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Abstract: For the identification of antigenic protein biomarkers for rheumatoid arthritis (RA), we
conducted IgG profiling on high density protein microarrays. Plasma IgG of 96 human samples
(healthy controls, osteoarthritis, seropositive and seronegative RA, n = 24 each) and time-series
plasma of a pristane-induced arthritis (PIA) rat model (n = 24 total) were probed on AIT’s 16k
protein microarray. To investigate the analogy of underlying disease pathways, differential reactivity
analysis was conducted. A total of n = 602 differentially reactive antigens (DIRAGs) at a significance
cutoff of p < 0.05 were identified between seropositive and seronegative RA for the human samples.
Correlation with the clinical disease activity index revealed an inverse correlation of antibodies
against self-proteins found in pathways relevant for antigen presentation and immune regulation.
The PIA model showed n = 1291 significant DIRAGs within acute disease. Significant DIRAGs for (I)
seropositive, (II) seronegative and (III) PIA were subjected to the Reactome pathway browser which
also revealed pathways relevant for antigen presentation and immune regulation; of these, seven
overlapping pathways had high significance. We therefore conclude that the PIA model reflects the
biological similarities of the disease pathogenesis. Our data show that protein array analysis can
elucidate biological differences and pathways relevant in disease as well be a useful additional layer
of omics information.

Keywords: rheumatoid arthritis; autoantibodies; seroreactivity; disease activity; rat model;
pathway analysis

1. Introduction

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by the
presence of auto-reactive B- and T-cells, autoantibodies and increased cytokine release
which all together lead to chronic joint inflammation. In untreated RA, fibroblasts and
osteoclasts are activated triggering cartilage degradation and bone destruction [1]. The
diagnosis relies on a combination of clinical serological and radiographic assessments
accompanied by the EULAR classification criteria. The serological diagnosis is based on
the presence of rheumatoid factor (RF) and anti-citrullinated protein/peptide antibodies
(ACPAs) [2]. ACPAs and RF enable the differentiation of two serological groups of RA
(seropositive and seronegative) and were shown to be of prognostic value for disease
progression [3,4]. However, the pathological role of auto-antibodies is hardly understood,
although extensive research is ongoing [5]. In the search for improved and novel thera-
peutics for RA, animal models play a major role in research and development. In a recent
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review, Meehan et al. described the currently available collection of preclinical models [6].
Besides the known advantages and limitations of these models, currently no comparative
analysis of auto-antibody signatures for RA and its respective animal models can be found
within the literature. Among these models pristane-induced arthritis (PIA) is of particular
interest, because arthritogenic autoimmunity is induced in rats by the application of the
non-immunogenic mineral oil pristane (2,6,10,14-Tetramethylpentadecane). PIA shows
many features which are similar to human RA, such as chronic synovitis, cartilage degra-
dation, bone erosions and the presence of RF [7]. Therefore, we conducted IgG profiling
of human and rodent plasma on high density protein microarrays and subjected higher
reactive differentially reactive antigens (DIRAGs) to pathway analysis aiming to elucidate
the underlying processes (Figure 1).

Figure 1. Study design. (A) sample cohort: 96 samples from RF- and CCP-positive (sero+), RF- and
CCP- negative (sero-) RA, osteoarthritis and healthy human individuals and 24 samples from time-
course pristane induced arthritis (PIA) and control animals were investigated. (B) IgG isolated from
plasma was probed on AIT’s 16k microarray. (C) Data obtained from microarray scans was subjected
to differential reactivity analysis (DRA) and correlation analysis with clinical disease activity index
(CDAI) using BRB ArrayTools and RStudio elucidating differentially reactive antigens (DIRAGs)
which were subsequently (D) in silico analyzed for dysregulated pathways.

2. Results

To elucidate and investigate auto-antibody signatures of RF- and CCP-positive and
-negative rheumatoid arthritis and the PIA rodent model described by Tuncel et al., IgG
probing was conducted on high density protein microarrays. IgG was isolated from
treatment naive plasma of human individuals and rat sera and probed on AIT’s 16k protein
microarray (comprising n = 7390 proteins recombinantly expressed in 15,417 cDNA E.coli
clones). Data extracted from microarray images were analysed for differentially reactive
antigens (DIRAGs) between seropositive and seronegative RA and samples of the PIA rat
model upon the disease onset period. In addition, antibody reactivities in the human RA
samples were correlated with the clinical disease activity index (CDAI). Lists comprising
DIRAGs were further investigated in silico with the Reactome pathway browser and the
WebGestalt analysis toolkit to investigate the underlying disease pathways (methodological
details are given in the Methods Section 4). DIRAGs of suspected biological relevance
(included in the top pathways) were evaluated for previously described roles as auto-
antibodies or involvement in auto-immune diseases.
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2.1. Antibody Isolation

The concentration of isolated IgG was determined via duplicate A280 measure-
ments and averaged. Human IgG concentration ranged from 0.809–2.918 mg/mL (mean:
1.403 ± 0.362 mg/mL (plasma concentration: 10.240 ± 2.641 mg/mL)). Student’s t-test
(p < 0.05) showed no significant differences between the concentrations of the groups.
Mean rat IgG concentration ranged from 0.423–0.727 mg/mL (mean: 0.529 ± 0.063 mg/mL
[plasma concentration: 3.861 ± 0.447 mg/mL]), without significant differences between
the control and PIA group (Student’s t-test, p < 0.05). IgG integrity was determined via
observed molecular weight determined within SDS-PAGE, a sharp band at 150 kDa was
probative for structural protein integrity. An SDS-Page image of the purified IgG from
human samples is given in Supplementary Materials Figure S1.

2.2. Differential Reactivity Analysis

Class comparison analysis (p < 0.05) was applied to the human IgG profiles for the
groups seropositive versus seronegative RA to elucidate differentially reactive antigens
(DIRAGs). Out of n = 15,032 features passing the filtering criteria, n = 382 proteins were
found to be significantly differentially reactive (p < 0.05) with a fold-change of > 1.25
(Figure 2). Class comparison analysis was repeated with respect to the observed clusters
with the assigned cluster as a blocking variable. Blocked analysis revealed n = 602 sig-
nificant differential reactive features, n = 206 higher reactive DIRAGs in seropositive RA
versus seronegative RA with unambiguous gene symbols used in pathway analysis. In
seronegative RA, n = 221 higher reactive DIRAGs were used for Reactome analysis.

Figure 2. Volcano plot of seropositive versus seronegative RA. The unblocked class comparison
elucidated n = 382 significant (p < 0.05) DIRAGs with a fold-change > 1.25 (−0.3219 and 0.3219 on the
log2 scale, indicated as dashed line in the plot above). DIRAGs above the significance thresholds are
indicated in blue (BRB ArrayTools [8] output per default). The sign of the fold-change is assigned in
alphabetical order; hence, proteins higher reactive in seropositive RA are located on the left side of
the plot.

Class comparison (p < 0.05) applied to the rat samples between 7 and 24 days after
arthritis induction with pristane revealed n = 1766 (PIA) and n = 1352 (controls) significant
DIRAGs with a fold-change > 1.35 (p < 0.05). After correction for significant DIRAGs
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higher reactive in the control animals, class comparison (p < 0.05) for PIA revealed n = 1291
significant DIRAGs with a fold-change > 1.35. n = 988 DIRAGs remained after gene symbol
cleansing and were subjected to pathway analysis. The intersection of all protein lists
containing the respective higher reactive DIRAGs revealed 8 proteins (EEF1A1, HBP1,
TXNDC5, TPM3, c8orf33, ILF3, MGEA5, LTBP3, HLA-C and UBA1) higher reactive in
seropositive RA, seronegative RA and PIA (Figure 3A, not corrected for duplicated pro-
teins). Signal intensities of the top 10 proteins of each comparison are given as boxplots in
Supplementary Materials Figure S2.

Figure 3. Intersection of significant higher reactive DIRAGs as Venn Diagram (A) and their respective
p-values and the average fold-change as a forest plot (B). Results of the blocked analysis of the
comparison seropositive versus seronegative RA was used, and PIA 7 vs. 24 days after correction for
DIRAGs higher reactive in PBS animals. VennDiagram created with JVenn [9].

2.3. Reactome Pathway Analysis

At the time of analysis, Reactome version 66 (human), version 69 (rat) and version 77
(reference) were used. 206 significant DIRAGs derived from the human class comparison
remained higher reactive in seropositive RA after gene symbol cleansing for unambiguous
IDs, 101 of them were found in Reactome (560 pathways were hit by them).

Reactome analysis elucidated 25 pathways with an FDR ≤ 0.1—these pathways are
listed in Supplementary Materials Table S1. All of the top 25 pathways showed high signifi-
cance for their respective entities p-value (0.004–10−10), the top 16 pathways preserved false
discovery rates (FDRs) < 0.05 after Benjamini-Hochberg (BH) correction. Comparison of
the pathway’s respective rank within the reference analysis indicates the pathways Endoso-
mal/Vacuolar pathway and Antigen Presentation: Folding, assembly and peptide loading
of class I MHC as overrepresented (entities p-values 7.16 × 10−11 and 0.004, FDR: 0.981).
HLA-C was the associated gene for these two pathways which was also involved in eight
additional enriched pathways. The synopsis of the genes/proteins with a bearing role
within the pathway analysis is given in Table 1.

For seronegative RA, 147 higher reactive DIRAGs versus seropositive RA out of the
221 cleaned IDs were found in Reactome which hit 812 pathways. Fourteen (14) of them
showed high significance from 10−4–10−16 (overall range 0.014–1.11 × 10−16) and preserved
significance (p < 0.05) after BH-correction. Without respect to the overrepresentation
analysis, 10 identical pathways were elucidated in the top 25 for both disease serotypes
(Supplementary Materials Tables S1 and S2).
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Table 1. Relevance—with respect to the previously described involvements of genes or
proteins, of higher reactive DIRAGs overlapping within the identified top 25 pathways of
the class—comparisons: seropositive RA vs. seronegative RA (both directions, compare
Supplementary Materials Tables S1–S3) and PIA vs. control animals.

GeneSymbol SwissProt ID Overlap Described as . . . Reference

HLA-C P10321
seropos RA,

seroneg RA, PIA

genetic involvement Siegel 2019 [10]
higher expressed in RA synovium Xiao 2016 [11]

auto-antibodies present (citrullinated) Lo 2020 [12]

GBP6 Q6ZN66 seropos RA, PIA higher expression in RA? Roche mRNA patent

EIF4G2 P78344 seropos RA, PIA

involvement in OA (miRNA-197) Gao 2020 [13]
citrullinated antigen Okazaki 2009 [14]

auto antigen Sjörgens Uchadi 2005 [15]
higher expressed in RA synovium Xiao 2016 [11]

MSN P26038 seropos RA, PIA

potential RA autoantigen Wagatsuma 1996 [16]
potential psoriasis autoantigen Maejima 2014 [17]

autoantigen in Behcets Hussain 2020 [18]
autoantigen in acquired aplastic anemia Takamatsu 2006 [19]

autoantigen in MPO-ANCA
associated vasculitis Suzuki 2014 [20]

autoantigen in Sjörgens Zhang 2018 [21]
autoantigen in

anti-phospholipid syndrome Lin 2015 [22]

HNRPDL O14979 seropos RA, PIA autoantigen in RA (citrullinated) Marklein 2021 [23]

HLA-A P04439 seroneg RA, PIA genetic involvement Raychaudhuri 2012 [24]
auto-antibodies present (citrullinated) Lo 2020 [12]

FLNA P21333 seroneg RA, PIA

auto-antibodies present; involved in
microbial immunity Pianta 2017 [25]

auto-antibodies present (citrullinated) Lo 2020 [12]
synovium Biswas et al. 2013 [26]

CCND1 P24385 seroneg RA, PIA n.a. n.a.

FN1 P02751 seroneg RA, PIA elevated levels in synovium Scott 1981 [27]
autoantigen in RA (citrullinated) Beers 2012 [28]

APEH P13798 seroneg RA, PIA auto-antibodies present (citrullinated) Lo 2020 [12]

VCL P18206 seroneg RA, PIA auto antigen in RA (citrullinated) Heemst 2015 [29]

NUP62 P37198 seroneg RA, PIA

higher expressed in Psoriasis
arthritis PBMCs Batliwalla 2005 [30]

autoantibodies in myositis Senecal 2014 [31]
autoantibodies in SLE Meulen 2017 [32]

autoantibodies in Vasculitis/Sjörgens
combination (single case report) Fuchs 2020 [33]

autoantibodies in primary biliary
cirrhosis (PBS) Bogdanos 2011 [34]

autoantibodies in Psoriasis Arthritis Yuan 2019 [35]

LCP1 P13796 seroneg RA, PIA mRNA classifier Liu 2021 [36]

PSMC4 P43686 seroneg RA, PIA n.a. n.a.

DDOST P39656 seroneg RA, PIA higher expression in Type2 Diabetes Gupta 2019 [37]

EEF1A1 P68104 seroneg RA, PIA

auto-antibodies present in Type1 Diabetes Koo 2014 [38]
used as reference gene for

synovial fibroblasts Schröder 2019 [39]

Auto-antibodies present in
Felty’s syndrome Ditzel 2000 [40]
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For the PIA model 673 out of 988 cleansed DIRAGs with unambigious genesymbols
were found in Reactome with 1397 hit pathways, the top 25 are given in Supplementary
Materials Table S3. All of them showed high significance levels after multiple testing
correction (2.08 × 10−12–0.002). The intersection of the top 25 pathways for seropositive
RA, seronegative RA and PIA pathway analysis revealed 8 common pathways: the endoso-
mal/vacuolar pathway, the antigen presentation: folding, assembly and peptide loading of
class I MHC, interferon alpha/beta signaling, the ER-Phagosome pathway, the interferon
pathway, antigen processing–cross presentation, interferon gamma signaling and cytokine
signaling in the immune system with preserved significance after BH-correction (Supple-
mentary Materials Tables S1–S3). This suggests similarities of the auto-antibody signatures
of RA and PIA and hence the disease reflection in this animal model which shows many
clinical features of RA.

Found gene symbols of the top 25 pathways for each comparison were intersected
for overlapping features (Figure 4). This intersection of the gene lists showed HLA-C as
single common higher reactive DIRAG for the seropositive, seronegative RA and the PIA
model. The candidate role of HLA-C as important player in rheumatic diseases was recently
reviewed by Siegel et al. Besides HLA-C, GBP6, EIF4G2 and HNRPDL were identified
between seropositive RA and PIA. Between seronegative RA and PIA, 11 overlaps were
identified: HLA-A, FLNA, CCND1, FN1, APEH, VCL, NUP62, LCP1, PSMC4, DDOST and
EEF1A1. Previously described disease involvement of genes is given in Table 1.

Figure 4. Graphic representation (Venn diagram) of the involved genes of the top 25 pathways
for the comparisons: seropositive RA vs. seronegative RA (seropos, red), seronegative RA vs.
seropositive RA (blue) and 7- vs. 24-day PIA corrected for controls (PIA, green). Venn diagram
created with JVenn [9].

Based on the comparison of elucidated DIRAGs with “biological relevance” (in-
volved in pathway analysis), CCND1 and PSMC4 arose as potential novel autoanti-
bodies/autoantigens since they are herein described for the first time. Other DIRAGs
such as MSN and NUP62 were extensively described as autoantigens in systemic auto-
immune diseases.

All of the overlapping pathways between human RA and PIA are linked to intra-
cellular protein degrading and signaling processes, and hence, antigen processing and
presentation processes. Seropositive versus seronegative RA showed significant pathways
for the intra-cellular skeleton and transport system (seropositive RA). In seronegative RA,
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pathways for the adaptive immune response and transcriptional regulation were found
significant. Besides antigen processing and presentation pathways, the PIA model showed
significant pathways for transcription, translation, RNA metabolism and processing.

2.4. WebGestalt Pathway Analysis

WebGestalt analysis was appended for GeneOntology (GO) annotation of elucidated
DIRAGs based on their respective gene symbols. For seropositive RA from n = 206 higher
reactive DIRAGs with cleansed gene symbols, 130 could be annotated for functional
categories. For seronegative RA from n = 261, higher reactive DIRAGs with cleansed gene
symbols, 156 were mapped to functional categories. From the PIA list, n = 605 could be
annotated for functional categories. From the 16k annotations (reference list), n = 3246 IDs
were mapped to functional categories. The GOSlim summaries for the biological processes,
cellular components and molecular functions categories are given in Figure 5. Results for
the top 10 pathways with the respective identified gene symbols are compiled in Tables 2–4.
GeneSymbol lists containing the gene symbols of suspected biological relevance (included
in the top 10 gene sets) were intersected (Supplementary Materials), whereby EEF1A1 arose
as single hit between all subjected gene sets. The GOSlim summaries of the annotated gene
symbols show similar rankings for the associated categories, with a slightly different order
for seronegative RA (biological regulation followed by metabolic processes, vice versa in
seropositive RA).

Figure 5. Cont.
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Figure 5. GOslim summaries for DIRAGs identified as higher reactive in (A) seropositive RA versus
seronegative RA, (B) seronegative RA vs. seropositive RA and (C) PIA animals 7 and 24 days after
disease induction corrected for signatures of control animals.

2.5. Correlation with Clinical Disease Activity Index (CDAI)

Clinical disease activity scores (CDAI) were available for 46 of the total 48 RA samples
(n = 22 seropositive and n = 24 seronegative RA samples). Estimation statistics did not
show any significant difference in CDAI when comparing seropositive versus seronegative
RA (Figure 6).

To investigate if the antibody reactivities of the 46 human RA samples (for which CDAI
was available) are correlated with the clinical disease activity, a quantitative trait analysis of
the human RA sample data was conducted with the clinical disease activity index (CDAI)
as quantitative trait (BRB ArrayTools). In total, 429 different antigenic proteins showed
a significant correlation of r = ±0.29–±0.49 (p < 0,05; Spearman’s rank correlation) with
disease activity. The n = 153 positively correlated antigens (r = 0.29–0.46) as well as 276
negatively correlated antigens (r = −0.29–−0.49) where then subjected to the Reactome
pathway browser.

Pathways elucidated for the proteins positively correlated with CDAI showed RNA
Polymerase I Transcription Initiation, RUNX1 regulates expression of components of tight
junctions and Metabolism of RNA as the top three hits (p < 0,05; FDR 3.37 × 10−1, the
latter not shown; details giving in Supplementary Materials Table S4A). Exemplarily, the
involvement of the DIRAGs within the Metabolism of RNA (super-)pathway is given in
Supplementary Materials Figure S3A.

Reactome analysis of the negatively correlated antigens displays a completely diver-
gent panel of pathways compared to the those of positively correlated antigens. The top
five of these pathways are: Antigen Presentation: Folding, assembly and peptide loading
of class I MHC, Endosomal/Vacuolar pathway, Class I MHC mediated antigen process-
ing & presentation, ER-Phagosome pathway and Interferon Signaling (p = 1.11 × 10−16;
FDR = 1.57 × 10−14; Supplementary Materials Table S4B and Figure S3B exemplifying
the Class I MHC mediated antigen processing & presentation-pathway as extracted from
Reactome pathway browser). However, these pathways of the positively correlated anti-
gens resemble with those found enriched for the DIRAGS from the other contrasts e.g.,
“seropositive versus seronegative RA”, “higher reactive in seronegative RA” and “higher
reactive in established PIA” (Supplementary Materials Tables S1–S3). As an example, the
involvement of the DIRAGs within the Antigen Presentation (super-)pathway is given in
Supplementary Materials Figure S4B.
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Table 2. Top 10 identified gene sets in the WebGestalt analysis for DIRAGs higher reactive in seroposi-
tive (A) and seronegative RA (B) and PIA animals (C) during the disease onset period (24 days after
pristane induction). The Reactome GeneSet and link to the Pathway browser, gene set description, the
respective p-value and the GeneSymbols of significantly higher reactive DIRAGs are given.

(A) DIRAGs Higher Reactive in Seropositive RA (Seropositive vs. Seronegative RA)

GeneSet (Reactome) Description p-Value Gene Symbol

R-HSA-936440 Negative regulators of DDX58/IFIH1 signaling 0.0039 UBA7, CYLD, ISG15, PCBP2

R-HSA-202403 TCR signaling 0.0039 VASP, LAT, PTPRC, PSME4, NFKB1,
ITK, PSMD13, PSMB10

R-HSA-6790901 rRNA modification in the nucleus and cytosol 0.0070 NOP2, TBL3, UTP14A, RRP9, IMP4
R-HSA-202433 Generation of second messenger molecules 0.0106 VASP, LAT, ITK

R-HSA-8953854 Metabolism of RNA 0.0114

NOP2, PHAX, EIF4A3, EIF4G1, TBL3,
SF1, RPL4, THOC3, UTP14A,
EXOSC10, TSEN54, PPP2R1A,

DDX42, DCP1A, PSME4, SF3B5,
RRP9, PUS3, PSMD13, SF3A1,

PSMB10, IMP4, PCBP2
R-HSA-1660662 Glycosphingolipid metabolism 0.0134 ESYT1, ESYT2, SUMF2

R-HSA-168249 Innate Immune System 0.0143

EEF1A1, TXNDC5, SDCBP, PRKCSH,
LAT, STAT6, UBA7, CYLD, PTPRC,

PPP2R1A, IQGAP1, PSME4, CYB5R3,
NFKB1, ITK, CYFIP2, HLA-C, DPP7,

PSMD13, VAV2, ELMO2, PSMB10,
PDAP1, ISG15, PCBP2

R-HSA-352230 Amino acid transport across the plasma
membrane 0.0147 SLC7A5, SLC3A2

R-HSA-168928 DDX58/IFIH1-mediated induction of
interferon-alpha/beta 0.0148 UBA7, CYLD, NFKB1, ISG15, PCBP2

R-HSA-381183 ATF6 (ATF6-alpha) activates chaperone genes 0.0215 ATF4, NFYA

Table 3. Top 10 identified gene sets in the WebGestalt analysis for DIRAGs higher reactive in seroposi-
tive (A) and seronegative RA (B) and PIA animals (C) during the disease onset period (24 days after
pristane induction). Reactome GeneSet and link to the Reactome pathway browser, gene set description,
the respective p-value and GeneSymbols of significantly higher reactive DIRAGs are given.

(B) DIRAGs Higher Reactive in Seronegative RA (Seropositive vs. Seronegative RA)

GeneSet (Reactome) Description p-Value Gene Symbol

R-HSA-74217 Purine salvage 0.0010 AMPD2, APRT, HPRT1
R-HSA-8956321 Nucleotide salvage 0.0051 AMPD2, APRT, HPRT1

R-HSA-6798695 Neutrophil degranulation 0.0058

APEH, IMPDH2, APRT, STK10, TXNDC5,
DDOST, HLA-C, CTSD, SPTAN1, C3,
EEF1A1, TCIRG1, VCL, DYNC1H1,

PSMC3, DSP, GUSB, CCT8

R-HSA-1474244 Extracellular matrix organization 0.0072
LTBP3, TGFB1, LAMC1, COL1A2, HSPG2,
CTSD, SERPINH1, ADAMTS4, ADAM19,

PLOD1, ITGA3, COMP
R-HSA-8941856 RUNX3 regulates NOTCH signaling 0.0074 JAG1, NOTCH1, KAT2A

R-HSA-8878159 Transcriptional regulation by RUNX3 0.0150 JAG1, PSMC5, TGFB1, NOTCH1, CCND1,
KAT2A, PSMC3

R-HSA-5688426 Deubiquitination 0.0186
OTUB1, USP30, PSMC5, TADA2B, TGFB1,

ACTB, KAT2A, UIMC1, MBD6, PSMC3,
AXIN1, RAD23A

R-HSA-425393 Transport of inorganic cations/anions
and amino acids/oligopeptides 0.0218 SLC4A2, SLC1A5, SLC20A2

R-HSA-3000178 ECM proteoglycans 0.0243 TGFB1, LAMC1, COL1A2, HSPG2, COMP

R-HSA-5663202 Diseases of signal transduction 0.0253
JAG1, PSMC5, CUX1, TGFB1, NOTCH1,

ACTB, POLR2G, KAT2A, MTOR, HDAC6,
VCL, LCK, PSMC3, AXIN1



Molecules 2022, 27, 1452 10 of 17

Table 4. Top 10 identified gene sets in the WebGestalt analysis for DIRAGs higher reactive in seroposi-
tive (A) and seronegative RA (B) and PIA animals (C) during the disease onset period (24 days after
pristane induction). Reactome GeneSet and link to Reactome pathway browser, gene set description,
the respective p-value and GeneSymbols of significantly higher reactive DIRAGs are given.

(C) DIRAGs Higher Reactive in PIA Animals (Corrected for DIRAGs Higher Reactive in PBS Animals,
PIA vs. Control Animals)

GeneSet (Reactome) Description p-Value Gene Symbol

R-HSA-156827
L13a-mediated translational

silencing of
Ceruloplasmin expression

1.31 × 10−5

RPL7, RPL17, RPL27A, EIF4B, EIF4H, EIF4G1,
EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4,
RPL24, RPS19, EIF4E, RPS18, EIF3H, RPL12, RPS4Y2,
RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B

R-HSA-72706 GTP hydrolysis and joining of the
60S ribosomal subunit 1.31 × 10−5

RPL7, RPL17, RPL27A, EIF4B, EIF4H, EIF4G1,
EIF3A, RPS10, RPL10A, RPL26, RPS25, RPL41, RPL4,
RPL24, RPS19, EIF4E, RPS18, EIF3H, RPL12, RPS4Y2,
RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G, EIF3B

R-HSA-72613 Eukaryotic Translation Initiation 1.54 × 10−5

RPL7, RPL17, RPL27A, EIF4B, EIF2B4, EIF4H,
EIF4G1, EIF3A, RPS10, RPL10A, RPL26, RPS25,

RPL41, RPL4, RPL24, RPS19, EIF4E, RPS18, EIF3H,
RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M,

EIF3G, EIF3B

R-HSA-72737 Cap-dependent
Translation Initiation 1.54 × 10−5

RPL7, RPL17, RPL27A, EIF4B, EIF2B4, EIF4H,
EIF4G1, EIF3A, RPS10, RPL10A, RPL26, RPS25,

RPL41, RPL4, RPL24, RPS19, EIF4E, RPS18, EIF3H,
RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M,

EIF3G, EIF3B

R-HSA-72689 Formation of a pool of free
40S subunits 7.14 × 10−5

RPL7, RPL17, RPL27A, EIF3A, RPS10, RPL10A,
RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, RPS18,
EIF3H, RPL12, RPS4Y2, RPL22, RPL15, RPS5, RPL27,

EIF3M, EIF3G, EIF3B

R-HSA-156842 Eukaryotic Translation Elongation 1.00 × 10−4

RPL7, RPL17, RPL27A, RPS10, EEF1D, RPL10A,
RPL26, RPS25, RPL41, RPL4, RPL24, RPS19, RPS18,

RPL12, EEF1G, EEF1A1, RPS4Y2, RPL22, RPL15,
RPS5, RPL27

R-HSA-72766 Translation 2.21 × 10−4

PPA1, VARS, RPL7, MRPL54, RPL17, RPL27A, SARS,
EIF4B, EIF2B4, LARS, EIF4H, EIF4G1, AURKAIP1,

YARS, EIF3A, DDOST, APEH, RPS10, EEF1D,
RPL10A, RPL26, FARSA, HARS, RPS25, RPL41,

RPL4, RPL24, PARS2, RPS19, EIF4E, AARS2, RPS18,
EIF3H, RPL12, MRPS6, EEF1G, OXA1L, EEF1A1,

RPS4Y2, RPL22, RPL15, RPS5, RPL27, EIF3M, EIF3G,
EIF3B

R-HSA-72702 Ribosomal scanning and start
codon recognition 2.33 × 10−4

EIF4B, EIF4H, EIF4G1, EIF3A, RPS10, RPS25, RPS19,
EIF4E, RPS18, EIF3H, RPS4Y2, RPS5, EIF3M, EIF3G,

EIF3B

R-HSA-927802 Nonsense-Mediated Decay
(NMD) 2.48 × 10−4

SMG5, RPL7, RPL17, RPL27A, EIF4G1, RPS10,
RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24,

RPS19, SMG8, RPS18, RPL12, SMG7, UPF1, RPS4Y2,
RPL22, RPL15, RPS5, RPL27

R-HSA-975957
Nonsense Mediated Decay

(NMD) enhanced by the Exon
Junction Complex (EJC)

2.48 × 10−4

SMG5, RPL7, RPL17, RPL27A, EIF4G1, RPS10,
RPL10A, RPL26, RPS25, RPL41, RPL4, RPL24,

RPS19, SMG8, RPS18, RPL12, SMG7, UPF1, RPS4Y2,
RPL22, RPL15, RPS5, RPL27

3. Discussion and Conclusions

The presence of auto-antibodies serves as one of the European League Against
Rheumatism (EULAR) classification criteria for rheumatoid arthritis [42]. The serolog-
ical status for rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs)
allows stratification into subgroups of seropositive and seronegative RA. It is widely ac-
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cepted and discussed that autoantibodies are of predictive value for the development of RA
and the severeness of the disease outcome. However, the role of auto-antibodies within the
disease pathogenesis is not completely understood. The feasibility of autoantibody based
pathway analysis was reported in previous work [43–45].

Within the presented analysis we conducted IgG profiling of treatment-naive plasma
samples from RA patients and PIA animals on high density protein microarrays. Isolated
IgG from 96 human plasma samples and 8 animals was probed on AIT’s 16k protein
microarray and identified DIRAGs subjected to pathway analysis using Reactome pathway
browser and the WebGestalt toolkit to elucidate involved pathways. The identification of
autoantibody signatures could not only aid in improving the early diagnosis of systemic
autoimmune diseases, but also provide insights into the role of autoantibodies in the disease
pathogenesis. Therefore, pathway analysis of DIRAGs was conducted in RA and compared
to an established rodent model of RA to investigate the similarity of obtained immune
signatures. Differential reactivity analysis of IgG from seropositive versus seronegative
RA samples resulted in 206 significantly higher reactive DIRAGs with unambiguous gene
symbols in seropositive RA and 221 DIRAGs in seronegative RA. In PIA, 988 significant
DIRAGs (p < 0.05) upon correction for control animals were revealed. EEF1A1, HBP1,
TXNDC5, TPM3, c8orf33, ILF3, MGEA5, LTBP3, HLA-C and UBA1 were significantly
(p < 0.05) higher reactive (FC > 1.35) in seropositive, seronegative RA and PIA.

Gene sets were separately subjected to pathway analysis using the Reactome pathway
browser, the complete 16k gene list was used as reference. The top 25 significant pathways
showed 10 overlapping pathways between seropositive and seronegative RA with high
significance (p < 0.003), and 7 retained high significance after multiple testing correction
(Benjamini-Hochberg (BH) procedure). The remaining 3 pathways preserved high signifi-
cance in seronegative RA after correction for multiple testing (BH procedure) (Cytokine
signaling in Immune System, Immunoregulatory interactions between lymphoid and a
non-lymphoid cell and Class I MHC-mediated antigens processing and presentation). For
PIA, the 7 highly significant pathways overlapping between seropositive and seronegative
RA were found within the top 10 pathways with high significance after BH correction.
Cytokine signaling in the immune system retained high significance after BH correction for
the PIA analysis. The intersection of the gene lists of the found genes in the top 25 path-
ways revealed 16 genes of suspected biological relevance (HLA-C, GBP6, EIF4G2, MSN,
HNRPDL, HLA-A, FLNA, CCND1, FN1, APEH, VCL, NUP62, LCP1, PSMC4, DDOST
and EEF1A1). Two out of these, CCND1 and PSMC4, have previously not been described
as (auto)antigens.

Aiming to counterbalance possible biases of the pathway analysis caused by redundant
hits within the Reactome pathway browser analysis, WebGestalt analysis was appended.
The major advantage of the WebGestalt tool within this study is the option of redundancy
reduction which leads to identical results for the 16k microarray within the Reactome
pathway browser (HLA was observed as the top hit within all pathway analyses, also for
the reference design). Since seropositive and seronegative RA have distinct serological
and radiological appearance and disease progression, different auto-antibody signatures
for the serotypes could be plausible. This hypothesis, however, required the reduction
of redundant database hits as the reference analysis showed the identical result. Within
the WebGestalt analysis, no overlapping pathways for seropositive or seronegative RA
and PIA were observed. EEF1A1 was observed as single hit between after intersection of
the gene lists, which also arose within the Reactome pathway browser analysis. EEF1A1
was previously described as an autoantigen in type 1 diabetes by Koo et al. in 2014 [38]
and is stably expressed in synovial fibroblast as shown by Schröder et al. in 2019 [39].
Furthermore, EEF1A1 is described as an autoantigen in Felty’s syndrome, which is a rare
condition associated with RA encompassing splenomegaly and low neutrophil counts [40].
The clinical disease activity index (CDAI) of the investigated cohort comprised patients
with moderate-to-severe disease activity status (CDAI mean 20.7 in seropositive RA and
21.9 in seronegative RA, compare Table 3). A correlation analysis with CDAI as quantitative
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trait showed n = 429 antigens with significant correlation between r = ±0,29–0,49 which
in summary shows good correlation for CDAI and antibody reactivity. With regard to the
treatment-naive status of considered patient samples, elucidated antigens and pathways
should reflect disease characteristics free of effects of immune-modulatory treatments. Of
interest, the pathways affected by our analysis of antigenic reactivities showing negative
correlation are strongly associated with antigen presentation and immune regulation—these
are statistically highly significant. This means an inverse relation and less autoantibody
reactivity towards these self-antigens in mild or less-active disease with respect to the
CDAI. On the contrary antigens functional in RNA-associated pathways (e.g., RNA Poly-
merase I Transcription Initiation, RUNX1 regulates the expression of components of tight
junctions, Metabolism of RNA, etc.) showed positive correlation with disease activity– this
means higher autoantibody reactivity towards self-antigens, were found in more severe or
active disease.

Figure 6. The median difference between seronegative RA and seropositive RA is shown in the
above Gardner–Altman estimation plot. Both groups are plotted on the left axes; the mean dif-
ference is plotted on a floating axis on the right as a bootstrap sampling distribution. The mean
difference is depicted as a dot; the 95% confidence interval is indicated by the ends of the verti-
cal error bar. The unpaired median difference between seronegative RA and seropositive RA is
0.2 [95.0%CI −6.45, 4.25]. The p value of the two-sided permutation t-test is 0.9 (calculation and plot
generated by https://www.estimationstats.com (accessed on 30 December 2021) according [41].

Although these data need to be validated with an independent sample cohort, es-
pecially for those with positive correlation (when p-values were significant, but the false
discovery rates are high, thus this interpretation has to be taken with caution), the negative
correlation with disease activity goes in line with the same pathways relevant in antigen
presentation and immune regulation, as found significant when comparing the seropositive
vs. seronegative human RA and in the PIA rodent RA model the animals expressing RA
disease vs. those before RA induction.

To our knowledge, this is the first comprehensive comparative study of rodent and
human autoantibody signatures in RA. Taken together, the pathways elucidated from
autoantibody signatures underpin the previously described clinical similarities between RA
and PIA, suggesting shared pathways in disease initiation and progression. Therefore we
conclude that IgG profiling on high density protein microarrays offers (I) the possibility to
reveal novel autoantigens for diagnostic or therapeutic applications and (II) gives insights
into the role of auto-antibodies within the pathogenesis.

https://www.estimationstats.com
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4. Materials and Methods
4.1. Samples

Plasma samples from 96 treatment naive human individuals were provided by the
biobank of the Division of Rheumatology of the Medical University of Vienna. Determina-
tion of RF and ACPA status were determined as previously described [46] and RA patients
stratified respectively to seropositive (RF and ACPA positive) and seronegative (RF and
ACPA negative) RA. Samples were equally distributed (n = 24 per group) over the patient
groups osteoarthritis, seropositive RA, seronegative RA and bone-erosive disease-free
controls (healthy). The characteristics of the human cohort are given in Table 5.

Table 5. Sample characteristics of the investigated human cohort: age, biological sex, rheumatoid
factor (RF), ACPA (CCP+) status and disease activity as clinical disease activity status (CDAI)
are given.

Characteristic Seropositive RA Seronegative RA Healthy Controls Osteoarthritis

age range (years) 24.7–76.8 33.6–77.9 41–68 35–78
mean (years) 54.3 58.9 52.5 60.9

sex male (n) 9 7 8 5
female (n) 15 17 16 19

RF+ n = 24 - - -

CCP+ n = 24 - - -

disease activity range (CDAI) 10.1–44.4 11.9–38.4 - -
mean (CDAI) 20.7 21.9 - -

Serum from 8 animals was provided by the Division of Rheumatology of the Medical Uni-
versity of Vienna. The animal cohort comprised serum from n = 3 control group rats and n = 5
immunized rats collected 5, 7 and 24 days after Pristane (2,6,10,14-Tetramethylpentadecan)
or PBS treatment; this arthritis model (Pristane induced arthritis (PIA)) and its protocol was
previously described elsewhere in detail [7].

4.2. Antibody Isolation

IgG was isolated with the MelonTM Gel IgG Spin Purification Kit (Thermo ScientificTM

45,206) from human and murine plasma by diluting 15 µL plasma with 95 µL of purification
buffer and isolation according manufacturer’s instructions. Antibody concentration was
determined as the means of A280 duplicate measurements (Epoch Take3 system) and
the integrity of antibodies was determined via gradient sodium dodecylsulfate (SDS)
polyacrylamide gel electrophoresis (NuPAGETM 4–12% Bis-Tris (InvitrogenTM NO0336)
in 1X MOPS (InvitrogenTM NP0050)) and subsequent Coomassie staining (InvitrogenTM

SimplyBlueTM SafeStain). Two µg of eluate was mixed with 2.5 µL 4X LDS buffer (PierceTM

84788) and filled with buffer to 10 µL, denatured at 70 ◦C for 10 min and loaded to each lane
and gel run at 180 V for 60 min. IgG was concentration adjusted to 0.3 mg/mL (human) and
0.2 mg/mL (murine) with the kit provided buffer and stored −20 ◦C until slide processing.

4.3. Protein Microarray Processing

AIT’s 16k protein microarray is an in-house printed, high density protein microarray
derived from the UniPEx expression library. Production of recombinant proteins was previ-
ously described in detail elsewhere [44,47,48]. In brief, the array represents 5449 annotated
human proteins in one or more E. coli cDNA clones (15,417 cDNA clones in total). Purified
6xHis-Tag proteins are spotted in duplicates onto SU8 epoxy coated glass slides with an
Arrayjet Marathon Argus inkjet microarray instrument. Bovine serum albumin, human
serum albumin, human IgG, crude E. coli lysate and elution buffer are spotted as controls.
Each batch of printed slides is subjected to a qualification experiment as previously de-
scribed by Coronell et al., and slides are vacuum sealed and stored at 4 ◦C until processing.
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Briefly, this qualification experiment comprises the reliability analysis of the platform to
comprehend an individual’s antibody fingerprint by crosswise mixing of two samples and
subsequent correlation analysis of the obtained antibody profiles when 97% of DIRAGs
correlated (r = 0.5–1) with the mixing ratio [43].

16k protein microarray slides were equilibrated to room temperature, slides pretreated
by incubation with 2% SDS at 70 ◦C for 10 min and blocked with DIG Easy HybTM for
30 min at room temperature (RT) in one tank equipped with magnetic stirrers. Slides were
washed three times in 1× PBS pH 7.4 0.1% Triton X-100 (PBST; GibcoTM 70011044 and
Merck X100) for 5 min each with stirring and rinsed with Milli-Q® water. Blocked slides
were spin dried at 900 rpm for 4 min and put in dust-free hybridization chambers (Agilent
G253A). Thawn samples were diluted to a final concentration of 0.15 mg/mL with 2× PBST
6% skimmed milk powder (Maresi Fixmilch) and 400 µL of sample dilution applied to
each gasket slide (Agilent G2534-60003), slides placed on top and chambers closed. Upon
removal of air bubbles, chambers were placed into hybridization ovens and incubated
for 4 h at RT with 12 rpm. After incubation chambers were opened, microarray slides
arranged in glass carriers and washed three times in fresh PBST for 5 min each in glass
tanks with stirring followed by a Milli-Q® water rinse and spin drying by centrifugation
at 900 rpm for min. Human IgG was detected with Alexa Fluor 647 goat anti-human IgG
(Life technologies A21445) diluted 1:10,000 in PBST 3% milkpowder and incubation for
1 h in glass tanks with stirring at RT. Rat IgG was detected with Alexa Fluor 647 Goat
anti-Rat IgG (H+L) (Thermo ScientificTM A-21347) diluted 1:5000 in PBST 3% milk powder.
Slides were finally washed three times with fresh PBST in glass tanks with stirring before a
final Milli-Q® water rinse and spin drying. Up to 72 slides were processed within 1 batch,
therefore in total 3 batches were conducted.

4.4. Image Acquisition and Data Extraction

Processed and spin-dried slides were sorted in the slide insert and fluorescence images
of arrays acquired by scanning at 220% PMT gain (human) and 200% PMT gain (rat) with
a Tecan PowerScanner (excitation wavelength 635 nm, 10 µm resolution). Acquired TIFF
images were loaded in GenePix Pro 7.0, the .gal file aligned and spots of low quality
manually flagged. Fluorescence data was extracted as .gpr files. Visual inspection of
raw intensities as boxplot revealed batch effects associated with experimental runs, hence
ComBat normalization was applied for removal of these effects [49]. ComBat normalized
data were subjected to median normalization and investigated via k-means clustering which
assigned the samples to two clusters in accordance to the experimental batches. Therefore,
the kMeans cluster was used as blocking variable for the class comparison analysis.

4.5. Preprocessing and Differential Reactivity Analysis

All preprocessing and data analysis steps were conducted with RStudio [50] and BRB
ArrayTools [8]. Raw .gpr files were loaded in BRB ArrayTools. Median fluorescence values
were corrected for local median background, flagged and low intensity (< 100 MFI) features
removed, log2 transformed and normalized (human: ComBat and median with array
1 as reference [rat]). Differential reactivity analysis was conducted as class comparison
analysis between the assigned case versus control classes with a nominal significance cutoff
of p < 0.05. Murine samples were assigned to groups based on their sampling timepoint
(5, 7 and 24 days after immunization). Tuncel et al. previously characterized the PIA model
in depth [7], hence the interval between 7 and 24 days is defined as the disease onset period.
Class comparison was conducted for these two timepoints for PIA and control samples,
respectively. DIRAGs higher reactive in the PIA group were corrected for higher reactive
DIRAGs in the control group before gene list cleaning and pathway analysis to adjust for
phased natural fluctuations.
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4.6. Reactome Pathway Analysis

The resulting protein lists were filtered for fold-change, and proteins showing higher
reactivities in the case group were subjected to the Reactome pathway browser [51], actually
their respective GeneSymbols. “Project to human” was selected in the Options column
and analyzed. Results files were downloaded as .csv and .pdf reports saved for further
analysis in Microsoft Excel. The complete protein list of the 16k microarray was subjected
to Reactome as reference analysis. The respective rank of the observed pathway on the
16k array served as scale for overrepresentation (ORA) assessment. p-values of elucidated
pathways were controlled via the Benjamini-Hochberg (BH) correction (false discovery rate
[FDR]) [52].

4.7. WebGestalt Pathway Analysis

For GeneOntology analysis and refined ORA, protein lists containing the higher
reactive DIRAGs in the respective case group were subjected to the WebGestalt toolkit
(pathway and Reactome as functional database, minimum number of genes per category
n = 5 and top 10 as respective significance level [53]). The complete list of gene symbols
presented on the 16k array was used as a reference list. Report files were downloaded in
the default format and further analysed in Microsoft Excel and the JVenn [9].

Supplementary Materials: The following supporting information can be downloaded online.
Figure S1: SDS Page for plasma isolated IgG; Figure S2: Boxplots of top 10 DIRAGs in human
RA and the PIA rat model; Figure S3: (A) Involvement of antigens with significant positive CDAI
correlation in Metabolism of RNA pathway. (B) the top pathway of antigens with significant positive
CDAI correlation: Class I MHC mediated antigen processing & presentation; Table S1: Top 25 en-
riched pathways identified for DIRAGs higher reactive in seropositive versus seronegative RA in
human IgG profiling. Table S2: Top 25 pathways enriched pathways for DIRAGs higher reactive in
seronegative RA. Table S3: Top 25 enriched pathways for DIRAGs higher reactive in established PIA.
Table S4: The enriched pathways for antigens positively (A) and the top 20 negatively (B) correlated
with CDAI.
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