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Abstract

Background: Seasonal influenza outbreaks are a serious burden for public health worldwide and cause morbidity to millions
of people each year. In the temperate zone influenza is predominantly seasonal, with epidemics occurring every winter, but
the severity of the outbreaks vary substantially between years. In this study we used a highly detailed database, which gave
us both temporal and spatial information of influenza dynamics in Israel in the years 1998–2009. We use a discrete-time
stochastic epidemic SIR model to find estimates and credible confidence intervals of key epidemiological parameters.

Findings: Despite the biological complexity of the disease we found that a simple SIR-type model can be fitted successfully
to the seasonal influenza data. This was true at both the national levels and at the scale of single cities.The effective
reproductive number Re varies between the different years both nationally and among Israeli cities. However, we did not
find differences in Re between different Israeli cities within a year. Re was positively correlated to the strength of the spatial
synchronization in Israel. For those years in which the disease was more ‘‘infectious’’, then outbreaks in different cities
tended to occur with smaller time lags. Our spatial analysis demonstrates that both the timing and the strength of the
outbreak within a year are highly synchronized between the Israeli cities. We extend the spatial analysis to demonstrate the
existence of high synchrony between Israeli and French influenza outbreaks.

Conclusions: The data analysis combined with mathematical modeling provided a better understanding of the spatio-
temporal and synchronization dynamics of influenza in Israel and between Israel and France. Altogether, we show that
despite major differences in demography and weather conditions intra-annual influenza epidemics are tightly synchronized
in both their timing and magnitude, while they may vary greatly between years. The predominance of a similar main strain
of influenza, combined with population mixing serve to enhance local and global influenza synchronization within an
influenza season.
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Introduction

Seasonal influenza outbreaks are a serious burden for public

health worldwide. Seasonal influenza is mainly a self-limiting

disease, and in most patients results in only moderate illness

without need for medical treatment. Nevertheless, it is estimated to

cause morbidity to millions of people each year. In addition,

influenza poses a major risk to chronic patients of all ages

especially the elderly, to whom it causes more severe morbidity

and is associated with a higher death rate [1–3]. The global

mortality from the disease is estimated at 250,000 to 500,000 cases

annually [4,5]. Furthermore, the economic burden of seasonal

influenza is estimated to be 11 billion US dollars a year in the US

alone [6]. This includes morbidity, mortality, hospitalizations and

absenteeism from work and school. As early as 1952 the WHO

established the Global Influenza Surveillance Network. However

there are major problems regarding the reliability of influenza data

[7,8]. The major difficulty is that the disease has no clear-cut

clinical signs and can be easily confused with other respiratory

illnesses having similar symptoms [9]. In addition, influenza illness

is often slight or moderate and a significant number of infected

individuals are asymptomatic, so that many individuals with the

disease do not seek any medical care. In order to better estimate

the burden of influenza, different sources of influenza data have

been used to study the disease, such as Influenza-Like Illness (ILI)

diagnoses, virus isolations, death records from pneumonia and

influenza, physician visits and web search queries [2,4,10–12].

Influenza is predominantly seasonal, with epidemics occurring

every winter, but the severity of the epidemic and the exact timing

of the outbreak vary substantially between years (see figure 1).

Influenza has also been studied with respect to its geographic

spread at different scales. Viboud et al. (2006) have studied the
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spread of influenza across the United States and found that there is

higher synchrony between more populous states [12]. In other

studies Viboud et al. (2004) and Chowell et al. (2008) analyzed the

synchrony on a global scale comparing outbreaks in the US,

France and Australia [13,14] and found high synchrony between

the US and France and no synchrony between the Northern and

Southern hemispheres (even after adjusting for the two hemi-

spheres being out of phase). In the smaller spatial scale of France,

Bonabeau et al. (1998) demonstrated how the disease rapidly

spreads across the country, and concluded that when modeling the

initial spread of influenza it is sufficient to assume global

homogeneous mixing to capture the dynamics. Geographic

heterogeneities and density dependence affect the dynamics of

the disease around local outbreak peaks [15].

Israel provides a unique opportunity to study the spatial spread

of influenza at a small scale since the country is only approxi-

mately 22,000 km2. We use a highly-detailed influenza database,

both temporally and spatially (see data section) collected in Israel

for over 11 years. The data composed of ILI diagnoses in a subset

of some 23.8% of the Israeli population. We initially examine the

ILI data on a national level (i.e. aggregated data) to understand the

year to year variability of influenza epidemics both in their timing

and magnitude. In the second part of the paper we examine spatial

aspects of influenza in Israel with emphasis on the spatial

synchrony. The following patterns are of particular interest: i)

Differences in ILI dynamics and key epidemiological parameters

between the major cities in Israel (in time and space) ii) Synchrony

between different Israeli cities within a year iii) Comparing the

‘‘local’’ Israeli synchrony with the intercontinental synchrony of

influenza outbreaks tested on the time series of Israel and France.

Modeling Approach
Figure 1 displays the time series of influenza outbreaks (ILI

cases) over eleven years when aggregated spatially over all of

Israel. There is considerable variation between years in both the

peak height of the outbreak, the total attack rate, and the times at

which the epidemics reach their maxima during the winter months

(December to March (figure 2A). The high quality of the entire

dataset both in terms of temporal and spatial resolution (see data

section), is a key feature that motivates the following modeling

analysis. The data were analyzed and modeled both: i) at the

national level, using the total number of ILI cases aggregated over

the entire country (figure 1), and ii) in the seven largest cities of the

database (in terms of population size). These cities provide a

picture of the spatial variation of influenza across the country.

A discrete time age-of-infection SIR epidemic model, as

formulated in Katriel et al, (2011) [16], is used to fit the Israeli

ILI data and estimate epidemiological parameters in order to gain

a better understanding of the influenza dynamics (see Methods for

model description). The SIR framework assumes that individuals

within a population can be divided into three categories or

compartments: Susceptibles, Infected or Recovered. Disease

transmission within the population is modeled by tracking the

changes in numbers of individuals within these compartments.

Although SIR-type models have become almost the gold standard

for modeling bacterial and viral respiratory infectious diseases, it is

to some degree an oversimplified model for influenza due to the

virus’s ability to rapidly mutate giving rise to its characteristic

antigenic drift [17,18]. Earn et al (2002) argue that ‘‘it seems

impossible to avoid a much greater degree of model complexity

[than the SIR]. The primary obstacle to simple compartmental

modeling of flu is antigenic drift.’’ [7] In order to bypass the

difficulties of modeling continuous evolutionary changes in

influenza we have chosen to model individual years separately as

single influenza outbreaks, a practice that may be found in the

important studies of Baroyan et al (1971) [19] in the USSR, Spicer

(1979) [20] in the UK and recently by Chowell et al (2008; 2010)

for the US, France, Australia and Brazil [14,21], Cintron-Arias et

al (2009) who modeled US epidemics [22] and van Noort et al

(2011) who used the same approach to modeling influenza time

series as single consecutive outbreaks in the Netherlands, Belgium

and Portugal [23]. Our analysis goes further than these studies in

the manner that it uses a specially formulated statistical approach

for estimating key epidemiological parameters.

The basic reproductive number R0 is an important and widely

employed index for quantifying individual epidemic growth rates

[24]. R0 is defined as the average number of people infected by a

typical individual over the disease infectivity period in a totally

susceptible population. In general, it is extremely difficult to

estimate R0 because the initial population is rarely totally

susceptible. Most studies of influenza therefore only attempt to

estimate the ‘‘effective R0’’, or Re, which is a composite index:

Re = R0 N S0, where S0 is the proportion of the population who are

susceptible at the beginning of an outbreak. The effective

reproduction number Re should be interpreted as the average

number of people an infected person infects during the course of

their illness in a population, a fraction S0 (S0,1) of which is

susceptible. But Re tells us little about R0 since S0 (an important

variable in its own right), is difficult to estimate directly [25]. There

are many methods documented in the literature for estimating Re

and nearly all of them calculate the rate of exponential growth of

the infected population in the first phase of an outbreak [26–28].

Recently there have been several methods developed for

estimating both R0 and S0 which are usually more complex and

in most cases require fitting an SIR type model to the data

[22,23,29–31]. Certainly there would be a major advantage in

having the ability to separate out these two parameters because

they have very different biological meanings. In the approach used

here, we take advantage of the fact that for the Israeli dataset, the

entire epidemic curve is available for analysis and not just the

initial phase. We are thus able to fit the age-of-infection SIR model

to the full epidemic curve to obtain estimates of both R0 and S0 for

each epidemic outbreak. In Table 1 the estimates of Re obtained

using the entire curve (see methods) are given together with

estimates of Re calculated using the classical method [32] which

estimate the exponential growth of the number of infected people.

These two estimates of Re are significantly correlated (r = 0.91,

p = 0.0007).

Our methodology gives estimates of R0 and S0 under the

assumption that all influenza cases in the population are reported

and thus that the ILI time series are a product of a surveillance

system with a perfect, or 100%, reporting rate. However, such a

situation is never the case in practice. If we assume that the

reporting rate of the surveillance captures the proportion r
(0,r,1) of true influenza cases, then we refer to our estimates in

the presence of partial reporting as R0 and S0 while the desired

values under perfect reporting are referred to as R0 and S0. They

are related as follows [25]:

R0~rR0 and S0~
S0

r
ð1Þ

Since the true reporting rates (r) of surveillance systems are

rarely quantified accurately, they become an important limiting

factor when trying to estimate these key epidemiological param-

eters. However, for well managed surveillance systems, it can be

assumed that r is reasonably constant over extended times, in

Spatio-Temporal Patterns of Influenza in Israel
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which case it would be possible to capture the relative values and

trends of these parameters as they change in time. Unfortunately

there have been no studies of the reporting rate stability of the

Maccabi data. We have compared the data to another indepen-

dent Israeli surveillance and found almost identical trends over the

same period indicating the reporting rate has changed little.

Nevertheless, as we note in the Data section, there was a change in

the ILI coding in 2002, which might possibly have changed the

reporting rate in that year, presumably to a small degree.

In our data, it was found that on average 1.5% of all Maccabi

members were infected with influenza annually (see table 1 for full

list of attack rates). However, in the US, average overall attack

rates are estimated to be 10–20% [33,34], and France some 12–

15% [35]. This, together with discussions with the Israeli Ministry

of Health, motivated our setting of the reporting rate to 10%

(r = 0.1), yielding an attack rate in Israel (adjusted to 15%)

consistent with that reported in the literature for other countries

[8,14]. In this case, the average estimates of the true R0 in Israel

using equation 1 should be R0,4.9 which is close to the rough

Figure 1. ILI incidence in Israel and France, 1998–2009. (A) Weekly number of ILI cases per 100,000 Maccabi Health Services members in Israel,
Tel Aviv and Jerusalem. The text next to the peaks indicates dominant subtype (NDS = no dominant subtype). (B) Weekly number of ILI cases per
100,000 people in Israel (Maccabi Health Services members) and France (sentinel clinics patients). Note different scales for each time series, as French
incidence is ,3 times higher than Israeli incidence.
doi:10.1371/journal.pone.0045107.g001

Spatio-Temporal Patterns of Influenza in Israel
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calculation of Katriel and Stone (2010) who estimated R0,3.75

[25].

We note that the parameter Re has the interesting property that

it is entirely independent of the reporting rate since:

Re~R0S0~r�RR0 S0=r~R0S0 ð2Þ

Thus estimations of Re remain unaffected by spatial differences

or temporal changes in reporting rates.

Results

Temporal Features
The time course of each of the outbreaks in the aggregated

Israeli time series was fitted using the discrete-time SIR model (see

Methods). In general the model accurately reproduced the time

course of the Influenza A epidemics as demonstrated by the

simulation run shown in figure 3A based on data for the year

2007–8. Figure 3C provides a more general picture by displaying

model fits for each epidemic in all eleven years as compared to the

observed data, based on a cumulative plot, similar to a Q-Q plot

(cf [30] and methods). The cumulative incidences of the observed

data are plotted on the x-axis, while the cumulative incidence

Figure 2. Synchronization of ILI incidence between seasons and within seasons. Top (A): superimposition of eleven seasons of daily ILI
incidence in Israel. Starting date is June 1st. Middle (B): superimposition of ILI incidence in seven cities in the 1998–1999 season where Re = 1.2 was low
and the correlation between the different cities is relatively weak. Bottom(C): ILI incidence in the same seven cities during the 2006–2007 season
where Re = 1.6 was high and the correlation between the different cities was strong.
doi:10.1371/journal.pone.0045107.g002

Spatio-Temporal Patterns of Influenza in Israel
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produced by the SIR model is plotted on the y axis. The solid

straight diagonal lines are reference lines which connect all points

(It, It) of the observed data. The lower points in each series

represent the early stage of the epidemic and the top points

represent the late stage of the epidemic. Perfect fits between model

and data would result in all points falling on the diagonal reference

lines. This is to some degree achieved in the fits of the Israeli

Influenza A data. The fits of the Influenza B seasons, however, as

seen also in figure 3B, are of a lower quality.

Also included in figure 1 is a plot of the well-studied influenza

(ILI) dataset collected in France (see figure 1B and data section for

details) which will be used for the purposes of a comparative study

with Israel. We found that the French epidemic data (figure 1B)

could also be modeled with good accuracy by the SIR fitting

procedure. However, for both the Israeli and French datasets, we

were unable to fit influenza B years with the same level of

accuracy, since the epidemic curves corresponding to influenza B

outbreaks were more asymmetric than the standard SIR model

could accommodate for (figure 3B). Intriguingly, when correlated

against its year the estimates for �RR0 in the Israeli aggregated data

showed a significant (p = 0.006, R2 = 0.69) long-term increase over

the eleven years (figure 4A).

The estimates for R0 (based on r = 0.1) varied between the

lowest R0 = 2.95 in 2000–2001 and a maximum of R0 = 8.16

during the 2006–2007 outbreak, with an average of R0 = 4.9 (see

table 1 for full details). We note that it is unlikely that the increase

in R0 is due to an increase in reporting rates over this period. Had

there been an increase in reporting rate, one would expect a

corresponding increase in attack rate over the time-period, but this

does not appear to occur. In addition the analysis was repeated

after excluding the first years (where the coding system was

different) and the trend remained (see figure 4). Interestingly,

Spicer (1979) [20] also noted an increase in transmissibility

(equivalent to an increase in R0) with time after a new strain of

H2N2 appeared: ‘‘transmissibility was low in the early stages of the

introduction of the new Asian (H2N2) virus subtype in 1957 and

the Hong Kong (H3N2) virus subtype in 1969–1970 and high for

some years after. This is biologically plausible if the virus is

adapting to new conditions of spread.’’

While R0 exhibited a long-term increase over the years, the

fraction of susceptibles S0 showed a significant decrease with time

(p = 0.0006, r = 20.91) as shown in Figure 4B. The maximum

fraction of susceptible was found to be S0 = 40.4% during 2000–

2001 while the minimum was S0 = 19.6% obtained in 2006–2007;

the average being S0 = 29.2%.

The average Re for influenza A in Israel was found to be

Re = 1.32, was lowest with Re = 1.17 in 2000–2001 (characterized

by a dominant H1N1 virus), and highest with Re = 1.6 in 2006–

2007. The estimates of Re for Israel are very similar to estimates

for seasonal influenza in other parts of the world Australia, US and

France (the average in all 3 countries was Re = 1.3) [8,14], but

higher then recent estimates of Chowell et al 2010 for Brazil, USA

and France Re = 1.06, Re = 1.14 and Re = 1.14 respectively [21].

While using our model to estimate Re in France during the same

time period gave an average estimate of Re = 1.36.

Over the eleven years of this study, both R0 and S0 vary

considerably (e.g., R0 varied between 2.95–8.16 while S0 varied

between 19.6–40.4%).It is puzzling why the observed decrease in

the susceptible fraction of the population over time is balanced out

by the increase in the reproductive number R0 so that the product

Re = S0NR0 changes to a relatively limited degree and is always

slightly larger than unity (figure 4 A, B). The statistical analysis also

showed a significant and high correlation r = 0.95 (p%0.0001,

N = 9, all influenza A seasons), between the magnitude of Re and

the number of ILI cases in the smoothed peak of the epidemics (see

figure 4C) in the aggregated national data.

Spatial aspects of influenza in Israel
One of the most striking features regarding the dynamics of

influenza in Israel is the strong spatial synchronization. Figures 1

and 2, show very clearly that the time series of major cities in the

country are highly correlated. In order to quantify how the ILI

varies spatially across the country, we focus on the two main

aspects of the ILI data: the magnitude of the outbreaks in the

different cities and the timing or temporal differences in the

occurrence of the outbreaks which also varies spatially.

The variation of Re across Israel
For the purposes of examining spatial differences in the

magnitude of influenza outbreaks across Israel we make use of

Re as an index for epidemic intensity [14]. Given that Re is a

measure that is independent of reporting rate, it is useful for

Table 1. Basic epidemiological and population data for eleven ILI seasons in Israel.

Season
Maccabi
Members

Total
Cases

Attack
Rate

Peak Cases
(date) S0 (95% CI) R0 (95% CI) Re (95% CI) Re (exp. growth)

(1) ’98–’99 1,376,455 22,898 16.6% 292 (Feb. 4) 37.9% (32.3–45.5) 3.18 (2.54–3.84) 1.20 (1.17–1.24) 1.2

(2) ’99–’00 1,421,000 31,438 22.1% 525 (Jan. 15) 39.5% (36.1–43.9) 3.22 (2.82–3.63) 1.28 (1.25–1.31) 1.27

(3) ’00–’01 1,497,259 23,104 15.4% 266 (Jan. 16) 40.4% (33.9–50.1) 2.90 (2.23–3.56) 1.17 (1.14–1.21) 1.17

(4) ’01–’02 1,553,547 31,354 20.2% 660 (Jan. 20) 28.4% (26.6–30.4) 4.85 (4.39–5.32) 1.40 (1.37–1.44) 1.39

(5) ’02–’03 1,600,097 13,805 8.6% 135 (Feb. 19) - - -

(6) ’03–’04 1,630,116 21,303 13.1% 392 (Dec. 6) 28% (25.7–30.9) 4.62 (4.08–5.16) 1.30 (1.27–1.33) 1.42

(7) ’04–’05 1,666,194 28,549 17.1% 644 (Jan. 15) 24.3% (22.8–26.1) 5.7 (5.14–6.26) 1.40 (1.36–1.44) 1.52

(8) ’05–’06 1,697,196 14,818 8.7% 210 (Mar. 18) - - -

(9) ’06–’07 1,728,824 29,952 17.3% 885 (Jan. 6) 19.6% (18.9–20.5) 8.16 (7.62–8.71) 1.62 (1.58–1.66) 1.58

(10) ’07–’08 1,767,397 25,801 14.6% 548 (Feb. 11) 23% (21.1–25.6) 5.76 (5.06–6.52) 1.382 (1.35–1.42) 1.36

(11) ’08–’09 1,819,376 17,560 9.7% 257 (Feb. 4) 21.5% (18.9–25.2) 5.76 (4.75–6.76) 1.24 (1.20–1.28) 1.22

Values for S0, R0 and Re are missing for the influenza B seasons (2002–3 and 2005–6) due to poor fit of the SIR model. Attack rates, R0 values and S0 values are calculated
under the assumption of a reporting rate of 10%.
doi:10.1371/journal.pone.0045107.t001

Spatio-Temporal Patterns of Influenza in Israel
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conducting comparisons especially since there are indications that

the reporting rates of various cities can be quite different (see data

section).

An interesting outcome of our analysis is the finding that there

are no statistically significant differences in Re between the

different cities within a year (ANOVA test, p = 0.46, F = 0.97).

In contrast Re varies (both nationally and among the Israeli cities)

between the different years in a manner that is highly statistically

significant (ANOVA test, p = 1.65610213, F = 17.7). Our results

are consistent with previous studies, as for example [13] who

conclude for the US, France and Australia that ‘‘while the average

inter-pandemic Rp seems rather invariant across geographical

locations at around 1.3 there is substantial year to year variability

around this average’’.

Figure 3. Fits of SIR models to observed ILI incidence. Top (A): model fits to the 2007–2008 season (main) and the 2002–2003 season (inset
(B)). Bottom(C): model fits to all eleven seasons 1998–1999 to 2008–2009 where observed cumulative infectives is plotted as a function of model SIR
cumulative infectives (dots). Diagonal lines indicate a perfect fit of the model to the data; Day 1 in each season corresponds to June 1st. Time length
of each epidemic varies from season to season due to differences in the start and end date of the best-fitting model.
doi:10.1371/journal.pone.0045107.g003

Figure 4. Correlations of several epidemiological parameters in the ILI dataset. The relationship between season (time) and R0 (A), season
and S0 (B), Re and maximum number of ILI cases at the peak of the outbreak (C). In these analyses we used only A seasons (n = 9).
doi:10.1371/journal.pone.0045107.g004

Spatio-Temporal Patterns of Influenza in Israel
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Quantifying the spatial synchrony in Israel
As figure 1 shows, the ILI cases from the two major Israeli cities,

Tel Aviv and Jerusalem, appear to be tightly synchronized with a

correlation of r = 0.91 (p%0.001). Both cities are also highly

correlated to the spatially aggregated Israeli ILI data having

respective correlation coefficients r = 0.98 (p%0.001) and r = 0.92

(p%0.001). It is thus not surprising that the attack rates (i.e., the

total number of cases per year) of Tel Aviv and Jerusalem are also

correlated to the attack rates in Israel with a correlation coefficient

of r = 0.92, (p%0.001) and r = 0.91 (p%0.001) respectively.

To explore synchrony further we examined whether the timing

of the influenza outbreaks observed in Tel Aviv and Jerusalem are

more synchronized than expected by chance. Two different tests

were devised:

i) Phase Analysis: The Tel Aviv and Jerusalem time series

were superimposed and the peak date of each epidemic in

each time series was identified. In the phase analysis [36] we

let Di represent the time difference between the peak of the

outbreak in Tel Aviv and that in Jerusalem for the i’th year,

and calculated

Sobs~
X11

i~1

(Di)
2 ð3Þ

for the observed data. In step two, the annual outbreaks of

Jerusalem were randomly reshuffled over the eleven years

[37]. The reshuffling required breaking up the Jerusalem time

series into eleven separate years (or outbreaks) and then

randomly reordering their sequence of occurrence.

Sshuffle~
P11

i~1

(Di)
2 was then calculated. This was repeated

N = 100,000 times to obtain the distribution of Sshuffle. The

index Sshuffle was found to be larger than the observed value

Sobs in 99,985 of the N = 100,000 reshufflings. Therefore, Tel

Aviv and Jerusalem are significantly synchronized

(p,0.00014) in terms of the timing of their peaks. An analysis

of the nine influenza A seasons (i.e., excluding from the

analysis years dominated by influenza B) gave very similar

results, with p,0.00024.

ii) Correlation Analysis: Similar to the above test, the

correlation robs between the Tel Aviv and Jerusalem time

series of infectives was measured for both the observed and

reshuffled time series. Again, the reshuffling involved breaking

up the Jerusalem time series into eleven separate years (or

outbreaks) and then randomly reordering their sequence of

occurrence. We generated N = 100,000 randomized Jerusa-

lem time series and calculated their correlations rshuffle with the

Tel Aviv time series. This procedure gives the probability

distribution of rshuffle. We found that the correlation between

Tel Aviv and the observed Jerusalem time series was higher

than the correlation calculated from the randomized Jerusa-

lem time series in all 100,000 cases. This occurred both when

all 11 seasons were analyzed and when influenza B seasons

were excluded from the analysis. The high correlation

observed between Tel Aviv and Jerusalem time series is

nonrandom and provides strong support for the notion that

the cities are synchronized over and above the background

synchrony of the irrepressible annual winter outbreaks.

Variability of the Spatial Synchrony
We found that different years have different characteristic

strengths of spatial synchrony. As a reference frame, figure 2A

plots a superimposition of all 11 outbreaks occurring over the 11

seasons in the aggregated national data, and gives an indication of

the (relative lack of) temporal synchrony between years. This should

be compared with figures 2B and C, which are plots of the time

series for the seven largest cities for the years 1998–9 (figure 2B)

and 2006–7 (figure 2C). The former is an example of a year with

relatively low spatial synchrony while the latter is the year with the

maximum synchrony among the Israeli cities. Comparing the

figures it is easy to see that the synchrony within a year (figure 2B

and C) is far stronger than the synchrony between years (figure 2A).

Epidemic Synchronization between Israel and France
To gain further insights into the synchrony dynamics of

influenza in Israel, we studied its relationship to a distant

European country - France. Figure 1B displays the aggregated

ILI time-series of both countries. Visually one observes in figure 1B

that the level of synchrony between France and Israel is

surprisingly high (with the small exceptions of the 2004–2005

season and the 2006–2007 season where the outbreak in Israel

occurs a few weeks before France). The correlation coefficient

between the time series was correspondingly high with r = 0.71.

The synchrony was enhanced through the appearance of influenza

B which was the dominant virus (i.e., the small peaks in 2002–3

and 2005–6) occurring simultaneously in the same years in both

countries (see also [38]).

In order to quantify the temporal synchrony between the two

countries we again performed the phase and correlation analyses

for the timing of the outbreaks. Both tests found Israel and France

to be significantly synchronized, in the timing of influenza

outbreaks (p = 0.014 and 0.008, phase and correlation tests

respectively). Results were still significant when B seasons were

omitted (p = 0.037, p = 0.045 phase and correlation tests respec-

tively).

In addition we tested whether the intensity in the outbreaks

between the two countries was correlated. The values of both peak

heights and of Re were calculated and correlated for all the 9

outbreaks between1999–2009. A significant correlation between

Israel and France was found in both peak heights (r = 0.6; p = 0.05)

and between the values of Re (r = 0.75; p = 0.02). The statistical

tests indicate that for both Israel and France i) there are very

minor differences in the timing of the epidemics (phase and

correlation analyses) and ii) large/small outbreaks tend to occur in

the same years in both countries. Nevertheless, and as expected,

the correlation between the Israeli cities is higher than the

correlation between the two countries.

Discussion

The high quality of the Israeli ILI data has enabled us to explore

the spatio-temporal dynamics of influenza in Israel over eleven

years. The fact that the simple SIR model can be fitted successfully

to data of seasonal influenza A in both the national (aggregated

data) level as well as in the scale of single large cities is notable in

light of the complex epidemiology of influenza [7]. This is

consistent with previous work from the Soviet Union, United

Kingdom, France, United States Australia, the Netherlands,

Belgium, Portugal and Brazil [14,20–23,39,40]. One of the main

advantages of using the modeling approach proposed here is the

ability to estimate separately the two components of Re namely R0

and S0, which limited many previous studies of influenza [24,34].

We found that over the study period the value of R0 increased in
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time (figure 4A). Interestingly this increase was ‘‘balanced’’ by a

decrease in S0. One possible speculation that can explain the

observed increase in R0 could be the evolutionary adaption of the

virus to become a more efficient infector [41]. For example, the

new strain of pandemic influenza, the H1N1 swine flu virus, had

relatively low transmission during the swine flu pandemic [16,42–

44]. However pandemic influenza is potentially far more

dangerous because the immunity of the population to the

pandemic virus is ‘‘expected to be’’ lower than the circulating

seasonal influenza strains (i.e., a high S0). It is believed that in the

future, the H1N1 virus (which is now considered a seasonal strain)

will adapt to become a better infector as has happened with

previous pandemic and seasonal strains [45]. As mentioned above,

in parallel to the increase in R0 the population susceptibility is

expected to decrease due to an increase in the population

immunity as more of the population is exposed to the new virus

strain. The exact mechanisms which lead to the observed negative

correlation in R0 and S0 found here needs to be further studied in

order to better understand the dynamics of influenza. We note

again that the estimate of Re = S0NR0 remains independent of

reporting rate. Thus even though there is strong under-reporting

in our data, the estimations of Re remain unaffected. In

Israel the value of Re is strongly correlated to the magnitude of the

peak height of influenza outbreaks (figure 4C). Knowledge of Re is

essential for understanding and controlling the spread of an

infectious disease [24,45]. For instance the proportion of the

population which needs to be vaccinated in order to reach herd-

immunity is a function of Re. Recent studies have shown that a

reliable estimation of Re for seasonal influenza can be obtained

within a period of 4 weeks after the initiation of the disease [14].

Therefore, it is possible to estimate Re, in the first few weeks of the

season and use this information to predict the upcoming epidemic.

Re was also positively correlated to the strength of the spatial

synchronization in Israel. We found that in cases where the disease

is more ‘‘infectious’’ (i.e., higher Re) then the outbreaks in different

cities tend to occur with smaller time lags (see figure 2B, C). It may

be hypothesized that the higher Re implies a more forceful

infectivity which increases the synchronization and reduces the

variability in the timing and magnitude of the peaks between the

different cities (see figure 2). It would be an interesting future

direction of study to examine the capacity of this hypothesis to

explain the observed correlation between Re and synchronization

by studying simulations of explicit spatial models.

Modeling studies have shown the sensitivity of the severity of

influenza outbreaks to small demographic and environmental

changes [46], which implies that small difference in environmental

factors can cause large differences in the size of outbreaks between

different locations. Nevertheless, we see notable resemblance

between the time series within a year across large geographical

distances (e.g., Israel and France).

Using laboratory-confirmed influenza surveillance data, Finkel-

man et al (2007) reported large scale co-occurrence of influenza

type A and B, and interhemispheric synchrony (i.e., the dominant

strain within a season is the same for most of the hemisphere) [38].

Another example of high synchrony between Israel and France

can be seen in Figure 1B, where in the outbreak of 2003–4 there is

an early epidemic in both countries. Interestingly the 2003–4

season was dominated by a new influenza strain (A/Fujian) which

peaked early in many different countries (probably due to the fact

that the population immunity to the new strain was low and

therefore S0 was high, leading to an early outbreak) in the northern

hemisphere [50]. Another factor leading to the high spatio-

temporal synchrony within Israel is due to short travel distances

between cities in a small country. Interestingly, spatio-temporal

synchrony is high even between Israel and France, despite the

much larger geographic scale. It is possible that here to, a single

dominant influenza strain prevails in both countries in each season

and air-travel between the countries aids temporal synchrony.

A second perplexing observation between the Israeli cities can

be seen from examining the estimates of Re for two very different

cities such as Bnei Brak and Tel Aviv. As opposed to Tel-Aviv Bnei

Brak has large ultra-orthodox religious communities that are

characterized by large families with many children. The two cities

differ in many important demographic aspects (e.g. household size,

age structure and population connectivity) that are thought to

influence the dynamics of influenza [47–49]. It is expected that

significant variation in demographic factors would lead to

observed differences in the value of a key parameter such as Re.

During our study period there were no statistical differences

between the value of Re between different cities (within a year), and

even countries. The fact that the size of Re is rather ‘‘constant’’

between the Israeli cities is in line with the findings of Baroyan et al

(1977) [50], Spicer (1979) [20] and Chowell (2010) [21] which

were obtained on the much larger geographical scale of the USSR

and Brazil. Spicer (1979) remarks: ‘‘The most striking and

unexpected feature of the model is that the parameter on which

the spread of an epidemic within a city depends is the same for

every city in any one epidemic within the USSR’’ [20].

Nevertheless, in recent years extremely complicated models were

developed to model pandemic influenza [47–49,51]. The models

include many biological demographic and sociological complex-

ities which are believed to be important in capturing the dynamics

of pandemic influenza. For instance, Merler et al 2011 [51] had to

incorporate information on intra-European mobility and the

different socio-demographic structure of the different European

countries in order to reproduce the observed spatial pattern of the

West to East spread of the 2009 pandemic in Europe. In contrast,

demographic structure did not appear to have impact on the

spread of influenza in Israel.

Additional data on the spatial spread of influenza combined

with statistical analysis is required to better understand how

different population demographics effect Re and the propagation of

the disease within different communities.

Methods

Data
Our dataset consisted of all Influenza-Like Illness (ILI) cases in

Israel diagnosed daily by Maccabi Health Services doctors,

between January 1st 1998 and May 31st 2009. Diagnosis codes

included in this database are ICD9 code 487.1 (influenza) and

internal Maccabi codes for influenza, influenza-like disease and

swine influenza. The last year of data, in which the swine flu

pandemic occurred, was excluded. ICD9 codes were used

exclusively in 1998–2002, when there was a transition to internal

diagnosis codes. The ILI data were corrected for repeat visits. The

criterion chosen to filter out repeat visits from the data was

recommended by the Israeli Center for Disease Control, and

defines a visit as a repeat visit if it comes within 28 days of a

pervious visit with ILI symptoms. The data exhibits a strong

weekly cycle due to the absence of weekend reporting. Hence, the

data was smoothed using a 7-day moving average kernel [52] red

line in Figure 1A. The dataset includes 7 seasons in which the

dominant strain was influenza A H3N2, two seasons in which the

dominant strain was influenza B, one season in which the

dominant strain was influenza A H1N1, and one season in which

no strain was dominant. Historical data of dominant influenza

strains in Israel is available at the World Health Organization’s
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FluNet website at http://apps.who.int/globalatlas/dataQuery/

default.asp.Maccabi is the second-largest Health Maintenance

Organization (HMO) in Israel and insures about 23% of Israel’s

population. During the period analyzed the number of Maccabi

members varied between 1.37 and 1.86 million people. Several

works based on this dataset have already been published

[30,53,54]. The French ILI dataset is taken from the Sentinel

network - a network of ,1200 General Practitioners (GPs) in

France who, since 1984, regularly collect data about diagnoses of

12 diseases and report it via the internet. ILI is defined in the

Sentinel network as sudden temperatures greater than 39uC,

myalgia and cough/running nose. The data received from the GPs

are then processed to estimate the number of ILI cases per

100,000 residents in each region, by using population data and the

fraction of GPs taking part in the surveillance out of the total

number of GPs. Since the frequency of reporting is irregular and is

left for each doctor to decide, the data presented in the Sentinel

network website are weekly aggregate incidences [55].

Model
We used an SIR discrete-time age-of-infection model as

described in [56]. The total population is denoted by N. The

number of susceptibles at the end of day t is denoted by S(t) while

the number of people who become infected on day t is denoted by

i(t). It is important to emphasize that i(t) here counts only the

newly-infected individuals on day t. Note the key relationship:

S tð Þ~S t{1ð Þ{i tð Þ ð4Þ

It is assumed that each individual has, on average, b contacts

with other random individuals per day. A person who becomes

infective retains a certain (and non-constant) degree of infectivity

for d days. The number of days since a person’s infection is termed

its age of infection. Therefore, the number of infectives whose age

of infection is t (1#t#d) on day t is i(t2t). When a susceptible

meets an infective person whose age-of-infection is t (1#t#d), the

susceptible becomes infective with probability Pt. The vector

P = (P1; …; Pd) thus defines the infectivity profile, and is a key

parameter of the model [16]. The values for the vector P were

obtained from the comprehensive review paper about influenza

viral shedding by Carrat et al 2008 [57]. The values are P = (0.073,

0.181, 0.222, 0.185, 0.137, 0.09, 0.056, 0.032, 0.016, 0.008).

The probability that any single susceptible becomes infected

during day t is given by:

p(t)~1{ exp½{ b

N

Xd

t~1

Pt i(t{t)� ð5Þ

In a deterministic variation of the model, the daily number of

infectives is, for large N:

i(t)~S(t{1)p(t) ð6Þ

We use the deterministic model to simulate the time-series of

figure 3.

The above model also has a stochastic formulation (Katriel et al.

2011) whose log-likelihood can be shown to be (Katriel,

manuscript):

LL(S0,b)~
XT

t~dz1

log
1

i(t)!
{

b

N{1

XT

t~dz1

(S0{r(t))
Xd

t~1

Pt i(t{t) z

XT

t~dz1

i(t) log½ b

N{1

XT

t~dz1

(S0{r(t))
Xd

t~1

Pt i(t{t) �

where r(t)~
Xt{1

s~1

i(s)

ð7Þ

It is possible to estimate the parameters S0 and R0 by numerically

maximizing the above log-likelihood expression. The maximiza-

tion should be carried out for b.0 and over integers S0 in the

range
PT

t~1

i(t)ƒ S0ƒ N (as the number of susceptibles at the

beginning cannot be smaller than the total number of cases).

It is important to demonstrate the statistical identifiability of the

parameters S0 and R0 from the data, using the likelihood function

LL (equation 7) [58].To achieve this, we generated contour plots

of the function LL for each season. Figure 5 displays this plot for

season 9. As can be observed, the likelihood attains a unique

maximum at a point which forms our maximum likelihood

estimates, and the region in which the likelihood is close to the

maximal values is small enough to provide rather narrow 95%

confidence intervals for the parameters. The corresponding plots

for other seasons are qualitatively similar.

In another approach that was taken to obtain bootstrap

confidence intervals for the effective reproduction number (Re),

the stochastic version of the model (equations 4–6) was simulated

10,000 times using the exact same parameters (i.e., b and S0 where

estimated from the real data using (equation 7)). For each of the

simulated epidemics Re was re-estimated and the 250 lowest and

highest estimates were removed to give the 95% bootstrap

confidence intervals.

The values of Re were also obtained using the classic method of

measuring the rate of exponential growth at the initiation of the

outbreak as in [32] The estimates from both methods were highly

correlation (R = 0.91, p = 0.0007) (see table 1).

Figure 5. A map of likelihood values as a function of S0 and R0

in the 2006–2007 season. The colored region includes the sets of
parameters giving the maximum likelihood and likelihoods which are
up to 3 units below the maximum likelihood. The upper and lower
limits of this region were used as a 95% confidence interval for the S0

and R0 values [58].
doi:10.1371/journal.pone.0045107.g005
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