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An efficient copper-promoted hydration reaction and its application in the synthesis of benzo[b]furan and benzo[b]thiophene

derivatives is presented starting from readily available 2-fluorophenylacetylene derivatives. The key annulation step involves the

hydration of the C—F bond of 2-fluorophenylacetylene derivatives followed by an intramolecular annulation to afford benzo[b]furan

and benzo[b]thiophene derivatives. Moreover, structurally important 2,2'-bisbenzofuran scaffolds are provided in good yields.

Introduction

The development of general and efficient methodologies for the
synthesis of complex heterocycle skeletons has received much
attention in the past decades. Among the most ubiquitous hete-
rocyclic moieties in natural and bioactive products are the
benzo[b]furan and benzo[b]thiophene units [1-8]. Despite
the existence of established methods for the synthesis of
benzo[b]furan and benzo[b]thiophene derivatives, the develop-
ment of more convenient methods is of significant importance
[9-14]. Commonly, the preparation of 2-substituted
benzo[b]furans involves the usage of 2-halophenols as reaction
precursors (Scheme 1a) [15-18], which can be cumbersome due
to the precursors’ instability and the protecting and depro-

tecting steps necessary to synthesize the precursors [19-23].

Ackermann et al. utilized bromo- and iodo-substituted phenyl-
acetylene in their TiCly-catalyzed intramolecular nucleophilic
annulation process (Scheme 1b) [24]. But this method involves
a two-step process and the usage of two different metal salts
may complicate further processing. The direct design of a Pd or
Cu-catalyzed one-pot synthesis of benzo[b]thiophenes from
2-bromoalkynylbenzenes and a thiol derivative has eliminated
these problems to a large extent [25-29]. Nevertheless, the
direct synthesis of benzo[b]furans from 2-haloalkynylbenzenes
and the usage of 2-fluorophenylacetylene derivatives as
substrates continues to represent a challenge. Indeed, Tsuji and
co-workers have developed a transition metal-free process for
the synthesis of benzo[b]furans from 2-fluorophenylacetylene
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Scheme 1: Synthetic approaches to benzo[b]furans from 2-alkynyl-
phenols, ketones and 2-fluorophenylacetylene derivatives.

derivatives. But the reaction requires conditions with a high
reaction temperature for satisfactory yields. Unfortunately, only
benzo[b]furans were obtained in this reaction [30].

Typically, the aryl halides used in the annulation reactions are
iodides and bromides. It is rare to employ aryl fluorides because
of their low reactivity [31-33]. To extend the application of our
strategy of the copper-catalyzed synthesis of heterocycles,
we report herein a one-pot process for the synthesis of
benzo[b]furans and benzo[b]thiophenes with 2-fluorophenyl-
acetylene derivatives as precursors (Scheme 1c).

Results and Discussion

We report an efficient synthesis of functionalized
benzo[b]furans from commercially available alkynes by a
copper-catalyzed, intramolecular annulation process. Initially,
our investigation commenced with the annulation of (2-(2-
fluorophenyl)ethynyl)benzene (1a) to give the corresponding
product 2-phenylbenzofuran (2a) by using 2 equiv KOH as a
base under various conditions. In the presence of the Pd(PPhs3)4
catalyst the reaction of (2-(2-fluorophenyl)ethynyl)benzene in
CH3CN does not give any corresponding product (Table 1,
entry 1). The usage of CuCl and 1,10-phenanthroline (1,10-
phen) as a ligand in CH3CN at 80 °C showed that 2a could be
isolated in 35% yield (Table 1, entry 2). The screening of the
various solvents revealed that the solvent played an important
role in this hydration and annulation process. Compared with
the other solvents, DMSO is more suitable for the annulation
process (Table 1, entries 2—4). These investigations revealed
that the usage of Cul instead of CuCl as a catalyst resulted in
the isolation of 2a in a satisfactory 88% yield after 4 hour
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(Table 1, entry 5). To our delight, the use of 0.2 equiv of KI as
an additive afforded 2a in a satisfactory 95% yield (Table 1,
entry 6). The base loading had a strong influence on the yield
with 2 equiv KOH being the optimal amount (Table 1, entries 7
and 12). Further screening of bases did not lead to better yields
and confirmed that the reaction did not proceed in the presence
of CsCO3 (Table 1, entry 8). Other catalytic systems, such as
Cu(OAc),, Cu(OTf), and Cu(acac),, were less effective for this
annulation process (Table 1, entries 9-11). A decrease in the
temperature lowered the yield of the reaction (Table 1, entry
13). The importance of water was confirmed by a lower yield
under dry conditions (Table 1, entry 14). In the absence of Cul,
we found that the reaction of (2-(2-fluorophenyl)ethyn-
yl)benzene with KOH in DMSO at 80 °C for 4 h gave 55%
yield of the annulation product (Table 1, entry 15).

Table 1: Optimization of the reaction conditions.?

O . O catalyst, base |\ A
= P

F 1a 2a

Entry  Catalyst Solvent  Additive Yield [%]°
1 Pd(PPh3)s CH3CN — -
2 CuCl CH3CN  1,10-phen 35
3 CuCl DMF 1,10-phen 71
4 CuCl DMSO 1,10-phen 75
5 Cul DMSO 1,10-phen 88
6 Cul DMSO Kl 95
7° Cul DMSO Kl 68
gd Cul DMSO Kl <5
9 Cu(OAc), DMSO Kl 65
10 Cu(OTf), DMSO Kl 68
11 Cu(acac), DMSO Kl 54
128 Cul DMSO Kl <5
13f Cul DMSO Kl 25
149 Cul DMSO Kl 38
15 - DMSO Kl 55

@Reaction conditions: alkyne 1a (1.0 mmol), catalyst (10 mol %), base
(2.0 mmol), H20 (1.5 mmol) and additives (0.2 mmol) in 3 mL of
solvent at 80 °C for 4 h; Pyields are given for isolated products;

1 equiv KOH was used; 9CsCOj3 instead of KOH; €omitting KOH and
starting material recovered; freaction was carried out at 30 °C.
9omitting H,O (dry conditions).

Next, we explored the scope and generality of the process by
using the conditions for Tabe 1, entry 6. As shown in Scheme 2,
substrates with either electron-donating or electron-with-
drawing substituents on the benzene ring can undergo the reac-
tion smoothly, and the corresponding benzo[b]furan products
were obtained in good to excellent yields. The reaction toler-
ated a variety of substituents including -Cl, -Br, -F, -OMe,
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Scheme 2: Copper-promoted reaction of 2-fluorophenylacetylene derivatives to yield benzo[blfurans. Reaction conditions: Alkyne 1a (1.0 mmol),
catalyst (10 mol %), KOH (2.0 mmol), HoO (1.5 mmol) and Kl (0.2 mmol) in 3 mL of DMSO at 80 °C for 4-8 h; yields are given for isolated products.

-NMe, and thiophenyl groups. The use of 2-fluorophenyl-
acetylene derivatives with electron-withdrawing substituents as
R? afforded benzo[b]furan products in higher yields. It is note-
worthy that the 2-(2-(2-fluorophenyl)ethynyl)thiophene was
also successfully converted to 2-(thiophen-2-yl)benzofuran (2j)
in good yields. Subsequently, the R! substituent of the 2-fluoro-
phenylacetylene derivatives was varied from hydrogen to other
functional groups. Substituents at the ortho position of the
benzyl group did not have an impact on the reaction yield. The
presence of an additional electron-donating substituent margin-
ally decreased the conversion of 2-fluorophenylacetylene
derivatives resulting in products in moderate yields (Scheme 2,
2k and 20). Interestingly, the p-fluoro atom was kept intact
during the reaction and fluoro-substituted benzofuran was
obtained (Scheme 2, 2q) [34-37]. This shows the good selec-
tivity of the current reaction system. It should be emphasized
that the 1,3-bis(2-(2-fluorophenyl)ethynyl)benzene was also
successfully converted to benzo[b]furan 2r in good yield.

Unfortunately, when aliphatic alkynes were employed, the
desired annulation products were formed in low yields.

The above studies dealt only with 1,2-diphenylethyne deriva-
tives as a reactive group in the substrates. Inspired by the
results of the nucleophilic annulation process, we wondered
whether we could further explore the annulation of 1,3-
diynes, which have great synthetic potential in medicine and
materials sciences [38-40]. For extensions, we used 1,4-bis(2-
fluorophenyl)buta-1,3-diyne as a substrate to investigate
the possibility of this transformation. Similar to (2-(2-fluoro-
phenyl)ethynyl)benzene, 1,4-bis(2-fluorophenyl)buta-1,3-diyne
was able to offer the corresponding annulation products 2s in
78% yield (Scheme 3).

To gain a deeper mechanistic understanding of the present

catalytic process, the direct intramolecular annulation of

1-bromo-2-(2-(2-fluorophenyl)ethynyl)benzene and 1-chloro-2-
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Scheme 3: Copper-promoted synthesis of 2,2'-bisbenzofuran derivatives.
(2-(2-fluorophenyl)ethynyl)benzene were performed, as
shown in Scheme 4. In F/Br-substituted 1-bromo-2-(2-(2- R Cul, R
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major product. In F/Cl-substituted 1-chloro-2-(2-(2-fluoro-
phenyl)ethynyl)benzene was able to offer the chloro-substi-
tuted product 2v as the only product. A reactivity order of
F > Br > Cl can be derived from these data.

Reactions with Na;S-9H,0 as a nucleophile were successful,
and the corresponding benzo[b]thiophene products were
obtained in high yields (Scheme 5). We obtained the best results
with DMSO as the solvent and a reaction temperature of 60 °C.
Using the optimized reaction conditions, 3-chloro and 4-chloro
substituted 2-fluoroalkynylbenzenes were reacted with
Na,S-9H,0 to yield benzo[b]thiophenes in good yields.

The postulated reaction mechanism is depicted in Scheme 6
[25-29]. The catalytic cycle is initiated by the nucleophilic
substitution of 2-fluorophenylacetylene derivative 1 with OH™.
This might provide unstable 2-alkynylphenol A, which could
then form the corresponding potassium phenolate intermediate
B. The coordination of Cul with B may provide intermediate C,
and the subsequent addition to the C—C triple bond gives the
copper complex D. Protonolysis of intermediate D generates

benzo[b]furan 2 and regenerates the active catalyst species.

Conclusion
In summary, we have developed a new protocol for the syn-
thesis of benzo[b]furan and benzo[b]thiophene derivatives

standard conditions

standard conditions

standard conditions

Scheme 4: Intramolecular competition experiments.
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3b, R=3-Cl, 92%
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Scheme 5: Copper-promoted synthesis of benzo[b]thiophenes.
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Scheme 6: Proposed mechanism for the annulation reaction.

starting from 2-fluorophenylacetylene derivatives. The hydra-
tion and annulation is catalyzed by Cul with KOH or
Na,S-9H,0 as a base at 60—80 °C to give the corresponding
products in moderate to good yields. Various functional groups
are accepted resulting in a wide range of substituted
benzo[b]furans and benzo[b]thiophenes. Further studies, which

N\ 2a, X=Cl, < 5%
X = Br, 32%
O X =F, 95%
(I~ - 0
o o
2t 87% 2u <5% &
X
ssolien
o Z 0
cl F
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are focused on the extension of the scope and the application of
the reaction to the synthesis of bioactive products, are currently

ongoing in our laboratory.
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