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Epigenetic and microRNA (miRNA) regulation are associated with carcinogenesis and the development of cancer. By using the
available omics data, including those from next-generation sequencing (NGS), genome-wide methylation profiling, candidate
integrated genetic and epigenetic network (IGEN) analysis, and drug response genome-wide microarray analysis, we constructed
an IGEN system based on three coupling regression models that characterize protein-protein interaction networks (PPINs), gene
regulatory networks (GRNs),miRNA regulatory networks (MRNs), and epigenetic regulatory networks (ERNs). By applying system
identification method and principal genome-wide network projection (PGNP) to IGEN analysis, we identified the core network
biomarkers to investigate bladder carcinogenic mechanisms and design multiple drug combinations for treating bladder cancer
with minimal side-effects. The progression of DNA repair and cell proliferation in stage 1 bladder cancer ultimately results not
only in the derepression of miR-200a and miR-200b but also in the regulation of the TNF pathway to metastasis-related genes
or proteins, cell proliferation, and DNA repair in stage 4 bladder cancer. We designed a multiple drug combination comprising
gefitinib, estradiol, yohimbine, and fulvestrant for treating stage 1 bladder cancer with minimal side-effects, and another multiple
drug combination comprising gefitinib, estradiol, chlorpromazine, and LY294002 for treating stage 4 bladder cancer with minimal
side-effects.

1. Introduction

Bladder cancer is still one of the most common cancers
worldwide. Single gene markers have been proposed for
improving cancer treatment [1]. However, single gene mark-
ers cannot overcome treatment side-effects because themark-
ers are not implicated in genome-wide networks, and the
analysis of a genome-wide network is a complicated issue
from a systems biology perspective. The rapid development
of molecular biology techniques has produced a great deal of
high-throughput experimental data, including genome-wide
microarray data, genome-wide methylation profiles, next-
generation sequencing (NGS) data, microRNA (miRNA)
profiles, genetic sequences, protein abundance data, and
drug response genome-wide microarray data. These kinds of
omics data provide an opportunity to design multiple drug

combinations for the treatment of bladder cancer by applying
the network biomarkers identified by systems biology.

To date, genetic regulation systems, including protein-
protein interaction networks (PPINs) and gene regulatory
networks (GRNs), have been applied to analyze the functional
mechanisms behind human aging and cancer [2, 3]. We
now know that epigenetic alterations are much more rapid
and adaptive with regard to influencing genome-wide gene
expression than genetic changes [4]. Rapid and slow response
mechanisms, that is, epigenetic alterations and genetic
changes, respectively, coordinate an efficient and robust
system. Epigenetic regulation, including DNA methylation
and histone modification, results in potentially reversible
alterations in gene expression that do not involve permanent
changes to theDNA sequence.miRNAs that are influenced by
aberrant epigenetic regulation also mediate the regulation of

Hindawi Publishing Corporation
Disease Markers
Volume 2016, Article ID 4149608, 18 pages
http://dx.doi.org/10.1155/2016/4149608

http://dx.doi.org/10.1155/2016/4149608


2 Disease Markers

gene expression [5]. It has been found that DNA methy-
lation directly affects the binding affinities of miRNAs,
RNA polymerase, and transcription factors (TFs) [6] and
indirectly influences protein-protein interactions (PPIs) [7].
Methylation analysis of human genomic DNA in 12 tissues
revealed that DNA methylation profiles are tissue-specific
[8]. Therefore, omics data and systems biology methods
[9–11] are required to unravel the mechanisms underlying
carcinogenesis from the complex molecular biology and
design anticancer drugs for the treatment of bladder cancer.

The Human Genome Project (HGP) has identified
30,000–40,000 genes in human DNA, including miRNAs.
The genes, proteins, and their associations, miRNA reg-
ulation, and DNA methylation constitute the integrated
genetic and epigenetic genome-wide network (IGEN), which
coordinates cellular responses. PPIN in human lung cancer
[12] and GRN in human aging [13] of the genes with
significant expression differences between cancer cells (or
aged people) and normal cells (or young people) have been
identified for the extraction of the core network biomarkers
according to the estimated association abilities between TFs
(or upstream proteins) and target genes (or target proteins).
Aging is associated with cancer [14]. The association abilities
estimated by the network models assume that the binding
affinities of TFs (or upstream proteins) to target genes (or
proteins) are the same. According to a recent study in
primary human somatic and germline cells [6], the impact
of the binding affinities of miRNAs, RNA polymerase, and
TFs on gene expression is mediated by DNA methylation.
According to the available genome-wide methylation profiles
andNGSdata for bladder cancer inTheCancerGenomeAtlas
(TCGA), DNA methylation and miRNA regulation can be
also characterized by the GRNmodel to identify the genome-
wide IGEN. In this study, we identified the IGENs in normal
bladder cells and bladder cancer cells and then investigated
the impact of epigenetic regulation and miRNA regulation
on bladder carcinogenesis by comparing the IGEN in normal
bladder cells with that in bladder cancer cells.

Although a genome-wide IGEN can be identified based
on well-defined system identification techniques [2, 12], the
mean by which the core network biomarkers are extracted
from the identified genome-wide network is still an impor-
tant issue. The total association capabilities of a single node
can affect the contribution itmakes to its neighbors.However,
the genome-wide IGEN including transcriptional gene regu-
lations, miRNA regulations, and PPIs constitutes a genome-
wide network structure. The contribution made by one node
to its neighbors is not sufficient to explain its impact on a
genome-wide scale network of bladder cells. In this study,
we applied a principal genome-wide network projection
(PGNP) based on principal component analysis (PCA) to
identify core network biomarkers in bladder carcinogenesis,
with the objective of extracting the most significant part
from a genome-wide network structure. Because the drug
response genome-wide microarray data are now available
[15], we analyzed the drug response microarray data of the
core network biomarkers to design multiple drug combina-
tions with minimal side-effects for bladder cancer treatment.
Therefore, the identified core network biomarkers could

provide an opportunity to design such drug combinations for
bladder cancer treatment. Furthermore, it has been reported
that aging (over 45 years old) and smoking are two major
risk factors for bladder carcinogenesis [16]. Therefore, we
used the core network biomarkers to elucidate the cellular
mechanisms by which aging and smoking elevate bladder
cancer risk through epigenetic regulation,miRNA regulation,
and signaling pathways.

According to the strategy shown in the flowchart (Fig-
ure 1), we integrated omics data, including genome-wide
methylation profiles, NGS expression data, miRNA profiles
in TCGA, drug response genome-wide microarray data in
the Connectivity Map (CMAP) [15], drug-gene interaction
data in the Drug Gene Interaction Database (DGIdb) [17],
miRNA-target gene association data in TargetScan [18],
PPIs in BioGRID, transcription regulations in the Human
Transcriptional Regulation Interactions database (HTRIdb)
[19], the Integrated Transcription Factor Platform (ITFP)
[20], and the TRANSFAC [21], biological processes and
pathways in a gene ontology (GO) database, the National
Center for Biotechnology Information (NCBI) Entrez Gene
database, and the Kyoto Encyclopedia of Genes andGenomes
(KEGG) pathway database [22]. We used miRNA-target gene
association data, PPIs, and transcription regulations to build
the candidate IGEN for general molecular mechanisms. We
then constructed a regression IGENmodel to characterize the
molecular mechanisms including miRNA regulation, PPIs,
transcription regulation, and DNA methylation in cells. To
prune the false positive connections in the candidate IGEN
and identify the model parameters of the IGEN in the real
human bladder cells, we used methylation profiles, NGS
expression data, and miRNA profiles in normal bladder
cells and stage 1 and stage 4 bladder cancer cells. We
then applied the constrained least squares method and the
Akaike information criterion (AIC) [23], a system order
detection method, to prune the false positive connections
for obtaining the real IGENs in the three stages of human
bladder carcinogenesis. The three genome-wide real IGENs
in normal bladder cells and stage 1 and stage 4 bladder
cancer cells were then projected into the three core networks
of the three stages of bladder carcinogenesis, respectively.
Because the core networks contain the identified signal
transduction pathways, that is, the receptors and TFs of the
core network can be directly or indirectly connected by the
core proteins/TFs, the proteins/TFs, and the corresponding
genes that participate in the identified signaling pathways
of the core networks are considered as the core network
biomarkers for normal and cancerous cells, respectively. The
miRNAs with very different connections in regulating the
genes of the core network biomarkers between two cells are
also involved in the core network biomarkers. By comparing
the identified connections of the IGENs, we investigated how
the connection changes of the core network biomarkers from
normal bladder cells to stage 1 bladder cancer cells and from
stage 1 bladder cancer cells to stage 4 bladder cancer cells
contribute to bladder carcinogenesis.

We also investigated how the module network of the
core network biomarkers, including the KEGG pathways and
biological processes, participates in bladder carcinogenesis.
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Figure 1: Flowchart of the proposed method for constructing the core network biomarkers and identifying bladder carcinogenesis
mechanisms.

According to the information on the biological processes and
signaling pathways in the GO database, the NCBI Entrez
Gene database, and the KEGG pathway database, the roles
of the TFs/proteins in the core network biomarkers are pro-
jected into three pathways: the SUMOylation, ubiquitination,
and proteasome (SUP) pathway; the tumor necrosis factor
(TNF) signaling pathway; and the endoplasmic reticulum
(ER) signaling pathway.The roles of the downstream genes in

the core network biomarkers are projected into three biolog-
ical processes: cell proliferation, DNA repair, and metastasis.
The module network, including the KEGG pathways, TFs,
miRNAs, and biological processes, is connected according
to the three identified IGENs in the three types of bladder
cell. By comparing the connection changes of the module
networks from normal bladder cells to stage 1 bladder cancer
cells, and from stage 1 bladder cancer cells to stage 4 bladder
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cancer cells, we ultimately unraveled the cellular mechanisms
behind bladder carcinogenesis and proposed two multiple
drug combinations for treating stage 1 and stage 4 bladder
cancers, respectively.

Additionally, to determine how the two major risk fac-
tors, aging and smoking, influence bladder carcinogenesis,
we highlighted not only the significantly expressed genes
between smokers and nonsmokers, but also the significantly
expressed genes between young (≤45 years old) and old (>45
years old) people in the core network biomarkers of blad-
der carcinogenesis. Finally, we investigated the carcinogenic
mechanism of human bladder cells by which the identified
major factors, including downregulated miR-1-2, aging, and
smoking, lead to the progression from normal bladder cells
to stage 1 bladder cancer cells through the SUP and ER
signaling pathways. The smoking-related protein HSP90AA1
andDNAmethylation of ECT2mediate the progression from
stage 1 bladder cancer cells to metastasis in stage 4 bladder
cancer. Activated DNA repair and accumulated epigenetic
alterations lead to the phenotypic changes of bladder cells
from normal to cancerous, and from cancerous to metastatic
cells owing to the immortality of cancer cells. Based on
the core network biomarkers in bladder carcinogenesis, a
multiple drug combination comprising gefitinib, estradiol,
yohimbine, and fulvestrant was designed for treating stage
1 bladder cancer with minimal side-effects, while a multiple
drug combination comprising gefitinib, estradiol, chlorpro-
mazine, and LY294002 was designed for treating stage 4
bladder cancer with minimal side-effects.

2. Materials and Methods

According to the flowchart in Figure 1, we constructed a
candidate human IGEN by mining large databases, includ-
ing BioGRID, TargetScan, HTRIdb, TRANSFAC, and ITFP.
However, many false positive and insignificant connections
existed in the candidate human IGEN for normal and
cancerous bladder cells. Using the NGS expression data,
miRNA profiles, and the methylation profiles of normal
and cancerous bladder cells in TCGA, we identified the
association parameters of the network connections. We also
applied AIC to detect the systems order, that is, the number
of connections, and to delete the insignificant connections
that were out of system order to prune the false positive
connections in the candidate IGEN and obtain the two real
IGENs for normal and cancerous bladder cells, respectively.
By applying PGNP to the two real IGENs in normal and
cancerous cells, we first identified the core proteins/TFs
that played a major role in the principal networks of the
IGENs, constituting the core IGENs in normal and cancerous
cells. To determine how the signaling cascades from the
core receptor proteins to the core TFs participate in bladder
carcinogenesis, the core proteins, which mediate the signal
transductions from the core receptor proteins to the core
TFs, and their corresponding genes were considered the
core network biomarkers of the normal and cancerous cells.

The miRNAs with very different connections in regulating
the genes of the core network biomarkers between normal
and cancerous cells were also involved in the core network
biomarkers. Finally, by comparing the connection changes
of the core network biomarkers from normal cells to stage 1
cancer cells, and from stage 1 cancer cells to stage 2 cancer
cells, we investigated the cellular mechanisms of bladder
carcinogenesis.

2.1. Data Preprocessing of Omics Data. We downloaded
the genome-wide mRNA and miRNA NGS data and the
methylation profiles from TCGA, including 17 samples for
normal bladder cells, 348 samples for stage 1 bladder cancer
cells, and 56 samples for stage 4, that is, metastatic stage,
bladder cancer cells. The data also contained 6 samples for
young (≤45 years old) people, 477 samples for old (>45 years
old) people, 98 samples for nonsmokers, and 323 samples for
smokers. We used one-way analysis of variance (ANOVA)
to identify significant differences in gene expression between
smokers and nonsmokers, and between young and old
people (𝑝 value < 0.05). We used the gene symbols of the
human gene information data downloaded from the NCBI
FTP site as standard human gene names to integrate the
omics data, including NGS data, methylation profiles, drug
response genome-wide microarray data in CMAP, drug-gene
interaction DGIdb data, miRNA-target gene association data
in TargetScan, PPIs in BioGRID, transcription regulations
in HTRIdb, and ITFP and TRANSFAC data. We also used
the GO database, the NCBI Entrez Gene database, and the
KEGG pathway database to find the biological processes and
pathways of each gene. We used Matlab’s text-file and string
manipulation tools for text mining.

2.2. Construction of the Stochastic Regression Models for the
IGEN System. The goal of the stochastic regression model
is to characterize molecular mechanisms, including PPIs,
transcription regulations, miRNA regulations, and epigenetic
regulations via DNA methylation, by NGS data through
detecting false positives of candidate IGENs in human cells.
For the stochastic regression model of the gene regulatory
subnetwork in the candidate human IGEN, including tran-
scription regulations, miRNA regulations, and epigenetic
regulations via DNA methylation, we identified the regu-
lation capabilities of TFs and miRNAs in the GRN of the
candidate IGEN. For the expression levels of the 𝑖th gene,
its DNA methylation and its 𝑗th TF/protein and 𝑙th miRNA
in the 𝑛th sample are denoted by 𝑥

𝑖
(𝑛), 𝑚

𝑖
(𝑛), 𝑦

𝑗
(𝑛), and

𝑠
𝑙
(𝑛), respectively. Then, the stochastic regression model of

GRN is described by the following stochastic regression
equation:

𝑥
𝑖 (𝑛) = ∑

𝑗≡Ω𝑖

𝑗 ̸=𝑖

𝑎
𝑖𝑗
𝑀
𝑖 (𝑛) 𝑦𝑗 (𝑛) + ∑

𝑙≡𝛿𝑖

𝑐
𝑙𝑖
𝑀
𝑖 (𝑛) 𝑥𝑖 (𝑛) 𝑠𝑙 (𝑛)

+ 𝑏
𝑖
𝑀
𝑖 (𝑛) + ]

𝑖 (𝑛) ,

for 𝑖 = 1, . . . , 𝐾, 𝑛 = 1, . . . , 𝑁,

(1)
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where the repression ability from the 𝑙th miRNA to the 𝑖th
gene 𝑐

𝑙𝑖
≤ 0; the basal level of the 𝑖th gene expression 𝑏

𝑖
≥

0; Ω
𝑖

⊂ Ω ≡ {1, . . . , 𝐾}; 𝛿
𝑖

⊂ 𝛿 ≡ {1, . . . , 𝐿}; 𝑀
𝑖
(𝑛) =

1/[1 + (𝑚
𝑖
(𝑛)/0.5)

2
]; Ω
𝑖
and 𝛿

𝑖
denote the candidate reg-

ulations based on the databases of transcription regulation
and miRNA-target association, respectively; 𝑎

𝑖𝑗
indicates the

regulatory ability from the 𝑗th TF 𝑦
𝑗
(𝑛) to the 𝑖th gene; V

𝑖
(𝑛)

represents the stochastic noise due to the modeling residue
and fluctuation in the 𝑖th gene; and 𝐾, 𝐿, and 𝑁 are the
total number of TFs, miRNAs, and data samples in the omics
data, respectively. 𝑀

𝑖
(𝑛) denotes the effect of methylation

𝑚
𝑖
(𝑛) on the binding affinity of TFs, miRNAs, or RNA

polymerase on the 𝑖th gene which also represents the impact
of DNA methylation of the 𝑖th gene on the binding affinities
of miRNAs, RNA polymerase, and TFs in the gene expression
process. The effect on binding affinities 𝑀

𝑖
(𝑛), for 𝑖 =

1, . . . , 𝐾, ranged between 0.2 and 1, while the expression range
of the genome-wideDNAmethylation𝑚

𝑖
(𝑛), for 𝑖 = 1, . . . , 𝐾,

is between 0 and 1. If DNA methylation of the 𝑖th gene is
close to 1, the effect on the binding affinity to the 𝑖th gene is
close to 0.2, which implicates the impact of DNAmethylation
on the binding affinities of miRNAs, RNA polymerase, and
TFs to be like an inhibitor. The 𝑖th mRNA expression
results from transcription regulations∑

𝑗≡Ω𝑖 ,𝑗 ̸=𝑖
𝑎
𝑖𝑗
𝑀
𝑖
(𝑛)𝑦
𝑗
(𝑛),

miRNA repressions∑
𝑙≡𝛿𝑖

𝑐
𝑙𝑖
𝑀
𝑖
(𝑛)𝑥
𝑖
(𝑛)𝑠
𝑙
(𝑛), the mRNA basal

expression 𝑏
𝑖
𝑀
𝑖
(𝑛), and the stochastic noise due to mea-

surement and random fluctuations ]
𝑖
(𝑛). In model (1), the

TF regulations, miRNA regulations, and basal levels are
all influenced by the DNA methylation 𝑚

𝑖
(𝑛) on the 𝑖th

gene.
For the stochastic regression model of the miRNA reg-

ulatory subnetwork in the candidate IGEN, the expression
levels of the 𝑙th miRNA and its 𝑖th target gene in the 𝑛th
sample, denoted by 𝑠

𝑙
(𝑛) and 𝑥

𝑖
(𝑛), respectively, could be

described by the stochastic regressionmodel of miRNA regu-
latory network (MRN) as the following stochastic regression
equation:

𝑠
𝑙 (𝑛) = ∑

𝑖≡𝛿𝑙

𝑐
𝑙𝑖
𝑀
𝑖 (𝑛) 𝑥𝑖 (𝑛) 𝑠𝑙 (𝑛) + 𝑀

𝑙 (𝑛) 𝑧𝑙 + 𝑒
𝑙 (𝑛) ,

for 𝑙 = 1, . . . , 𝐿, 𝑛 = 1, . . . , 𝑁,

(2)

where the repression ability of the 𝑙th miRNA to the 𝑖th
gene 𝑐

𝑙𝑖
≤ 0; the basal level of the 𝑙th miRNA expression

𝑧
𝑙

≥ 0; 𝛿
𝑙

⊂ 𝛿 ≡ {1, . . . , 𝐿}; 𝛿
𝑙
denotes the candidate

regulations of the 𝑙th miRNA based on the database of
miRNA-target gene association; 𝑒

𝑙
(𝑛) represents the stochas-

tic noise owing to the modeling residue and fluctuation in
the 𝑙th miRNA. The 𝑙th miRNA expression in (2) results
from miRNA-gene interactions ∑

𝑖≡𝛿𝑙
𝑐
𝑙𝑖
𝑀
𝑖
(𝑛)𝑥
𝑖
(𝑛)𝑠
𝑙
(𝑛), the

miRNA basal expression 𝑧
𝑙
, and the stochastic noise

𝑒
𝑙
(𝑛).
For the stochastic regression model of the PPI subnet-

work in the candidate IGEN, the expression level of the
𝑗th protein and its 𝑘th connecting protein in 𝑛th sample,
denoted by 𝑦

𝑗
(𝑛) and 𝑦

𝑘
(𝑛), respectively, could be described

by the stochastic regression model of PPIN as the following
stochastic regression equation:

𝑦
𝑗 (𝑛) = ∑

𝑘≡Ω𝑗

𝑘 ̸=𝑗

𝑑
𝑗𝑘
𝑦
𝑘 (𝑛) 𝑦𝑗 (𝑛) + ℎ

𝑗
+ 𝑤
𝑗 (𝑛) ,

for 𝑗 = 1, . . . , 𝐾, 𝑛 = 1, . . . , 𝑁,

(3)

where the basal level of the 𝑗th protein expression ℎ
𝑗

≥ 0;
Ω
𝑗
⊂ Ω ≡ {1, . . . , 𝐾}; Ω

𝑗
denotes the candidate interactions

of the 𝑗th protein based on the PPI database; 𝑑
𝑗𝑘
indicates the

interaction ability of the 𝑘th protein to the 𝑗th protein; and
𝑤
𝑗
(𝑛) represents the stochastic noise owing to the modeling

residue and fluctuation in the 𝑗th protein. The 𝑗th protein
expression in (3) results from the rate of formation of the
protein complex 𝑦

𝑘
(𝑛)𝑦
𝑗
(𝑛) proportional to the product of

the concentration of each protein∑
𝑘≡Ω𝑗 ,𝑘 ̸=𝑗

𝑑
𝑗𝑘
𝑦
𝑘
(𝑛)𝑦
𝑗
(𝑛) [24,

25], the protein basal expression ℎ
𝑗
, and the stochastic noise

𝑤
𝑗
(𝑛).
We proposed general stochastic regression models to

characterize cellular mechanisms, including genetic and epi-
genetic regulations, in human cells. A number of parameters,
including the TF regulatory ability 𝑎

𝑖𝑗
, the miRNA repression

ability 𝑐
𝑙𝑖
, and the protein interaction ability 𝑑

𝑗𝑘
, needed

to be estimated and were determined using the databases
of PPI, miRNA-target gene association, and transcription
regulation.

2.3. Identification of the TF Regulatory Ability 𝑎
𝑖𝑗
, the miRNA

Repression Ability 𝑐
𝑙𝑖
, and the Protein Interaction Ability 𝑑

𝑗𝑘

andTheir Statistical Significance Testing. We used the mRNA
and miRNA expression data from the NGS as the expression
levels for 𝑥

𝑖
(𝑛) and 𝑠

𝑙
(𝑛), respectively, and used DNA methy-

lation profiles as the expression level of 𝑚
𝑖
(𝑛) to identify the

model parameters 𝑎
𝑖𝑗
, 𝑐
𝑙𝑖
, 𝑑
𝑗𝑘
, 𝑏
𝑖
, 𝑧
𝑙
, and ℎ

𝑗
in (1)–(3). Because

large-scale measurement of protein activities has yet to be
realized and 73% of the variance in protein abundance can
be explained by mRNA abundance [26], mRNA expression
profiles were always used to substitute for the protein expres-
sion profiles. Therefore, we also applied mRNA expression
levels in the NGS data as the expression levels of 𝑦

𝑗
(𝑛)

to identify the parameters in (1)–(3). If the simultaneously
measured genome-wide protein expression data and the
mRNA expression data in each bladder cancer stage are
available, the general models in (1)–(3) can also be applied to
identify the real IGEN of the cancer more precisely. Because
the parameters in (1) have certain constraints, such as the
nonpositivemiRNA repressions and nonnegative basal levels,
the regulatory parameters were identified by solving the
constrained least square parameter estimation problem in the
following.

In order to identify the parameters in (1), the stochastic
regression model of GRN was rewritten as the following
linear regression form:
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𝑥
𝑖 (𝑛) = [𝑀𝑖 (𝑛) 𝑦1 (𝑛) ⋅ ⋅ ⋅ 𝑀

𝑖 (𝑛) 𝑥𝑖 (𝑛) 𝑦𝐾 (𝑛) 𝑀
𝑖 (𝑛) 𝑥𝑖 (𝑛) 𝑠1 (𝑛) ⋅ ⋅ ⋅ 𝑀

𝑖 (𝑛) 𝑥𝑖 (𝑛) 𝑠𝐿 (𝑛) 𝑀
𝑖 (𝑛)] ,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
𝑖1

.

.

.

𝑎
𝑖𝐾

𝑐
1𝑖

.

.

.

𝑐
𝐿𝑖

𝑏
𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

+ ]
𝑖 (𝑛) = 𝜙

𝑖 (𝑛) 𝜃
1

𝑖
+ ]
𝑖 (𝑛) , for 𝑖 = 1, . . . , 𝐾, 𝑛 = 1, . . . , 𝑁,

(4)

where 𝜙
𝑖
(𝑛) denotes the regression vector and 𝜃

1

𝑖
is the

parameter vector of target gene 𝑖 to be estimated. 𝑥
𝑖
(𝑛) and

𝜙
𝑖
(𝑛) are available in the omics data.
The regression model (4) at different data samples can be

rearranged as follows:

[
[
[
[

[

𝑥
𝑖 (1)

.

.

.

𝑥
𝑖 (𝑁)

]
]
]
]

]

=

[
[
[
[

[

𝜙
𝑖 (1)

.

.

.

𝜙
𝑖 (𝑁)

]
]
]
]

]

𝜃
1

𝑖
+

[
[
[
[

[

V
𝑖 (1)

.

.

.

V
𝑖 (𝑁)

]
]
]
]

]

, (5)

where𝑁 denotes the number of data samples in theNGS data
of a bladder cancer stage.

For simplicity, we define the notations 𝑋
𝑖
, Φ
𝑖
, and 𝑉

𝑖
to

represent (5) as follows:

𝑋
𝑖
= Φ
𝑖
𝜃
1

𝑖
+ 𝑉
𝑖
. (6)

The constrained least square parameter estimation problem
of 𝜃1
𝑖
is formulated as follows:

min
𝜃
1

𝑖

󵄩󵄩󵄩󵄩󵄩
Φ
𝑖
𝜃
1

𝑖
− 𝑋
𝑖

󵄩󵄩󵄩󵄩󵄩

2

2

subject to

𝐾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

.

.

. d d
.
.
.

.

.

. d d
.
.
.

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

𝐿+1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
1 0 ⋅ ⋅ ⋅ 0

0 d d
.
.
.

.

.

. d 1 0

0 ⋅ ⋅ ⋅ 0 −1

]
]
]
]
]
]
]
]

]

𝜃
1

𝑖

≤

[
[
[
[
[
[
[
[

[

0

.

.

.

.

.

.

0

]
]
]
]
]
]
]
]

]

.

(7)

This gives the constraints to force the miRNA repression 𝑐
𝑙𝑖

to be always nonpositive and the basal level 𝑏
𝑖
to be always

nonnegative in (1); that is, 𝑐
𝑙𝑖

≤ 0 and 𝑏
𝑖
≥ 0. The constrained

least square problem was solved using the active set method
for quadratic programming [27, 28].

Similarly, the stochastic regression model of the miRNA
regulatory subnetwork in (2) was rewritten in the following
regression form:

𝑠
𝑙 (𝑛)

= [𝑀1 (𝑛) 𝑥1 (𝑛) 𝑠𝑙 (𝑛) ⋅ ⋅ ⋅ 𝑀
𝐾 (𝑛) 𝑥𝐾 (𝑛) 𝑠𝑙 (𝑛) 𝑀

𝑙 (𝑛)]

[
[
[
[
[
[

[

𝑐
𝑙1

.

.

.

𝑐
𝑙𝐾

𝑧
𝑙

]
]
]
]
]
]

]

+ 𝑒
𝑙 (𝑛) = 𝜗

𝑙 (𝑛) 𝜃
2

𝑙
+ 𝑒
𝑙 (𝑛) ,

for 𝑖 = 1, . . . , 𝐾, 𝑛 = 1, . . . , 𝑁,

(8)

where 𝜗
𝑙
(𝑡) indicates the regression vector and 𝜃

2

𝑙
is the

parameter vector to be estimated.
For simplicity, we define the notations 𝑆

𝑙
, Ψ
𝑙
, and 𝐸

𝑙
to

represent (8) as follows:

𝑆
𝑙
= Ψ
𝑙
𝜃
2

𝑙
+ 𝐸
𝑙
. (9)

The parameter identification problem is then formulated as
follows:

min
𝜃
2

𝑖

󵄩󵄩󵄩󵄩󵄩
Ψ
𝑙
𝜃
2

𝑙
− 𝑆
𝑙

󵄩󵄩󵄩󵄩󵄩

2

2

subject to

𝐾
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[

[

1 0 ⋅ ⋅ ⋅

0 d d
.
.
. d 1

0 ⋅ ⋅ ⋅ 0

0

.

.

.

0

−1

]
]
]
]
]
]

]

𝜃
2

𝑙
≤

[
[
[
[
[
[
[
[

[

0

.

.

.

.

.

.

0

]
]
]
]
]
]
]
]

]

.

(10)

This gives the constraint to force the miRNA repression 𝑐
𝑙𝑖

to be always nonpositive and the basal level 𝑧
𝑙
to be always

nonnegative in (2); that is, 𝑐
𝑙𝑖

≤ 0, and 𝑧
𝑙
≥ 0. Finally, the

protein model (3) uses the same way like above to make sure
ℎ
𝑗
≥ 0.
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Furthermore, in order to extract the core network
biomarkers from normal and cancerous cells, we first used
NGS data and methylation profiles in the normal and stage
1 and 4 bladder cancer cells to identify an IGEN for normal
bladder cells and a general IGEN for bladder cancer cells.The
two identified IGENs were used to extract the core network
biomarkers in bladder carcinogenesis. We then used the
association parameters in the general IGEN of bladder cancer
cells as the initial condition of the constrained least square
parameter estimation and applied the data on stage 1 and 4
bladder cancer cells to identify the IGENs for stages 1 and
stage 4, respectively. According to the three identified IGENs
in normal bladder cells, and the stage 1 and 4 bladder cancer
cells, we determined the cellular mechanisms of the core
network biomarkers in bladder carcinogenesis.The proposed
methodology to identify the IGENs for normal bladder cells
and stage 1 and 4 bladder cancer cells was summarized in the
flowchart in Figure 2.

By applying Student’s 𝑡-test to the parameter estimation
method [29], the 𝑝 values for the estimated parameters,
including the TF regulatory ability 𝑎

𝑖𝑗
, the miRNA repres-

sion ability 𝑐
𝑙𝑖
, and the protein interaction ability 𝑑

𝑗𝑘
, were

calculated to determine the significance of the parameters.
Additionally, to determine the significance of expression level
and DNA methylation profile of a gene/miRNA between
normal bladder cells and cancerous bladder cells, we applied
one-way ANOVA to calculate the 𝑝 value.

After the parameter identification problem had been
solved, we identified the IGEN for each bladder cell type. For
example, we identified the regulatory parameter 𝑎RPS20,JUN =

0.26 from the TF JUN to the target gene RPS20 (𝑝 value <

0.02) in stage 4 bladder cancer cells, the interaction parameter
𝑑HUWE1,ADRM1 = 1.2 between the two proteins ADRM1 and
HUWE1 (𝑝 value < 0.005) in stage 1 bladder cancer cells, and
the coupling rate 𝑐RPS20,MIR155 = −1.2 between the miRNA
miR155 and the mRNA RPS20 in stage 4 bladder cancer cells
(𝑝 value < 0.07).

2.4. Principal Genome-Wide Network Projection (PGNP).
After the identification of the IGENs in normal and can-
cer cells, we extracted the core network biomarkers of
the IGENs based on the perspectives of the functional
modules and pathways to reveal the cellular mechanisms
behind bladder carcinogenesis. To extract the core net-
work biomarkers, including the core proteins, their cor-
responding genes, and their upstream miRNAs, from an
IGEN on a genome-wide scale, we first decomposed the
combined network matrix of the IGEN to left- and right-
singular vectors and singular values based on singular value
decomposition (SVD). The top left- and right-singular vec-
tors with the top singular values constitute the principal
network of the IGEN. The projection distance of each
gene/protein/miRNA to these top singular vectors represents
the significance of this gene/protein/miRNA in the IGEN.
The genes/proteins/miRNAs with the top projection distance
ultimately constitute the core network biomarkers of the
IGEN. Let the combined networkmatrix of the TF regulatory
ability 𝑎

𝑖𝑗
, the miRNA repression ability 𝑐

𝑙𝑖
, and the protein

interaction ability 𝑑
𝑗𝑘
of the IGEN in (1)–(3) be represented

by

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝐾

.

.

. d
.
.
.

𝑎
𝐾1

⋅ ⋅ ⋅ 𝑎
𝐾𝐾

𝑐
11

⋅ ⋅ ⋅ 𝑐
1𝐾

.

.

. d
.
.
.

𝑐
𝐿1

⋅ ⋅ ⋅ 𝑐
𝐿𝐾

𝑑
11

⋅ ⋅ ⋅ 𝑑
1𝐾

.

.

. d
.
.
.

𝑑
𝐾1

⋅ ⋅ ⋅ 𝑑
𝐾𝐾

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (11)

By applying PGP, the matrix 𝐴 is then be decomposed as
follows:

𝐴 = UDV𝑇

= [𝑢1 ⋅ ⋅ ⋅ 𝑢
𝐾]

[
[

[

𝑑
1

0 0

0 d 0

0 0 𝑑
𝐾

]
]

]

[V1 ⋅ ⋅ ⋅ V
𝐾]
𝑇

=

𝐾

∑

𝑖=1

𝑢
𝑖
𝑑
𝑖
V𝑇
𝑖
,

(12)

where 𝑢
𝑖
, V
𝑖
∈ R𝐾 are the 𝑖th left- and right-singular vectors

of𝐴, respectively.The diagonal entries of𝐷 are the𝐾 singular
values of 𝐴 in descending order, 𝑑

1
≥ ⋅ ⋅ ⋅ ≥ 𝑑

𝐾
.

The eigenexpression fraction (𝐸
𝑚
) is defined as

𝐸
𝑚

=
𝑑
2

𝑚

∑
𝐾

𝑚=1
𝑑
2

𝑚

. (13)

We choose the top 𝑀 singular vectors of 𝑉 such that
∑
𝑀

𝑚=1
𝐸
𝑚

≥ 0.85, with the minimal 𝑀, so that the top 𝑀

principal components contain 85% of the IGEN from an
energy point of view.The principal projections of𝐴 to the top
𝑀 singular vectors of𝑉, or similarities, are defined as follows:

𝑆 (𝑘,𝑚) = 𝑎
𝑘
⋅ V𝑇
𝑚
,

for 𝑘 = 1, . . . , (2𝐾 + 𝐿) , 𝑚 = 1, . . . ,𝑀,

(14)

where 𝑎
𝑘
and V𝑇
𝑚
denote the 𝑘th row vector of 𝐴 and the 𝑚th

singular vector of 𝑉, respectively. Furthermore, we defined
the 2-norm distance from the target genes, miRNAs, and
proteins/TFs to the top 𝑀 singular vectors, respectively, as
follows:

𝐷(𝑘) = [

𝑀

∑

𝑚=1

[𝑆 (𝑘,𝑚)]
2
]

1/2

,

for 𝑘 = 1, . . . , (2𝐾 + 𝐿) ,

(15)



8 Disease Markers

Candidate miRNA 
regulations

Candidate protein 
interactions

NGS data and 
methylation profiles

Candidate transcription 
regulations

GRN model
MRN modelPPIN model

The constrained least 
square parameter 
estimation problem of 
GRN model in (7)

The constrained least 
square parameter 
estimation problem of 
MRN model in (10)

The constrained least 
square parameter 
estimation problem of 
PPIN model

The constrained least squares 
method in Matlab and AIC

Real IGEN in 
stage 1 bladder 
cancer cells

Real IGEN in 
stage 4 bladder 
cancer cells

Real IGEN 
in normal 
bladder cells

Data in normal bladder cells
Data in stage 1 bladder cancer cells
Data in stage 4 bladder cancer cells

yj(n) = ∑
k≡Ωj

k≠j

djkyk(n)yj(n)

+ hj + wj(n), in (3) 

sl(n) = ∑
𝛿li≡

cliMi(n)xi(n)sl(n)

+ Ml(n)zl + el(n), in (2) 

xi(n) = ∑ aijMi(n)yj(n)

+ ∑ cliMi(n)xi(n)sl(n)

+ biMi(n) + �i(n), in (1) 

j≡Ωi

j≠i

𝛿ii≡

Figure 2: Flowchart of the proposed methodology to identify the IGENs for normal bladder cells, and stage 1 and 4 bladder cancer cells.

where 𝐷(𝑘) for 𝑘 = 1, . . . , 𝐾, for 𝑘 = 𝐾 + 1, . . . , 𝐾 + 𝐿,
and for 𝑘 = 𝐾 + 𝐿 + 1, . . . , 2𝐾 + 𝐿 are the 2-norm distances
from the target genes, miRNAs, and proteins/TFs to the top
𝑀 singular vectors, respectively. According to 𝐷(𝑘) for 𝑘 =

𝐾 + 𝐿 + 1, . . . , 2𝐾 + 𝐿, we can identify the core proteins/TFs
that play a major role in the principal networks of the
IGENs, constituting the core IGENs in normal and cancer
cells. The identified core proteins/TFs contain receptors that
mediate the signaling cascades connected to core TFs. The
core proteins, which participate in signal transduction from
core receptors to core TFs, and their corresponding genes,
were considered the core network biomarkers for normal and
cancerous cells. ThemiRNAs with very different connections

in regulating the genes of the core network biomarkers
between two cells were also involved in the core network
biomarkers.

2.5. Design of a Multiple Drug Combination with Mini-
mal Side-Effects for the Treatment of Bladder Cancer. To
design a multiple drug combination with minimal side-
effects for the treatment of bladder cancer based on the
core network biomarkers of the IGEN, we considered two
databases, CMAP and DGIdb. CMAP contains the genome-
wide microarray data in response to 1327 drugs in five
cell lines, while DGIdb comprises a drug-gene interaction
database. Multiple drug therapy induces a genome-wide
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response. The strategy of multiple drug screening is that
the multiple drugs should inhibit the highly expressed
genes, activate the reduced expression of the genes, and not
influence the nondifferentially expressed genes in the core
network biomarkers of bladder cancer cells compared with
normal bladder cells. The binding protein of the designed
multiple drug combination can also be obtained using the
DGIdb. The strategy leads to improved drug safety and
efficacy in the treatment of bladder cancer.

3. Results and Discussion

3.1. Construction of IGEN. We first used NGS expression
data and methylation profiles in normal bladder cells and
stage 1 and 4 bladder cancer cells to identify a real IGEN
for normal bladder cells and a general real IGEN for bladder
cancer cells (see Section 2). By applying PGNP to the real
IGEN of the normal bladder cells and the general real
IGEN of the bladder cancer cells, we then obtained 115 core
proteins/TFs for the core IGEN of the normal bladder cells
and 138 core proteins/TFs for the core IGEN of the bladder
cancer cells. To determine how the signaling cascades from
the core receptor proteins to the core TFs participate in
bladder carcinogenesis, the core proteins, which mediate
the signal transductions from core receptor proteins to core
TFs, and their corresponding genes were considered the
core network biomarkers. The miRNAs with a high number
of different connections regulating the genes of the core
network biomarkers between normal and cancerous cells
were also involved in the core network biomarkers.Moreover,
to identify the mechanism of carcinogenesis from stage 1 to
stage 4 bladder cancer, we used the identified parameters
of models (1)–(3) in the general IGEN of bladder cancer
cells as the initial condition of the constrained least square
parameter estimation.We then applied the data for stage 1 and
4 bladder cancer cells to obtain the two real IGENs for stage 1
and 4 bladder cancer, respectively. Furthermore, we analyzed
the connection changes of the core network biomarkers
between normal bladder cells and stage 1 bladder cancer cells
(Figure 3) and between stage 1 and 4 bladder cancer cells
(Figure 4) to determine the mechanisms of bladder carcino-
genesis and accordingly design multiple drug combinations
for treating bladder cancer with minimal side-effects.

To investigate the impact of the major risk factors, aging
and smoking, on the core network biomarkers of bladder car-
cinogenesis, we highlighted the significantly expressed genes
between young and old people and between nonsmokers and
smokers in the core network biomarkers (𝑝 value < 0.05).
Additionally, the genes with changes in the basal level of (1)
between normal bladder cells and stage 1 bladder cancer cells
and between stage 1 and 4 bladder cancer cells were also
highlighted in the core network biomarkers of Figures 3 and
4, respectively. The basal level change of a gene between two
cell types has been implicated in the epigenetic regulation
of gene expression. The expression of a gene that exhibits
a basal level change and a significant change (𝑝 value <

0.05) of its methylation profile between the two bladder cell
types is probably regulated by DNA methylation in bladder
carcinogenesis.

3.2. Projection of the Core Network Biomarkers into Biological
Processes and Signaling Pathways to Investigate Carcinogenic
Mechanisms of Bladder Cancer. According to the information
of the biological processes and signaling pathways in the GO
and KEGG pathway databases, the roles of the genes in the
core network biomarkers (Figures 3 and 4) are projected into
three pathways: the SUP, TNF signaling, and ER signaling
pathways and three biological processes: cell proliferation,
DNA repair, and metastasis.

It has been reported that the SUP pathway is associated
with increased proliferation in urinary bladder carcinogene-
sis [30]. HuaChanSu (HCS), a class of toxic steroids, has been
used to show that the TNF pathway mediates the inhibition
of cell proliferation in bladder cancer [31]. Moreover, the
viability of human bladder cancer cells is reduced by using
cantharidin, a natural toxin, through the ER pathway [32].
Therefore, the proteins of the core network biomarkers
participating in the SUP, TNF, and ER signaling pathways
play an important role in bladder carcinogenesis. We then
determined how the core network biomarkers mediate blad-
der carcinogenesis through the influences of aging, smoking,
epigenetic regulation, and miRNA regulation.

The role of the SUP pathway is to degrade misfolded
proteins, influence PPIs, translocate proteins, and stabilize
protein structure. Owing to the accumulation of genetic
mutations and epigenetic alterations in cancer cells, the SUP
pathway plays a crucial role in the maintenance of many
important cellular processes in cancer cells. The repressed
activity of ubiquitin C (UBC), which encodes the polyu-
biquitin precursor, influences degradation and translation
of several proteins in stage 1 and stage 4 bladder cancer
cells. For example, the repression of UBC affects the signal
transduction of RARRES3, a tumor suppressor, in bladder
carcinogenesis. To maintain the cellular functions of cancer
cells, the regulation of the SUP pathway adapts to the
accumulated genetic mutations and epigenetic alterations.

In normal cells, the TNF pathway is critical for inducing
inflammation, which can cause cell death. AccumulatedDNA
damage, epigenetic alterations, or stresses can induce the
TNF pathway, and the pathway then triggers cell death. JUN,
one of the TFs in the TNF pathway, plays an important role in
promoting the invasion andmigration of bladder cancer cells
[33]. We determined that the repressed expression of JUN in
stage 1 bladder cancer cells leads to cancer cell immortality
and causes accumulated genetic mutations and epigenetic
alterations. Additionally, the results revealed that JUN was
activated in stage 4 bladder cancer cells tomediatemetastasis.
The role of JUN in the metastasis of bladder cancer cells can
also be supported [33]. It has also been reported that the TNF
pathway acts as a switch between inflammation and cancer
[34]. Moreover, downregulated BCL3, which participates in
the TNF pathway in the adipose tissue of the bladder wall,
leads to reduced inflammation in bladder carcinogenesis
[35].

The ER pathway participates in the regulation of protein
folding, protein synthesis, and posttranslational modifica-
tions [36]. Misfolded proteins, arising from genetic muta-
tions, epigenetic alterations, or stresses, induce the ER path-
way to restore cellular homeostasis in normal cells. Owing to
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Figure 3: Comparison of genetic and epigenetic alterations and connection changes in the core network biomarkers of bladder carcinogenesis
between normal bladder cells and stage 1 bladder cancer cells. Red, blue, and black gene/miRNA symbols represent the highly expressed genes,
the suppressed genes, and the nondifferentially expressed genes in stage 1 bladder cancer cells, respectively, compared with normal bladder
cells. Dashed and solid lines denote the identified connections in normal and cancerous cells, respectively. The identified connections of the
core network biomarkers do not exist in normal bladder cells only. Bold lines indicate the high regulatory or interaction parameters, that is,
𝑎
𝑖𝑗
, 𝑐
𝑙𝑖
, and 𝑑

𝑗𝑘
, identified in the stochastic regression models (1)–(3) of the IGEN.The bold proteins, including RARRES3, TUBA1C, PSMD8,

HSPA1B, RPS20, CALR, PAAF1, and KPNA2, were the identified core network biomarkers.Themajor factors, including downregulatedmiR1-
2, the aging-related proteins, HSP90B1, CALR, HSPA5, PDIA3, RPN1, and ECT2, the smoking-related proteins, HUWE1, HSPA5, and ECT2,
and the epigenetic regulation of ENO1, HSP90B1, CALR, and PDIA3, lead to the progression from normal bladder cells to stage 1 bladder
cancer cells through the SUP and ER signaling pathways.

the immortal nature of cancer cells, the accumulated genetic
mutations and epigenetic alterations in bladder cancer cells
can activate most of the genes that contribute to the ER
pathway in bladder carcinogenesis (Figures 3 and 4). In the
ER pathway, only RARRES3, a tumor suppressor gene, was
downregulated in stage 1 bladder cancer cells.

3.3.The Impact of Aging, Smoking, and miRNA and Epigenetic
Regulation on Bladder Carcinogenesis through the Core Net-
work Biomarkers. Major factors, including downregulated
miR1-2 and aging- and smoking-related proteins, may lead to
the progression from normal bladder cells to stage 1 bladder
cancer cells through the SUP and ER signaling pathways.
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Figure 4: Comparison of genetic and epigenetic alterations and connection changes in the core network biomarkers of bladder carcinogenesis
between stage 1 and stage 4 bladder cancer cells. Red, blue, and black gene/miRNA symbols represent the highly expressed genes, the
suppressed genes, and the nondifferentially expressed genes in stage 4 bladder cancer cells, respectively, compared with stage 1 bladder cancer
cells. Dashed, dash-dot, and solid lines denote the identified connections in stage 1 cancer cells, stage 4 cancer cells, and both stage 1 and 4
cancer cells, respectively. Bold lines indicate the high regulatory or interaction parameters, that is, 𝑎

𝑖𝑗
, 𝑐
𝑙𝑖
, and 𝑑

𝑗𝑘
, identified in the stochastic

regressionmodels (1)–(3) of the IGEN.The bold proteins RARRES3, TUBA1C, PSMD8, HSPA1B, RPS20, CALR, PAAF1, and KPNA2were the
identified core network biomarkers. The smoking-related protein HSP90AA1 and DNA methylation of ECT2mediate metastasis of bladder
cancer.

It has been reported that aging and smoking are themajor
factors that accumulate genetic and epigenetic alterations
and ultimately induce bladder carcinogenesis. In Figure 3,
our results reveal that ADRM1 regulates KPNA2, which
promotes proliferation, and is mediated by the aging-related
proteins, HSP90B1, CALR, HSPA5, PDIA3, RPN1, and ECT2,
the smoking-related proteins, HUWE1, HSPA5, and ECT2,
and the epigenetic regulation of ENO1, HSP90B1, CALR,

and PDIA3, through the SUP and ER signaling pathways.
ADRM1 knockdown leads to a reduction of cancer cell
proliferation and has been found in gastric [37], ovarian [38],
liver [39], and colorectal cancers [40] and acute leukemia
[41].Therefore, the results support the hypothesis that aging is
themost important factor in inducing bladder carcinogenesis
through the SUP pathway. Additionally, our results (Figure 3)
show that the inhibited aging-related miRNA miR1-2 in
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stage 1 bladder cancer cells leads to miR1-2 dysregulation of
genes including KPNA2, TUBA1C, HN1, PSMD11, PSMD12,
and TK1, which influence cell proliferation, DNA repair,
and metastasis. miR1-2 has also been identified as a tumor
suppressor in bladder cancer cells [42].

3.4. miR1-2 and miR200b Mediate the Reduction of Cell
Proliferation and Metastasis through KPNA2 and ECT2,
Respectively. The receptor ADRM1 signal triggers the sig-
naling cascade from the smoking-related protein HUWE1
to the aging-related proteins HSP90B1 and RPS20 and the
smoking-related TF COPS5. The TF COPS5 upregulates the
metastasis-associated gene ECT2, which is suppressed by
miR200b in stage 1 bladder cancer cells. The results show the
cross-regulation between the transcription of the smoking-
related protein COPS5 and the aging-related protein ECT2.
The aging-related miRNA miR1-2 and the smoking-related
miRNAmiR200b act as a switch to depress the proliferation-
associated protein KPNA2 in stage 1 and stage 4 bladder can-
cer cells (Figures 3 and 4) and the metastasis-associated gene
ECT2 in stage 4 bladder cancer cells (Figure 4), respectively.

3.5.The Smoking-Related ProteinHSP90AA1 andDNAMethy-
lation of ECT2Mediate theMetastasis of Bladder Cancer. Our
results reveal that receptor RARRES3 signaling triggers the
activated TF JUN mediated by the smoking-related protein
HSP90AA1, and JUN then activates themetastasis-associated
gene PSMD12 in stage 4 bladder cancer cells (Figure 4).
Receptor ADRM1 signaling also triggers the metastasis-
associated protein PSMD12 through the proteins PSMD8
and PAAF1 and epigenetic regulation in stage 4 bladder
cancer cells. This shows that metastasis-associated ECT2 is
activated by epigenetic regulation in stage 4 bladder cancer
cells. Receptor RARRES3 signaling also triggers the aging-
related and proliferation-associated TF PSMD11 through the
smoking-related proteinHSP90AA1 in stage 4 bladder cancer
cells. The activated TF JUN also regulates the proliferation-
associated gene PSMD11 and the DNA repair-associated gene
RPS20. There is evidence that curcumin (diferuloylmethane)
can suppress tumor initiation, promotion, and metastasis.
Curcumin can also inhibit the expression of JUN [43]. Addi-
tionally, the RNAi-induced induction of ECT2 suppresses cell
migration, invasion, andmetastasis [44]. Our results indicate
that the upregulation of ECT2 in stage 4 bladder cancer cells
is regulated by epigenetic regulation of ECT2 expression.
This is also supported by the significant change in the DNA
methylation profiles in ECT2 between normal bladder cells
and stage 4 bladder cancer cells (𝑝 value < 0.007).

3.6. Functional Module Network Analysis in Bladder Carcino-
genesis. The activated DNA repair of bladder cancer cells
leads to metastasis owing to the immortality of cancer cells.

According to the modular information in the GO
database and theKEGGpathway database, the genes/proteins
in the core network biomarkers (Figures 5 and 6) are
projected into three pathways, the SUP pathway, the TNF
signaling pathway, and the ER signaling pathway, and three
biological processes: cell proliferation, DNA repair, and

metastasis. The module networks in Figures 5 and 6 show
that the activated TFs KPNA2, COPS5, PSMD12, and ECT2
play an important role in mediating the signal transduction
of the SUP and ER pathways to activate cell proliferation and
metastasis in stage 1 bladder cancer. The metastasis of the
stage 1 bladder cancer is repressed by the activated miRNAs
miR200a and miR200b, as shown in Figure 5. The activated
signal transduction from SUP and ER pathways also triggers
DNArepair through the epigenetically regulatedTFsPSMD11
and RNF126.

Additionally, the activated TFs PSMD11, RNF126, and
JUN mediate the signal transduction from SUP, TNF, and
ER pathways to trigger cell proliferation, DNA repair, and
metastasis in stage 4 bladder cancer, as shown in Figure 6.
Although miR155 is activated in stage 1/4 bladder cancer,
miR155 suppresses FOS and RPS20 in stage 1 bladder cancer,
and miR155 only suppresses the DNA repair-associated gene
RPS20 in stage 4 bladder cancer. Furthermore, we suggest that
DNA repairmay play a critical role in repairingDNAdamage,
which results from genetic and epigenetic alterations, leading
to phenotypic change of the bladder cells fromnormal cells to
stage 1 cancer cells, and from stage 1 cancer cells to metastatic
cancer cells.

In summary, aging and epigenetic regulation dominate
bladder carcinogenesis through CALR, PDIA3, DNAJB11,
HSPA5, RPN1, HSP90B1, KPNA2, ECT2, and PSMD11 and
through COPS5, PSMD8, RNF126, CALR, PDIA3, HSP90B1,
PSMD12, PSMD11, JUN,HN1, and ENO1, respectively. Smok-
ing promotes bladder carcinogenesis especially in metastasis.
Finally, the cellular mechanisms from normal to stage 1
bladder cancer cells and from stage 1 to stage 4 bladder cancer
cells are summarized in Figures 7(a) and 7(b), respectively.
When the accumulated genetic mutations and epigenetic
alterations lead to the dysregulation of the TNF pathway
in inflammation, the accumulated misfolded proteins in
the ER pathway induce cell proliferation in stage 1 bladder
cancer (Figure 7(a)). Regulation of the ER and TNF pathways
adapts to the accumulated genetic mutations and epigenetic
alterations through the SUP pathway. The progression of
DNA repair and cell proliferation in stage 1 bladder cancer
ultimately results not only in the repression of miR200a and
miR200b during metastasis, but also in the regulation of
the TNF pathway to metastasis, cell proliferation, and DNA
repair in stage 4 bladder cancer (Figure 7(b)).

3.7. Two Separate Drug Combinations for Treating Stage 1
and Stage 4 Bladder Cancer Cells with Minimal Side-Effects.
The design of a multiple drug combination for treating stage
1 bladder cancer depends on a strategy of inhibiting the
highly expressed genes ADRM1, COPS5, PSMD8, SUMO2,
CALR, PDIA3, DNAJB11, HSPA5, RPN1, CUL1, HSP90B1,
KPNA2, PSMD12, ECT2, TK1, TUBA1C, HN1, and ENO1;
activating the suppressed genes UBC, JUN, RARRES3, and
FOS; and suppressing the drug’s effect on the nondifferentially
expressed genes BAG6, HUWE1, PAAF1, PSMD10, FAF2,
PCYT1A, and PSMD10. According to the drug design strategy
(see Section 2), a multiple drug combination comprising
gefitinib, estradiol, yohimbine, and fulvestrant was obtained
for treating stage 1 bladder cancer.
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Figure 7: The carcinogenic mechanisms from normal to stage 1 bladder cancer cells (a), and from stage 1 to stage 4 bladder cancer cells
(b). When the accumulated genetic mutations and epigenetic alterations lead to the dysregulation of the TNF pathway in inflammation, the
accumulated misfolded proteins in the ER pathway induce cell proliferation in stage 1 bladder cancer (a). The regulations of ER and TNF
pathways are adaptive to the accumulated genetic mutations and epigenetic alterations through the SUP pathway. The progression of DNA
repair and cell proliferation in stage 1 bladder cancer ultimately results not only in the repression of miR200a andmiR200b duringmetastasis,
but also in the regulation of the TNF pathway to metastasis, cell proliferation, and DNA repair in stage 4 bladder cancer (b).

The design of a multiple drug combination for treating
stage 4 bladder cancer depends on a strategy of inhibiting
the highly expressed genesADRM1,COPS5,PSMD8, SUMO2,
RNF126, CALR, PDIA3, DNAJB11,HSPA5, RPN1,HSP90AA1,
HSPA1B, METTL23, RARRES3, KPNA2, PSMD12, ECT2,
JUN, TK1, TUBA1C, HN1, and ENO1; activating the sup-
pressed genes BCL3, FOS, UBC, and GTF2A1; and suppress-
ing the drug’s effect on the nondifferentially expressed genes,
which are the same as those in stage 1 bladder cancer. We
obtained a multiple drug combination comprising gefitinib,
estradiol, chlorpromazine, and LY294002 for treating stage 4
bladder cancer. According to the information inDGIdb,miR-
155, theHSP90 protein family, ADRM1, and estrogen receptor
are the direct targets of the multiple drug combination
comprising gefitinib, estradiol, yohimbine, and fulvestrant in
stage 1 bladder cancer, respectively (Figures 3 and 5), while the
same proteins are also the direct targets of the multiple drug
combination comprising gefitinib, estradiol, chlorpromazine,
and LY294002 in stage 4 bladder cancer, respectively (Figures
4 and 6). Moreover, the analysis of drug response genome-
wide microarray data reveals that high doses of yohimbine
can activate BAG6 in stage 1 bladder cancer, while high doses
of chlorpromazine can activate HSPA5 and JUN in stage 4
bladder cancer.Therefore, low-dose yohimbine and low-dose
chlorpromazine could avoid side-effects in the treatment
of stage 1 and stage 4 bladder cancer cells, respectively.

Ultimately, we designed one specific drug combination for
treating stage 1 bladder cancer and another specific drug
combination for treating stage 4 bladder cancer withminimal
side-effects (Table 1).

4. Conclusion

In this study, we proposed a new method for constructing
an IGEN for characterizing cellular mechanisms in bladder
carcinogenesis by using system regression modeling and
large-scale database mining. We then applied PGP to obtain
the core network biomarkers of the IGEN. By comparing
the connection changes of the core network biomarkers
between normal bladder cells and stage 1 bladder cancer cells
and between stage 1 and stage 4 bladder cancer cells, we
investigated the progression mechanisms of bladder carcino-
genesis. Database mining provided all possible candidates
for genetic and miRNA regulations and protein interactions
in IGEN. We used AIC and statistical assessment to prune
the false positive regulations and interactions by applying
the regression coupling model to NGS data and methylation
profiles. We compared the connection differences in the
core network biomarkers between different cellular types to
explore bladder carcinogenic mechanisms. According to the
comparison of the connection changes in the core network
biomarkers between normal cells and stage 1 cancer cells
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Table 1: The multiple drug design strategy and potential multiple drug combination for stage 1 and 4 cancers.

Stage 1 bladder cancer Stage 4 bladder cancer
The highly
expressed
genes for
potential
inhibition
strategy of
multiple drug
design

ADRM1, COPS5, PSMD8, SUMO2, CALR, PDIA3, DNAJB11,
HSPA5, RPN1, CUL1,HSP90B1, KPNA2, PSMD12, ECT2, TK1,

TUBA1C, HN1, and ENO1

ADRM1, COPS5, PSMD8, SUMO2, RNF126, CALR, PDIA3,
DNAJB11, HSPA5, RPN1, HSP90AA1, HSPA1B,METTL23,
RARRES3, KPNA2, PSMD12, ECT2, JUN, TK1, TUBA1C,

HN1, and ENO1

The
suppressed
genes for
potential
activation
strategy of
multiple drug
design

UBC, JUN, RARRES3, and FOS BCL3, FOS, UBC, and GTF2A1

The nondif-
ferentially
expressed
genes to
avoid
side-effect of
multiple drug
design

BAG6, HUWE1, PAAF1, PSMD10, FAF2, PCYT1A, and
PSMD10

BAG6, HUWE1, PAAF1, PSMD10, FAF2, PCYT1A, and
PSMD10

The potential
multiple drug
combination
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and between stage 1 and stage 4 cancer cells, we investigated
how the genetic and epigenetic regulations, miRNA regu-
lations, and aging-related and smoking-related genes affect
the biological functions that lead to bladder carcinogenesis.
According to gene expression changes in the core network
biomarkers between normal bladder cells and stage 1 bladder
cancer cells and between stage 1 and stage 4 bladder cancer
cells, we then identified two separate drug combinations
for treating stage 1 and 4 bladder cancer cells. Therefore,
the proposed IGEN construction method and PGP provide
potential network biomarkers for bladder cancer diagnosis
and treatment.
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