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Comparison and classification of protein structures are
fundamental means to understand protein functions. Due
to the computational difficulty and the ever-increasing
amount of structural data, however, it is in general not
feasible to perform exhaustive all-against-all structure
comparisons necessary for comprehensive classifications.
To efficiently handle such situations, we have previously
proposed a method, now called GIRAF. We herein de-
scribe further improvements in the GIRAF protein struc-
ture search and alignment method. The GIRAF method
achieves extremely efficient search of similar structures
of ligand binding sites of proteins by exploiting database
indexing of structural features of local coordinate frames.
In addition, it produces refined atom-wise alignments by
iterative applications of the Hungarian method to the bi-
partite graph defined for a pair of superimposed struc-
tures. By combining the refined alignments based on
different local coordinate frames, it is made possible to
align structures involving domain movements. We pro-
vide detailed accounts for the database design, the search
and alignment algorithms as well as some benchmark
results.
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Comparison and classification of protein structures are
important steps towards understanding the principles of
protein structures and functions. Accordingly, there have
been many methods for comparing protein structures1–8 (see
Eidhammer et al.9 for review) and there are standard data-
bases of protein taxonomy such as SCOP10 and CATH11.
When studying protein functions, it is important to notice
that protein functions may not necessarily be intrinsic prop-
erties of proteins since proteins need to interact with other
molecules ranging from single atom ions to macromole-
cules in order to execute their functions. Therefore, struc-
tural studies of protein functions must be based on the mode
of interactions, and there are already a number of compara-
tive studies of interaction sites of proteins12–39.

A classification study of protein structures naturally re-
quires comparing a large number of structures. At present,
there are nearly 80,000 entries in the Protein Data Bank
(PDB)40,41, and the amount of data is still increasing due to
the increased efficiency of structure determination as well
as to technological development for solving large complex
structures. When ligand interaction sites including those for
small molecules, proteins and nucleic acids are considered,
the number is even higher by an order of magnitude. Since
structure comparison is a computationally difficult prob-
lem9,42, it is often assumed necessary to reduce the data size
by making a “representative” set of structures by removing
redundancy (usually based on homologous relationships and
experimental qualities) even when efficient (approximate)
algorithms are employed. However, when atomic details are
to be examined, the structural diversity of closely homolo-
gous or even identical proteins may not be negligible. This
is especially true when one is interested in different interac-
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tion states of a protein bound with different types of ligands.
Therefore, it becomes necessary to take into account all the
available structures without removing any redundancy to
achieve a detailed classification of interaction site structures.

In order to compare the ever-increasing amount of inter-
action site structures in the PDB, we have previously de-
veloped an extremely efficient method that exploits a rela-
tional database (RDB) management system and its indexing
mechanism29. This method was later named GIRAF (Geo-
metric Indexing and Refined Alignment Finder) and, with
some further improvements, has been applied to compre-
hensive structural classifications of interaction sites for
small molecules33 and proteins34 as well as the combinations
of various types of binding sites39. This article is a detailed
account of the most recent implementation of the GIRAF
method. The main improvements include the simplified and
integrated RDB schema for facilitating functional annotations
combined with structure similarity search, improved geo-
metric indexing (GI) search by using a rich set of structural
features associated with each backbone-based local coordi-
nate frame, and flexible alignment that can handle domain
movements. With these improvements, it is made possible
to search through a database containing hundreds of thou-
sands of interaction site structures in several seconds to a
few minutes on a modern desktop computer with multi-core
CPUs.

Materials and Methods

Since the first presentation29, the GIRAF method has been
subject to many significant improvements, which include
the design of its back-end database, structural features for
geometric indexing, and the alignment algorithm.

Before proceeding to the details of the method, let us
introduce some technical terms. A template structure is a
binding site structure that is stored in the GIRAF database.
The GIRAF database is a relational database in which struc-
tural data extracted from the PDB are stored and indexed.
A query structure is a protein subunit structure, or a part
thereof, for which similar templates in the GIRAF database
are to be searched.

In the following, most of the parameters were chosen
in such a way that some anecdotal examples12,15,29 were
covered.

Database design

GIRAF relies on a relational database (RDB) for storing a
large amount of structural data as well as for fast look-up of
similar structures. At the same time, the RDB stores rele-
vant annotations of PDB entries. The overall database struc-
ture is depicted in Figure 1.

The source of data is PDBML files43,44. The tables “Structs”
and “Entities” store the annotations of PDB entries and
those of individual molecular entities, respectively, extracted
from PDBML files. Biological units are generated when

available in the pdbx_struct_assembly category of the
PDBML files the contents of which are stored in the
“Assemblies” table. The chain ID’s (label_asym_id) are re-
named by appending the identifier(s) of symmetry operators
(pdbx_struct_assembly_gen.oper_expression=pdbx_struct_
oper_list.id), and they are stored in the “Asyms” table with
a reference (entity_id) to the corresponding entity in the
“Entities” table as well as a reference (assembly_id) to the
“Assemblies” table. These 4 tables (Structs, Entities, As-
semblies, Asyms) provide the basic annotations of the mole-
cules in PDB entries.

A ligand binding site is defined as a set of at least 10
atoms that are in contact with some ligand within 5 Å. This
size (10 atoms) was set because at least 10 aligned atom
pairs are required for an alignment to be statistically
significant29. Ligands are defined as one of non-polymer
molecules (as annotated in the entity category of PDBML
files), proteins (those annotated as “polypeptide(L)” in the
entity_poly category with at least 25 amino acid residues),
or nucleic acids (annotated as “polydeoxyribonucleotide,”
“polyribonucleotide” or “polydeoxyribonucleotide/poly-
ribonucleotide hybrid” in the entity_poly category). Other
polymer molecules such as polypeptide with less than 25
residues and polysaccharides are treated separately. The
non-polymer molecules, short peptides, and “other” poly-
mers are collectively referred to as “small molecules” and
are treated together in the following. The information on
binding sites are identified by the pair of chain ID’s of the
receptor and the ligand (corresponding to the Asyms table)
in addition to the PDB ID and biological assembly ID, and
is stored in the table “Interfaces” along with their atomic

Figure 1 Relational tables in the GIRAF database. A simplified
view of the GIRAF database schema. Each rectangle represents a rela-
tional table, possibly connected to another table via foreign key refer-
ence (edges labeled with “references”). The table structure of the
GIparam and Qrefaco tables are copied from that of the Refaco table.
The Qrefaco table is created temporarily for each query. The diagram
was created using Cytoscape45.
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coordinates in a compressed binary format.
The fast search capability of GIRAF is made possible by

looking up similar local structural features defined on vari-
ous affine frames for each receptor subunit. The affine
frames associated with the structural features as well as dis-
cretized local atomic coordinates are stored in the “Refaco”
table (see also Appendix). The details of structural features
are explained in the next subsection.

Pre-processing

Affine frames

An affine frame is a tuple of 4 3-dimensional vectors (O,
, , ) which defines the origin, and x, y and z axes of a

local coordinate system of a given structure. In the present
case, an affine frame is defined for each amino acid residue
where the origin, O, is the center of mass of side-chain
atoms (or Cα atom for glycines), and the basis vectors are
based on backbone N, Cα and C′ atoms (Fig. 2). Thus, for an
atom whose PDB coordinate is s, its local coordinate s′ with
respect to an affine frame f = (O, , , ) is given as s′= f (s)
where the action of f is defined as

f (s)= [(s−O) ⋅ , (s−O) ⋅ , (s−O) ⋅ ] (1)

with the dot “⋅” indicating the dot product.
We discard affine frames for which no atom of the resi-

due belongs to any binding sites in order to reduce the com-
putational cost.

Structural features of affine frames

Each affine frame is characterized by a set of structural
features. These features are subsequently indexed and serves
for fast retrieval of potentially similar binding site struc-
tures. The fundamental assumption is that if two binding

sites are structurally similar, they should share affine frames
with similar features. There are in total 44 features which
are grouped into two categories: local coordinates of 5-
residue fragments and atomic compositions. Atomic com-
positions are defined in 4 overlapping hemispheres of 10 Å
radius centered at the origin of the affine frame, separated
by the y−z or z−x planes.

After all affine frames with structural features have been
stored in the GIRAF database, the standard deviations of the
values of structural features are calculated and stored in a
table (“GIparam”, c.f., Fig. 1). These standard deviations
multiplied by constant factors are used as thresholds of
structural similarity in the geometric indexing search (see
below).

Discretized local atomic coordinates

Based on each affine frame, each atomic coordinate of
the corresponding interface, if its distance from the origin of
the frame is less than 15 Å, is transformed to the local coor-
dinate system and discretized into a lattice point in a lattice
of 1 Å×1 Å×1 Å voxel size, which is also characterized by
its atom type. (Also see Appendix).

Geometric indexing (GI) search

The goal of geometric indexing search is to find template
structures that are potentially similar to a query structure.
Conceptually, this is done in two steps. The first is to find
pairs of affine frames in the query and templates with simi-
lar structural features; the second is to estimate the similar-
ity between the query and template structures by counting
the number of overlapping atoms in the respective local
coordinate systems defined by the affine frames found in the
first step. Thus found potentially similar structures are sub-

Figure 2 Affine frame. (A) For a given amino acid residue, the directions of x, y and z axes are determined by the backbone atoms N, C
α
, and

C′. (B) The origin of the affine (local coordinate) frame is set to the center of mass of side-chain atoms (C
α
 for glycines).

x̂ ŷ ẑ

x̂ ŷ ẑ

x̂ ŷ ẑ
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ject to alignment refinement described in the next subsec-
tion. Practically, the two steps can be achieved at once by a
single SQL query.

A query structure for a GIRAF search can be either a sin-
gle binding site or a whole subunit structure. In either case,
the affine frames and their associated structural features are
extracted in the same manner as template structures. The
affine frames with structural features of the query structure,
as well as its discretized local atomic coordinates, are stored
in a temporary table (“Qrefaco”, c.f., Fig. 1) in the GIRAF
database, which has the same structure as the Refaco table.
For the discretized coordinate of each atom in the query
structure, the nearest and next-nearest neighbor lattice points
are also filled with that atom so that structural deviation
between the query and template can be taken into account.

To find potentially similar template structures, an SQL
query is constructed that returns a list of potentially similar
structures (see Appendix for the details).

The criteria for filtering potentially similar structures are
given as follows. We define the GI score, SGI, by

SGI = 100× (2)

where cnt( fq, ft) is the number of overlapping atom pairs (in
discretized representation), Nq and Nt are the number of lat-
tice points in the query and template, respectively, that are
specified for the affine frames (see the previous subsection).
Then the cutoff condition is given as

SGI > Smin (3)

where Smin is set to 50 by default. This means that the over-
lapping atom pairs needs to exceed 50% of the atoms in the
smaller site. In addition, we also require that cnt ( fq, ft)≥10.

Iterative refinement (IR) of alignment

After the GI search step, we have a list of potentially sim-

ilar structures. The next step is to obtain optimal alignments
of these structures. This is done by iterative applications of
superposition46 and bipartite graph matching47,48 as de-
scribed previouly29 (Fig. 3). Bipartite graph matching has
been applied to protein structure alignment previouly by
others8,20. However, Taylor8 applied it in a different problem
setting (matching pairs of secondary structure elements), and
Shulman-Peleg et al.20 did not apply iterative refinement.

The Hungarian algorithm (or, more specifically, the
Kuhn-Munkres algorithm) for bipartite graph matching
was implemented using the functional scheduled binomial
heap structure49 to increase performance48, and runs in
O(|V |(|E|+ |V | log |V |)) worst case time where |V | and |E| are
the numbers of nodes and edges, respectively, in a bipartite
graph.

After a refined alignment is obtained, we compute the
score (GIRAF score) of the alignment given by

S
IR

( fq, ft)= 100 × (4)

where the sum of the edge weights, w(a,b), is com-
puted over aligned atom pairs. The GIRAF score is a gener-
alization of the GI score (Eq. 2): in place of the number of
overlapping atoms, the sum of edge weights are used, and
the maximum possible GIRAF score is 100 for exactly over-
lapping binding sites with no deviation. This definition of
GIRAF score differs from the previous version29 in that the
right hand side of Eq. (4) is not multiplied by the number of
aligned atom pairs. We find the present definition more con-
venient for detecting similarities especially for small binding
sites.

Significant matches are selected based on the following
criterion:

S
IR> Cr(Nali) (5)

where C is a constant set to 95 by default, and r(x) is a func-

Figure 3 Iterative refinement of alignment.
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tion of the number of aligned atom pairs Nali, and is defined
as:

r(x)= 0.8exp[−(1/2){(x−N0)/W}2] + 0.2 (6)

where the constants N0 and W are set to 10. This criterion
imposes a constraint that smaller alignments (Nali≈10)
should score much higher than larger alignments, and
effectively removes small binding sites that are liable to be
partially aligned with larger binding sites by chance. For
example, when C=95, an alignment with Nali=10 must have
a score of at least 95 whereas alignments with Nali>30 need
to have a score of only ≈29.

In addition to this score, the number of aligned atom pairs
is also used for judging whether an alignment is significant.

It should be noted that the refined alignments obtained
from different pairs of affine frames can be exactly identi-
cal. In this sense, some affine frame pairs obtained in the GI
search are redundant. Since the IR procedure is relatively
time-consuming, we remove the redundancy as follows. Let
( fq, ft) be a pair of query and template affine frames with
their respective origins being O( fq) and O( ft). For another
pair of affine frames, (gq, gt), with the same template inter-
face but with a lower GI score, if the distance between the
transformed origins ||gq(O( fq))−gt(O( ft))|| is smaller than a
certain cutoff (1.5 Å in the present implementation), then
the frame pairs ( fq,  ft) and (gq, gt) are judged to be redundant
and the latter of them is discarded. Although it is also neces-
sary in theory to check the distance between fq(O(gq)) and
ft(O(gt)) in order to determine the redundancy, we found
that omitting it did not affect the result in practice. We apply
this procedure to all pairs of the frames for each template
interface, and all the redundant frame pairs with lower GI
score (SGI) are discarded before the IR procedure is applied.

Flexible alignment

For a given pair of query and template structures, there
may be a number of (suboptimal) alignments based on dif-
ferent pairs of affine frames. These alignments are “rigid” in
the sense that they are based on rigid body transformation.
We can simply select the alignment with the highest IR
score to obtain the best rigid alignment for a given query-
template pair.

Alternatively, we can integrate the rigid alignments for a
given query-template pair into a bipartite graph in the fol-
lowing manner. Let there be N rigid alignments M

1, ..., MN

with IR score greater than a certain cutoff value. Each align-
ments is regarded as a matching of a bipartite graph
Mm= ((Vq, Vt), Em), m=1, ..., N, where Vq and Vt are the sets
of nodes consisting of query and template atoms, respec-
tively, and Em is the set of weighted edges representing the
one-to-one correspondence of the alignment m.

1. Sort the rigid matchings Mm in the descending order of
their number of aligned atom pairs and GIRAF score
(in this order of priority).

2. Let the integrated graph B initially be an empty graph
with no vertices or edges. Set m=1.

3. Classify each edge e in Mm into one of the following
three types:
(a) “common” if e (disregarding the weight) is already

in B;
(b) “competing” if only one of the vertices of e is

already in B;
(c) “additional” if neither of the vertices of e is in B.

4. If there are at least two common edges, add competing
and additional edges to the graph B.

5. If there are less than two common edges, but there
exist some competing edges, if all the competing edges
are consistent with B (in the sense explained below),
then add all the competing and additional edges to B.

6. Set m:=m+1 and go to step 3 unless m=N.

Thus, an integrated bipartite graph B is constructed. By
applying the Hungarian algorithm to B, an optimal align-
ment integrating multiple rigid alignments is obtained. The
GIRAF score is computed as in the case for the rigid align-
ment (Eq. 4).

In step 5, we need to check if the competing edges of Mm

are consistent with the already partially defined B. This is
done as follows. Let us pick one competing edge e= (vq, vt)
where vq and vt are the vertices corresponding to the query
and template atoms, respectively, that comprise the edge.
Thus, if vq Vq(B), then vt Vt(B) by construction. The set
W={w|(vq, w) E(B)} consists of template atoms that are
connected to the query atom vq in B. If, for all w W, the dis-
tance between vt and w is less than a certain cutoff D, then
the edge e is defined to be consistent with B. In the case
when vt Vt(B), then apply the same argument by swapping
query and template. We set D=5 Å in the following. The
motivation behind this consistency check is that addition of
a new matching to an existing one should not involve a large
translation of the local coordinate frames.

It should be noted that the construction of an integrated
alignment is not based on a unique rigid-body transforma-
tion, but on a set of rigid-body transformations. Thus, it is in
general not possible to describe the proximity of all atom
pairs in a single affine frame of the 3-dimensional Euclidean
space. The integrated bipartite graph should be regarded as
being embedded in a manifold spanned by the underlying
rigid alignments. In this sense, the integrated alignment is
flexible.

One caveat in making flexible alignment is that at least
one pair of affine frames should produce a sufficiently large
rigid alignment. Otherwise, the combination of a set of frag-
mentary rigid alignments would result in an inconsistent
flexible alignment in which small pieces of rigid alignments
are interlaced more or less randomly. The procedure for
constructing the integrated bipartite graph described above
addresses this problem by limiting the rigid alignments to
those with a small number of conflicts with better rigid align-

∈ ∉

∈

∈

∈
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ments. In addition, we also impose a constraint that each
rigid body alignment to be integrated must have at least 10
pairs of aligned atoms.

Pre-processing of query structures

When a query is a pre-defined interface (binding site), the
set of atoms and affine frames are prepared in the same
manner as the template structures in the GIRAF database.

When a query is a whole subunit, a special treatment is
required for selecting relevant sets of atoms and affine
frames. If all the atoms and affine frames found in the query
subunit are directly compared to a template structure, it is
likely to result in a meaningless alignment. For example, a
template, which is an interface to some ligand and therefore
is found on a surface of some protein subunit, may be
aligned to a deeply buried region of the query structure
simply because there are more atoms in the protein core.
This is a limitation of the present method which does not
“align” empty spaces or cavities. Therefore, we first select
atoms that are near to the surface of the query subunit. We
define exposed atoms to be those having non-zero solvent
accessible surface area (ASA). Exposed atoms and atoms
that are within 2 Å from some exposed atoms are selected as
near-surface atoms. For selecting affine frames, we calcu-
late residue-wise ASA and those residues having residue-
wise ASA less than the mean of that subunit are discarded.
ASA was calculated numerically based on pentakis dodeca-
hedron tessellation of a shere (960 triangles) with atomic
radii defined by Ooi et al.50 using an in-house OCaml
library routine. Affine frames are defined for the remaining,
relatively exposed, residues. The set of near-surface atoms
and affine frames based on relatively exposed residues are
used to search the GIRAF database.

Implementation

PostgreSQL (http://www.postgresql.org) was used as the
back-end relational database management system for GIRAF.
The PostgreSQL system was customized to enable multi-
column indexing of the 44 structural features of affine
frames. All the programs were written in the OCaml lan-
guage (http://caml.inria.fr/, see also Jambon et al.17 for the
benefit of using OCaml). The computation for the GI search
can be distributed to P processes by splitting the set of
query affine frames (i.e., the QRefaco table) into P groups.
The IR process can be also distributed to P processes by
splitting the list of potential hits found in the GI search into
P groups. The parallelization was implemented by using the

Berkeley (BSD) socket application programming interface.
Benchmarks were performed on a PC cluster machine

running the Linux operating system with Intel Xeon X5460
processor (3.16 GHz, 8 cores) and 8 gigabytes (GB) of ran-
dom access memory (RAM).

The source code of GIRAF is available at
http://pdbj.org/giraf/source/distr.tar.gz.

Data set

We used all the 77,985 PDB entries as of December 21,
2011. Entries with only Cα atom coordinates, those without
any protein molecules, or those without ligands were dis-
carded. In total, 114,724 biological assemblies were gener-
ated according to the annotations in the PDBML files. The
number of interfaces and affine frames are listed in Table 1.
When all the PDB entries have been loaded, the GIRAF
database consumed approximately 37 GB of hard disk space
including indexes.

Results

Execution time

To measure the efficiency of the GIRAF method, we
randomly extracted 1,000 interfaces for small molecules,
proteins and nucleic acids, and measured execution time of
each GIRAF similarity search. The GIRAF search was exe-
cuted using 8 CPU cores in parallel and the execution time
includes “dead” times for synchronization between the CPU
cores. Flexible alignment was enabled and template struc-
tures with GIRAF scores (Eq. 4) satisfying the cut-off crite-
rion (Eq. 5) were selected at the final stage.

Depending on the interface type (small, protein or nucleic
acid), the mean execution time varies significantly from a
few seconds to a few minutes (Table 2). The median values
indicate most searches are executed rather quickly. In gen-
eral, interfaces for nucleic acids and proteins tend to require
short and long execution times, respectively. This difference
is apparently due to the size of the Refaco tables (Table 1):
whereas the table for nucleic acid interfaces (862 MB in
size) can be totally loaded into the 8GB RAM, such mem-
ory caching is difficult or even impossible for the small
molecule (5 GB) or protein interfaces (14 GB). To confirm
this, we have also performed the same benchmark by using
a computer (Intel Xeon X5560, 8 cores, 2.8 GHz) with a
RAM sufficiently large (64 GB) for holding all the Refaco
table data. Then the average execution time for small mole-
cule, protein and nucleic acid interfaces were 3.43 (S.D.

Table 1 Database statistics

type interfaces affine frames (disk spacea) # atoms (S.D.)b

small 531,491 4,843,757 (5 GB) 35.5 (30.3)
protein 418,344 11,921,888 (14 GB) 142.0 (120.5)
nucleic acids 23,372 682,644 (862 MB) 147.3 (139.4)
a The hard disk space occupied by the corresponding Refaco table.
b The average number of atoms and its standard deviation of the interfaces.
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3.57; median 2.21), 31.3 (S.D. 33.5; median 20.9) and 2.68
(S.D. 5.26; median 1.20) seconds, respectively. Note that
the change in speed does not vary significantly for the
nucleic acid interfaces, but it is significant for the other
interface types.

For a given interface type, the execution time seems to be
mainly determined by the number of similar interfaces
found in the GI search step (Fig. 4A).

By breaking up the total execution time into GI search
and IR procedure, we can observe the behavior of GIRAF
search process in more detail (Fig. 4B). The execution time

for GI search is in accordance with the number of template
structures (c.f., Table 1). That is, there are the least number
of interfaces for nucleic acid binding and its GI search time
is in general lower than other interface types. The time
required for IR procedure seems to be influenced by the
interface size (i.e., the number of interface atoms). Small
molecule interfaces require less time for the IR procedure in
general than interfaces of other types; interfaces for proteins
and nucleic acids are in general large so that it takes more
time to refine their alignments.

Effects of iterative refinement

To examine the effectiveness of iterative refinement of
alignment, we used the same set of 1,000 interfaces for each
interface type, and performed GIRAF searches by varying
the number of iterations of refinement from 0 to 5 and to 20
(Fig. 5). In this benchmark, we have used only rigid align-
ments.

Comparison of the cases with no iteration and with 5
iterations of refinement clearly shows that the distribution
of the rigid GIRAF scores indeed improve for all the inter-
face types. A general trend is that alignments with relatively
low GIRAF scores tend to improve more significantly after
iterative refinement (Fig. 5A). Further increase in the num-
ber of iterations does not lead to marked differences in case
of small molecule binding sites. However, for binding sites
for proteins and nucleic acids, there are cases where an
increased number of iterations is effective, possibly due to
the large size of these binding sites.

The number of aligned atom pairs exhibits a similar trend
as the GIRAF score (Fig. 5B). After 5 iterations of refine-
ment, many alignments are augmented by a significant num-
ber of additional atom pairs. As in the case for the GIRAF
score, further iterations result in further improvement not
for most small molecule binding sites, but for protein and
nucleic acid binding sites.

It is interesting to note that although the GIRAF score
always improves after iterative refinement (by construction),
the number of aligned atom pairs may decrease in some
cases. This indicates that removing some largely deviating
atoms in the superimposed structures may improve the over-
all GIRAF score.

Flexible alignment

The objective of flexible alignment is to align larger
regions of structures that cannot be superimposed by rigid

Table 2 Total execution time and number of hits in GIRAF search

type
Execution time (sec.) Number of hits

mean S.D. median GIa IRb

small 18.7 25.3 9.61 971 (1832) 178 (317)
protein 145 126 109 5608 (12003) 565 (1192)
nucleic acids 6.0 7.3 3.7 909 (1332) 63 (67)
a The average number of template structures selected after the GI search (standard deviation in the parentheses).
b The average number of template structures selected after the final stage (standard deviation in the parentheses).

Figure 4 Execution time. (A) Correlation between the number of
GI hits and the total execution time (in seconds). (B) Execution times
of geometric indexing search (GI time) and of iterative refinement (IR
time) in seconds. Colors are magenta for small molecule, green for
protei and blue for nucleic acid interfaces.



BIOPHYSICS Vol. 886

body transformation. This is achieved by patching together
smaller regions each of which can be superimposed by rigid
body transformation. Thus, one measure for the effective-
ness of flexible alignment is the number of aligned atom
pairs. It is also expected that the root mean square deviation
(RMSD) of superimposed structures be larger for flexible
alignments than for rigid alignments. Therefore, we have
compared the difference in the number of aligned atom pairs
as well as the difference in RMSD in flexible and rigid
alignments using the same data set as above (Fig. 6). We
applied up to 20 iterations of refinement in this benchmark.

Not many small molecule interfaces exhibit large changes
due to flexible alignment. This is expected because most

small molecule interfaces are themselves small so that they
cannot satisfy the conditions for flexible alignments. Never-
theless, flexible alignment is helpful for aligning structures
with different conformational states as seen in the case of
glutamate receptor from Rattus norvegicus (Fig. 7). In this
example, a GluR6 structure (grey/CPK) is solved with a
bound glutamate51 and the other, GluR5 (orange/magenta/
cyan) with an antagonist UBP30252. The latter is super-
imposed to the former based on different alignments. Two
suboptimal rigid alignments were found: one of which was
surrounding the backbone carboxyl group of glutamate (Fig.
7B), the other around the side-chain carboxyl group of
glutamate (Fig. 7C). Due to the difference in the ligand size,

Figure 5 Iterative refinement. (A) GIRAF scores with 0 [Score(0)] or 5 [Score(5)] iterations for alignment refinement are compared with the
difference from GIRAF scores with 5 [Score(5)–Score(0)] or 20 [Score(20)–Score(5)] iterations, respectively. (B) Similar to (A), the number of
aligned atom pairs (N

ali
) are compared. Colors are magenta for the difference between 5 and 0 iterations, green for that between 20 and 5 iterations.
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the two alignments are not compatible with each other
within either rigid frame. A flexible alignment was obtained
(Fig. 7D) by integrating these two alignments. As noted
above, two structures may not be superimposed well based
on an integrated alignment because they cannot be de-
scribed by a single coordinate frame. We can still observe,
however, that the integrated alignment (orange in Fig. 7A)
is a sort of an average of the two rigid alignments.

In contrast, many protein interfaces do show marked
changes due to flexible alignments. In some cases, more
than 100 atom pairs were added in flexible alignments com-
pared to the rigid ones, and RMSD can change up to 10 Å
or more. The extreme cases where RMSD increases by
more than 20 Å are usually alignments between a very long
stretch of a coiled coil interface and a kinked helix bundle.

Many of the interfaces with more moderate changes (Nali <
100 and RMSD < 6 Å) are immunoglobulin chains with two
domains (constant and variable), the relative orientation of
which may widely vary depending on complexes (Fig. 8). A
similar trend is observed for nucleic acid binding interfaces
although the change in RMSD tends to be smaller.

Whole subunit queries

Up to the previous subsection, the queries for GIRAF
searches were individual (known) interfaces. In this sub-
section, we demonstrate the results of GIRAF searches with
whole subunits as queries. As noted in Materials and Methods,
near-surface atoms were extracted and searched against the
GIRAF database. For benchmarking, we randomly selected
120 SCOP10 fold representatives; 20 folds from each of 6

Figure 6 Flexible alignment. (A) Change in the number of aligned atom pairs between rigid and flexible alignments. (B) Change in RMSD
(Å) between rigid and flexible alignments.
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SCOP classes (all-α, all-β, α/β, α+β, “membrane and cell
surface proteins and peptides”, and “small proteins”). All
types of interfaces were searched against a given query sub-
unit.

There were on average ~5,000 hits per query, ranging
from 2 to 26,244. It was observed that the total execution
time (including pre-processing of the query subunit) is
roughly correlated with the number of atoms in the query
structure (correlation coefficient 0.84; Fig. 9A). The most
time-consuming query (PDB 2HYD A chain, multi-drug ABC
transporter55; 3483 near-surface atoms and 266 affine frames)
required approximately 80 minutes for finding 26,244 match-
ing templates. It appears that many of the matches are due to
its transmembrane helices which are one of the most com-
mon patterns in protein-protein interfaces, often found irre-
spective of homologous relationships34. As was the case for
isolated interfaces (Fig. 4A), the search time is roughly pro-
portional to the number of hits (correlation coefficient 0.83;
Fig. 9B). The distributions of GIRAF scores are qualita-

tively the same for all the ligand types (Fig. 9C) although
the number of aligned atom pairs does differ significantly
reflecting the interface sizes (not shown).

It has been previously noticed that some binding sites are
frequently found in many unrelated queries29. Such binding
sites are potential false positives. To examine the behavior
of such binding sites, we examined the number of matching
queries for each interface across the set of queries (Fig. 10).
In total, 132,574 template interfaces were matched to some
query out of which 71,184 matched with more than one
query. Some interfaces were found to have matched with
over 70 out of the 120 query structures. Those interfaces
with high number of matching queries may have relatively
high maximum GIRAF scores (Fig. 10A) or GI scores (Fig.
10B) for some particular query although the mean scores
are lower. Nevertheless, the number of aligned atom pairs
tends to be low for these frequently found binding sites (Fig.
10C). In fact, when we discard those interfaces with the
mean number of aligned atom pairs less than 15 or 30, the

Figure 7 An example of flexible alignment for small molecule interfaces. The UBP302 binding site of GluR5 from Norway rat (colored
orange, magenta, cyan; PDB 2F3552) is superimposed to the glutamate binding site of GluR6 from the same species (colored grey and CPK; PDB
2XXR51). (A) Superposition of folds based on the alignments of ligand binding sites. The colors correspond to those in B–D. (B) An optimal rigid
alignment where mainly the atoms around the backbone carboxyl group of glutamate and one of two carboxyl group of UBP302 are aligned. 37
atom pairs are aligned with RMSD of 0.57 Å. (C) A suboptimal rigid alignment where mainly the atoms around the side-chain carboxyl group of
glutamate and the other carboxyl group of UBP302 are aligned. 31 atom pairs are aligned with RMSD of 1.05 Å. (D) The resulting flexible align-
ment which integrates those in (B) and (C). Corresponding atom pairs are connected with a line. In total, 58 atom pairs are aligned with RMSD of
2.43 Å. Note the two structures (orange and CPK) cannot be closely superimposed based on this alignment.
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number of interfaces with more than one matching query
drops to 70,826 or to 49,513, respectively. Although these
interfaces are often found as false positives, they may be
true positives for some query. In such cases, the GIRAF
scores are expected to be higher compared to the average,
and it is reflected in the distribution of the maximum scores
of each interface (Fig. 10A–C, green points).

When the relationship between the number of aligned
atom pairs (Nali) and GIRAF score is examined, we find that
many hits are concentrated at the region of low Nali and low
GIRAF score (Fig. 10D), many of which are deemed poten-
tial false positives. On the other hand, there are only high
scoring hits in the region of large Nali. Therefore, increasing
the value of W in the threshold function r(x) in Eq. (5) may
remove many of the potential false positives.

What are these potential false positives? As we have
already noted in a previous work29, they are interfaces resid-
ing at very common and regular structural motifs such as

sides of α helices or faces of β sheets. For example, the
most frequently found interface was the resveratrol (PDB
compound ID: STL) binding site in ATP synthase gamma
chain (PDB 2JIZ56), in which the ligand is located at and
covering a side of an α helix. Perhaps, it may be useful to
filter out these potential false positives by reweighting the
scores based on a statistics derived from a representative set
of query subunits.

Discussion

There are typically two approaches for aligning a pair of
protein structures. The one which we call the “coordinate-
based” method is based on direct superposition of atomic
coordinates. A typical example of such methods is the geo-
metric hashing method3,57, and GIRAF is also a coordinate-
based method. The other, “distance-based” method, is based
on comparison of distance matrices as employed in DALI5

Figure 8 An example of flexible alignment for protein interfaces. Two immunoglobulin light chains (cartoon representation) are superimposed
(PDB 2FL553 colored orange, magenta, cyan; 3L7F54 colored grey) where their “ligands” are immunoglobulin heavy chains (backbone representa-
tion). (A) Superposition of folds based on the alignments of protein binding sites. The colors correspond to those in B–D. (B) An optimal rigid
alignment where mainly the interface atoms in N-terminal variable domains are aligned. 89 atom pairs are aligned with RMSD of 0.76 Å. (C) A
suboptimal rigid alignment where mainly the interface atoms in the C-terminal constant domains are aligned. 75 atom pairs are aligned with RMSD
of 0.91 Å. (D) The resulting flexible alignment which integrates those in (B) and (C). Corresponding atom pairs are connected with a line. In total,
164 atom pairs are aligned with RMSD of 6.8 Å.
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or other methods based on clique detection detection15,30. Apart
from various heuristics introduced in particular methods,
these two approaches are expected to yield similar results

(or even identical results in a limiting case)58,59, and both
involve a computationally intensive combinatorial problem
for finding alignments9. An advantage of the coordinate-
based method is that the coordinate transformation of tem-
plate structures can be done independently of that of a query
so that it can be performed at once in advance. This implies
that the half of the comparison problem is done even before
a query is given. However, it is also a disadvantage in that
it results in a large size of the pre-processed data. For
example, a naive implementation of the geometric hashing
method, which requires every atom as a key of a hash table,
is prohibitive with the current data size of the PDB. The
distance-based method, based on frame-independent vari-
ables (i.e., distances), does not require a large data size
compared to the coordinate-based method, but since pre-
processing cannot be applied, efficient search for a large
data set seems more difficult.

There are mainly two approaches for handling a large
data set. One is to reduce the data set by selecting some
representatives by removing the redundancy in the data based
on, for example, homologous relationships between pro-
teins. Although this approach has been employed for many
years in many studies, it is inadequate if one is interested
in the diversity of structures and interaction states37. The
other approach is to filter out irrelevant templates based on
some structural features that can be compared without ex-
plicitly matching or aligning structures. Recently, several
such methods have been proposed20,35,38, and GIRAF is one
of them. An efficient all-against-all comparison is still diffi-
cult even with clever filtering techniques, and there are very
few studies that truly treat the entire PDB data33,34,38,39. By
using their SketchSort method, Ito et al.38 conducted an all-
against-all comparison of 1.2 million known and predicted
(small molecule) ligand binding sites. While the structural
features in GIRAF are defined for each affine frame locally,
those of SketchSort are defined globally. Thus, in the latter,
the number of feature sets is equal to the number of in-
terfaces, while in GIRAF there are in general much more
feature sets (affine frames) than interfaces (Table 1). The
advantage of locally defined feature sets is that they make it
possible to match partially similar structures, which is espe-
cially important for obtaining flexible alignments. Moreover,
the feature set of SketchSort does not define a coordinate
frame so that the final alignments are obtained by using an
external program, TM-align60.

Compared to the previous versions of GIRAF, there are
many changes introduced in the present implementation.
First of all, we no longer use the Delaunay tessellation of
atomic coordinates for defining affine frames. In the origi-
nal version, some stringent condition was imposed on the
Delaunay tetrahedra to achieve fast look-up, but this sacri-
ficed sensitivity. That is, some clear similarities have been
missed. This was mainly because some tetrahedra were
discarded although they were important for identifying the
similarities as well as because the Delaunay tessellation is

Figure 9 Results of whole subunit queries. (A) Total execution
time (seconds) vs. number of query atoms. The execution time includes
pre-processing of the query in addition to GI search and IR procedure.
(B) Total execution time vs. number of hits (matching templates)
with GIRAF score of at least 40. (C) Histogram of GIRAF score where
the scores are dissected into bins of width 5. Colors of the bars are
magenta for small molecule, green for protein and blue for nucleic acid
interfaces that were found by GIRAF searches.



Kinjo and Nakamura: Fast protein structure comparison 91

not robust against small changes in structures. Based on
backbone conformation, the present version produces more
stable results. Second, more structural features are included
for even faster look-up of potentially similar interfaces.
These features were absent in the original version29, but some
of them (namely, atomic compositions) have been already
used and proved effective in later studies33,34,39. Third, the GI
search is now entirely executed in the RDB system. This
greatly simplifies the implementation and reduces the traffic
between the RDB system and the client program, resulting
in slightly faster execution. Lastly, the flexible alignment is
a novel feature of the current version. It was shown effec-
tive especially for large interfaces with structural changes.

Finally, we discuss practical advantages of using a RDB
system. The large amount of structural data easily exceeds
the size of RAM in conventional computers. Therefore, struc-
tural data usually must be stored and searched in secondary
storage, namely, hard disks. Efficient search using hash tables
or indexes on hard disks involves complicated program-
ming. By using a RDB system which is optimized for large
data stored on hard disks, it is a trivial matter to exploit
index-based searches. If the RAM is sufficiently large, the
operating system will cache the data and very fast search is

possible. Even if the RAM is not large enough as was the
case in the benchmarks described above, RDB systems work
equally well and the GIRAF program runs normally and
relatively efficiently owing to the geometric indexing. Fur-
thermore, the GIRAF back-end database contains annota-
tions extracted from the PDBML files so that the result of a
GIRAF search can be immediately combined with these
annotations as well as annotations from other sources to
provide a useful view for examining the biological implica-
tions of structural similarities.

In summary, we have developed a method to efficiently
search and flexibly align similar interfaces in protein struc-
tures by exploiting a RDB system and using novel algorithms.
We hope that exhaustive analyses of protein structures using
this method serve as a basis for further understanding pro-
tein functions from the atomic resolution.
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Appendix

Database table and SQL query for geometric indexing 

search

In this appendix, we describe the details of the database
table and SQL query for geometric indexing (GI) search.

The Refaco table Among the tables in the GIRAF data-
base (Fig. 1), the information necessary for the GI search is
stored in the Refaco table (Fig. 11A). In addition to the
identifiers for each interface (if_id) and affine frame (rs_id),
it contains interface type (type), structural features (ft01, ...,
ft44), and the number of atoms contained in the lattice
points (natoms). The affine frame itself, that is, a set of vec-
tors specifying the origin and axes of the local coordinate
system, is saved in the frame column in a binary format so
that it can be directly converted to the data structure of the
GIRAF client program. The lattice points together with
atom types are encoded as 8-byte integers and are stored in
the lattice column of an array type in the Refaco table (Fig.

11A).
The Qrefaco table (Fig. 1) that stores the affine frames of

a query has the same structure as the Refaco table with the
value of the interface identifier being arbitrary.

SQL query for GI search An SQL query for the GI search
is constructed by joining the Refaco and Qrefaco tables with
tolerance parameters extracted from the GIparam table (Fig.
11B). This query returns the identifier of the template inter-
faces (t.if_id in Fig. 11B), the identifier of the template
affine frames (t.rs_id), template affine frames themselves
(t.frame), and the identifier of query affine frames (q.rs_id).
In the WHERE clause, parameters extracted from the
GIparam table are used to define the permitted range of
structural features (Fig. 11B, lines 3–5). For the Cα coordi-
nate xj of i-th atom (relative to the central residue defining
the affine frame), the half width of the range is defined as

Di= Scσ (x'i) (7)

where Sc is a scaling factor set to 1.0 by default, and σ(x'i) is



BIOPHYSICS Vol. 894

the standard deviation of the local coordinate x'j in the
GIRAF database. The half width is defined for each of x', y',
and z' (local) coordinate of each Cα atoms of the five residue
segment. For the atomic composition ca of atom type a in
each of the four regions, the half width is

Da=max[1, Saσ (ca)] (8)

where Sa is a scaling factor which is set to 1.2 by default,

and σ(ca) is the standard deviation of the composition in the
database.

To count the number of overlapping atoms, the arrays
containing the discretized atomic coordinates are unnested
and the cardinality of their intersection is computed (Fig.
11B, lines 6–9). If the count is greater than a certain thresh-
old value, the result is selected (Fig. 11B, line 10).

Figure 11 Pseudo SQL codes. (A) A pseudo SQL code defining the Refaco table (c.f. Fig. 1). (B) The SQL query for geometric indexing
search. The tables containing structurally featured affine frames and discretized atomic coordinates of templates and the query are joined (line 2).
The identifiers of the interfaces (t.if_id) and affine frames (t.rs_id), interface type (t.type) and the affine frames (t.frame) of templates and the iden-
tifier of the matching affine frames of the query (q.rs_id) are returned (line 1) if the structural features of the templates are sufficiently similar to
those of the query (lines 3–5) and the number of overlapping atom pairs (lines 6–9) is greater than a threshold (line 10).


