is
the variation of quantum rotation angle.

(

α′

β ′

)

= QRGO(1θ)

(

α

β

)

=

(

cos1θ −sin1θ

sin1θ cos1θ

)

=

(

α

β

)

=

(

cos(θ + 1θ)
sin(θ + 1θ)

)

(2)

where each qubit is updated according to the QRGO; α and β are
the probability amplitudes of the original qubit; and α′ and β′ are
the probability amplitudes of the updated qubit.

QNGO =

(

0 1
1 0

)

(3)

where QNGO refers to quantum NOT gate operator.
(

α′

β ′

)

=

(

0 1
1 0

) (

α

β

)

=

(

β

α

)

(4)

where each qubit is updated according to the QNGO; α and β

refer to the probability amplitudes of the original qubit; and α′

and β′ are the probability amplitude of the updated qubit.
Fitness of each chromosome is calculated from the potential

energy of GDDS (Equation 5) or binding energy between
the graphene (or GO) and ligand by Equations (6, 7). The
potential energy or binding energy is computed by using the
natively implemented Tripos FF in e-Graphene for the fast
prediction or evoking the external QM/SQM programs for more
accurate prediction.

Fitness = −1.0× EGDDS (5)

Fitness = −1.0× EDelta (6)

EDelta = EGDDS − EG − Elig (7)
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where EGDDS, EG, and Elig are the potential energies of a given
GDDS conformation, graphene/GO, and ligand, respectively.
EDelta refers to the binding energy between the graphene/GO
and ligand in a given GDDS conformation. The potential
energy can be calculated by the internally implemented
Tripos FF or externally evoked SQM/QM programs, such
as Gaussian03/09/16, ORCA4.2, MOPAC2009/2012/2016, and
XTB6.3. It is worth noting that Equation (5) is used to calculate
the fitness by default, although both options (Equations 5, 6) are
supported in e-Graphene.

QGA run can be terminated if the maximum number of
evolution generation is reached or the average fitness difference
between certain successive steps are consistently lower than
0.001, which is the default convergence criterion and can be
customized by users. Once completed, all the best chromosomes
are decoded to return the final conformations with customized
Tripos Mol2 format files containing the energy information,
which can be visualized by another module in e-Graphene as
shown below.

Implementation of an Efficient Cascade
Protocol for the GDDS Prediction/Screen
To make e-Graphene more efficient, we further develop a
cascade protocol for the GDDS prediction/screen. Even though
the default two-layer cascade protocol (QGA/FF-QGA/SQM or
QGA/FF-QGA/QM) is strongly recommended and extensively
evaluated in this work, more computationally expensive three-
layer (QGA/FF–QGA/SQM-QGA/QM) cascade protocol is also
supported in e-Graphene program (Figure 5). Users can select
either protocol, define the relevant parameters for each layer, and
set the number of the best chromosomes that are automatically
migrating from the previous layer to the next layer for the
population initialization of QGA in the next layer. It should
be noted that the coarse QGA parameters, such as smaller
populations and shorter evolution generations, should be given
for the layer with QGA/SQM or QGA/QM in the practical
prediction/screen; moreover, solvation and dispersion effects
should be considered in the layer with QGA/SQM or QGA/QM.

Visualization of the GDDS
Prediction/Screen Result
After GDDS prediction/screen, we are usually very interested in
the optimal binding mode/energy between the graphene/GO and
ligand for a given GDDS. For this purpose, we have implemented
a convenient function to intuitively and synchronously visualize
the graphene (or GO)-ligand binding mode/energy, and box
information in 3D viewer of e-Graphene (Figure 6) so that users
can easily examine whether QGA-guided prediction/screen gives
reasonable results before further experimental tests.

RESULTS AND DISCUSSION

In this work, we propose to combine QGA and QM/SQM/FF
for the intelligent prediction/screen of GDDS and further
put forward an efficient cascade protocol by seamlessly
integrating consecutive runs of QGA/FF–QGA/SQM (or

QGA/FF–QGA/SQM-QGA/QM). For the convenience of
users, we have developed a relatively comprehensive program
“e-Graphene” with a graphic user interface to prepare and
perform automatic prediction/screen of GDDS with/without
the cascade protocol. The whole package including program,
manual, and tutorial files is freely available on the Dropbox and
Baidu Cloud public shared-folders with the respective download
links (https://www.dropbox.com/sh/xj8wnc08kmw8b7a/
AAAyXFbObUsk28QwFVfLjXCka?dl=0) and (https://pan.
baidu.com/s/15_N7FNPrfjjoaA8f2s5gwQ with the four-letter
extraction code: urdf ). It is worth mentioning that e-Graphene
has been fully tested and directly run on the local machine
with 64-bit version of Windows10 operating system (OS)
and can also prepare GDDS prediction/screen jobs including
the input files, scripts, and a binary package for a remote
computer with 64-bit version of Redhat5/6/7, CentOS5/6/7,
or Ubuntu16.04/18.04/20.04-LTS OS. To demonstrate the
applicability of this program and protocol, two typical examples
are provided as below.

Different Chemical Functionalization Rates
and Sites Impacting on GDDS Stability
In the work of Liu et al., GO material was demonstrated
to effectively carry an anticancer drug SN38 by non-covalent
interactions (Liu et al., 2008). However, the GO material is
generally assumed to be a mixture from the structural point
of view due to the fact that the oxidation process of pristine
graphene is quite challenging to be precisely manipulated in
terms of the exact functionalization sites and rates; hence, distinct
functionalization sites and rates may have certain influence on
the stability of GDDS, which was never probed in the original
work of Liu et al. (2008). For the clarity, the stability mentioned
in this work specifically refers to the binding energy between the
graphene/GO and ligand for a given GDDS.

To tentatively explore this problem from the computational
perspective, appropriate models should be produced to stand for
the pristine and fabricated graphene materials. More concretely,
a circular graphene model with the diameter of 21.760 Å and the
total atom number of 168 is generated via clicking on the menu
(Figure 1), and then this model is randomly functionalized by N
hydroxyl group(s), N epoxy group(s), and N carboxyl group(s)
(N = 1, 2, 3, 4, and 5) to produce five sets of 20 GOmodels, which
represent five different rates of chemical modification on the
pristine graphene model and are simply denoted by GO-1, GO-
2, GO-3, GO-4, and GO-5, respectively, for the convenience of
following discussion. Subsequently, one pristine graphene model
and 100 GOmodels are combined to form a graphene/GOmodel
database, which is systematically minimized in batch by evoking
an external and efficient SQM program XTB6.3 with the keyword
“–opt –gfn 2 –gbsa water reference” including the solvation and
dispersion effect. Similarly, the 3D structure of SN38 with the
neutral form is retrieved from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov) and also optimized by XTB6.3 with
the same keyword.

In order to investigate the effect of different graphene-
functionalization rates and sites on the stability of GDDS
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FIGURE 5 | A two-/three-layer cascade protocol implemented in e-Graphene.

including SN38, the two-layer cascade protocol (QGA/FF–
QGA/SQM) will be applied to all 101 graphene/GO-SN38 pairs
due to our limited computational resource. In this protocol,
the full parameter settings for current tests are shown in
Supplementary Figures 1–3, while the key parameters will be
highlighted as follow: the evolution generation number and
population size in the fast QGA/FF calculation are set to 5,000
and 100, respectively, whereas the counterparts in the slow
QGA/SQM calculation are set to 500 and 20, respectively. Ten
best chromosomes from the cheap QGA/FF calculation are
automatically passed to QGA/SQM. SQM is set to XTB6.3
with the keyword “–gfn 2 –gbsa water reference” including
the solvation and dispersion effect as well. The respective
probabilities of QRGO, QNGO, and crossover operation are
set to 0.5, 0.1, and 0.7, respectively. Catastrophe operator is
applied if the average fitness difference between two consecutive
generations is always lower than 0.001 within 50 successive
steps during the QGA evolution. The fitness is calculated by

Equation (5) for the current test. According to these parameters,
this cascade protocol was repeated three times for each GDDS
because of the intrinsic randomness in QGA. Therefore, 303
runs with this cascade protocol were conducted, and all the
corresponding results for the best chromosomes are listed in
Supplementary Table 2.

Before evaluating the impact of different functionalization
rates and sites on the stability of GDDS, the convergence
analysis was first conducted to inspect whether QGA/FF in our
cascade protocol could assist the convergence of QGA/SQM.
For the convenience of discussion, one QGA run for the GDDS
containing the pristine graphene model and SN38 was taken
as an example. The average fitness of the whole chromosomes
along the evolution of QGA/SQM is monitored because our
final optimal solutions are actually derived from QGA/SQM
rather than QGA/FF. In Figure 7, it is clearly shown that
catastrophe operator is automatically applied in the 68th and
325th steps, respectively, where the average fitness declines
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FIGURE 6 | Visualization of graphene-based drug delivery system (GDDS) prediction/screen result.

dramatically due to the fact that all the chromosomes are
completely reinitialized in order to escape from the previous
local minimum. However, the average fitness in the 1st step is
much larger than that in the 68th or 325th step because the
best chromosomes from QGA/FF are used to seed the initial
population for QGA/SQM. Apparently, it is much easier to reach
the plateau whenQGA/SQM run starts from the 1st step, whereas
it takes longer evolution to achieve the convergence if QGA/SQM
run is completely randomly reinitialized from the 68th or 325th
step. From this perspective, QGA/FF indeed can accelerate the
convergence of QGA/SQM, and in the practical predictions, users
can turn off the option of removing the catastrophe operator
and turn on the option of activating the automatic inspection
of convergence in QGA/SQM for the faster calculation, while
still preserving the catastrophe operator in QGA/FF to produce

diverse optimal chromosomes for the subsequent QGA/SQM in
the cascade protocol.

To scrutinize the influence of different functionalization
rates on the GDDS stability, the binding energy between
the graphene/GO model and SN38 is derived from the
best chromosome after running the two-layer (QGA/FF–
QGA/SQM) cascade protocol. All the results are listed
in Supplementary Table 2 and Table 1. From Table 1, it
is shown that the 95% confidence intervals of binding
energy for graphene/SN38, GO-1/SN38, GO-2/SN38, GO-
3/SN38, GO-4/SN38, and GO-5/SN38 are −25.8118 ± 1.2778,
−25.7589 ± 0.5120, −24.1041 ± 1.8056, −23.3682 ± 0.8053,
−21.9780 ± 1.2295, and −20.3435 ± 1.0982 (kcal/mol),
respectively, which suggest that GO-4/SN38 and GO-5/SN38
are obviously less stable than GO-1/SN38 and GO-2/SN38.
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FIGURE 7 | Average fitness for the whole population along the quantum genetic algorithm (QGA)/semi-empirical quantum mechanics (SQM) evolution: (A) original

curve and (B) local enlarged curve.

TABLE 1 | The 95% confidence intervals of binding energies between the graphene/GO model and SN38 derived from three runs with the two-layer cascade protocol.

Model

name

Epoxy

group

number

Hydroxyl

group

number

Carboxyl

group

number

Model

number

Repeats

number

95% CI of binding

energy with SN38 (kcal/mol)

Graphene 0 0 0 1 3 −25.8118 ± 1.2778

GO-1 1 1 1 20 3 −25.7589 ± 0.5120

GO-2 2 2 2 20 3 −24.1041 ± 1.8056

GO-3 3 3 3 20 3 −23.3682 ± 0.8053

GO-4 4 4 4 20 3 −21.9780 ± 1.2295

GO-5 5 5 5 20 3 −20.3435 ± 1.0982

(1) CI is short for confidence intervals; (2) “repeats” means that each cascade protocol is repeated for three times in this work; and (3) the binding energy reported here includes the

solvation free energy.

Therefore, high functionalization rates compromise the stability
of GDDS, indicating that an appropriate rate of fabrication on
the pristine graphene is very important to achieve a stable GDDS
with good solubility and biocompatibility.

To further evaluate the impact of different functionalization
sites on the stability of GDDS with the same fabrication rate,
the histogram of binding energies between the GO models
and SN38 is as plotted in Figure 8. It is manifested that the
binding energies of GOs/SN38 with the same functionalization
rate, but different fabrication sites, have large variations.
Here, we take the GO-1 models as examples, the lowest
and highest binding energy between GO-1 and SN38 are
−27.7450 and −22.3940 kcal/mol, respectively. Thus, different
functionalization sites have a remarkable impact on the
GDDS stability, but unfortunately the exact fine-tuning of
functionalization sites on the pristine graphene still remains
challenging from the experimental perspective, which indicates
that it is more reasonable to harness the GOmodels with different
functionalization sites to stand for the GOmaterial with a certain
average functionalization rate.

GDDS Screen for a Given Graphene/GO
Model and a Given Chemical Database
Our cascade protocol can also be used to computationally screen
the potential GDDS candidates for a given graphene (or GO)
model and a given chemical database. For the demonstration
purpose, we adopt the same circular pristine graphene model
(diameter: 21.760 Å) as mentioned above and choose the
DrugBank database (Wishart et al., 2017) for this screen. More
specifically, 3D structures of 8,820 drug molecules with the
neutral form are retrieved from the web server of DrugBank
and then are subjected to the filtering of ChemAxon LogP
larger than 5.0, which affords 200 highly hydrophobic drug
molecules. Furthermore, if the longest distance within the 3D
structure of a drug molecule is larger than the diameter of our
current circular graphene model, this drug molecule will be
excluded in our screen because our current graphene model in
this demonstration is not large enough and its edge effect will
be severe for this molecules. According to this criterion, 121
drug molecules are obtained and further minimized by XTB6.3
program with the keyword “–opt –gfn 2 –gbsa water reference,”
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FIGURE 8 | The histogram of average binding energies (kcal/mol) between GO

models and SN38. For each GO-X (X = 1, 2, 3, 4, and 5), all the GO-X models

have the same functionalization rate with different functionalization sites.

which are finally utilized for the current screen by the two-
layer cascade protocol (QGA/FF–QGA/SQM). SQM is also set
to XTB6.3 with the keyword “–gfn 2 –gbsa water reference” that
takes into account the solvation and dispersion effect. All the
parameters for this protocol used in the screen are exactly the
same as those in the previous section. This screen campaign was
also performed for three times due to the inherent stochastic
nature of QGA.

Once three runs of GDDS screen in e-Graphene were
completed, all the conformations for the best chromosomes
were harvested and prioritized according to the average
binding energy over three repeats (Supplementary Table 3 and
Figure 9). Only 12 GDDS candidates (or 12 graphene/drugs)
had lower binding energies (−36.3613 ∼ −27.6150 kcal/mol)
than the 95% CI of binding energy for the graphene
model/SN38 (−27.0896, −24.5340) kcal/mol as shown in our
previous test. Further manual scrutinization of 12 compounds
in the DrugBank database suggested that four of them
were anticancer drugs (midostaurin, nilotinib, tucatinib, and
arzoxifene) that usually need to be delivered to the specific
cancer cells, and their average binding energies with the
graphene model were −31.8856, −30.8095, −29.6934, and
−27.8303 kcal/mol, respectively (Table 2), whereas most of the
remaining drugs for the external usage were not necessary
for the delivery by the graphene/GO. Thus, only these
four anticancer drugs are proposed to be used for the
potential GDDS candidates from the computational perspective.

Limitation and Outlook of Our
Computational Platform and Protocol
Although e-Graphene could provide a pragmatic computational
platform and protocol for the automatic prediction/screen
of GDDS based on QGA and QM/SQM/FF, it indeed had
several drawbacks: (1) QGA belongs to the stochastic method,

FIGURE 9 | The histogram of average binding energies (kcal/mol) between the

graphene model and 121 drugs after screen with the two-layer

(QGA/FF–QGA/SQM) cascade protocol.

which produces different results for different runs. Thus,
multiple runs are strongly recommended to achieve more
convergent results, which undoubtedly brings some extra
computational burden. (2) The speed and accuracy of two-layer
(QGA/FF–QGA/SQM) or three-layer (QGA/FF–QGA/SQM–
QGA/QM) cascade protocol was largely dependent on the
computationally expensive SQM or QM with different keywords
and parameters. Careful benchmarks of different choices
are highly advised to obtain the comparatively accurate
yet fast combination for the practical prediction/screen of
GDDS. Thus, it is suggested for users to clearly understand
the weakness of e-Graphene before applying it to their
own projects.

As recent booming of quantum computation in various
areas, QGA possesses intrinsic quantum operators, thus we
tentatively envision that if QGA can be ported to the quantum
computer simulator and subsequent real quantum computer,
QGA might release its tremendous native capacity. However,
it still has a very long way to go before QGA-based protocol
can be fully deployed in the quantum computer due to
the following two main obstacles: (1) the current quantum
computers support a small number of qubits, e.g., 53 bits
from Google quantum computer (Arute et al., 2019); (2) the
accessibility of quantum computers is quite limited, which
undoubtedly imposes a steep learning curve, even though
quantum computer simulators could alleviate this circumstance
to some extent. Despite of those difficulties, we believe that this
emerging area still draws more and more researchers to foster its
sustainable development.

CONCLUSION

In this work, we present a practical computational platform
“e-Graphene” for the automatic prediction/screen of GDDS
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TABLE 2 | Four predicted anticancer drugs for the potential GDDS candidates.

DrugBank ID Drug Name Average binding energy* (kcal/mol) Chemical structure

DB06595 Midostaurin −31.8856

DB04868 Nilotinib −30.8095

DB11652 Tucatinib −29.6934

DB06249 Arzoxifene −27.8303

*The average binding energy is obtained by averaging over three repeats and includes both solvation and dispersion effects.
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by the seamless integration between QGA and QM/SQM/FF
and further propose a cascade protocol for the efficient
prediction/screen of GDDS. In this platform, a graphene/GO
model can be automatically generated according to the
shape and size specified by users, subsequently minimized by
the internally implemented Tripos FF or externally evoked
QM/SQM programs, and finally used for the preparation of
GDDS prediction/screen job with/without the cascade protocol,
which can be ran on the local machine with Windows10
and on the remote machine with Red Hat/CentOS/Ubuntu.
By using this platform, two representative test cases are
adopted to demonstrate its pragmatic functions. One is
systematic tests on a extensively used GDDS containing
an anticancer drug SN38, which manifests that high rates
of functionalization on the pristine graphene reduces the
stability of GDDS and also indicates that an appropriate
fabrication rate is crucial to attain an optimal GDDS with
good stability, solubility, and biocompatibility. The other is
the GDDS screen in the DrugBank database for a pristine
graphene model, which harvests four potential GDDS
candidates with better stability than the common GDDS
containing SN38. At last, the limitations of this computational
platform are also addressed, although it is envisioned that
this free platform could enable experimental scientists to
automatically predict possible GDDS candidates before
experimental tests.
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