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Bismuth has been used in medicine for over two centuries for

the treatment of various diseases, in particular for

gastrointestinal disorders, owing to its antimicrobial activity.

Recent structural characterization of bismuth drugs provides

an insight into assembly and pharmacokinetic pathway of the

drugs. Mining potential protein targets inside the pathogen via

metallomic/metalloproteomic approach and further

characterization on the interactions of bismuth drugs with these

targets laid foundation in understanding the mechanism of

action of bismuth drugs. Such studies would be beneficial in

rational design of new potential drugs.
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Introduction
Bismuth compounds have been used in medicine for

more than 200 years for the treatment of various diseases

including syphilis, hypertension, infections, skin con-

ditions, and gastrointestinal disorders [1,2�]. The discov-

ery of Helicobacter pylori (H. pylori), a Gram-negative

bacterium from gastric mucosa that is responsible for

gastric and duodenal ulcers [3], has further promoted

both research and medical applications of bismuth. Cur-

rently, three bismuth drugs, that is, bismuth subsalicylate

(Pepto-Bismol1), colloidal bismuth subcitrate (De-

Nol1), and ranitidine bismuth citrate (Tritec1 and

Pylorid1) are being used worldwide in combination with

antibiotics to eradicate H. pylori infection. In addition,

many new bismuth compounds with different structures

and activities as well as bismuth nanotubes have been

synthesized [2�,4,5].

For the past few years, enormous efforts have been made

towards understanding the structures [6,7��,8] as well as

the mechanism of actions of the bismuth drugs [2�].
Recent advances in biophysics and molecular biology
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have provided invaluable tools necessary to study the

bioinorganic chemistry of bismuth. For example, time-

resolved inductively coupled plasma mass spectrometry

enables bismuth antiulcer drugs to be tracked in single

Helicobacter pylori cells (ca. 1.0 � 106 Bi atoms/cell). The

uptake of bismuth by Helicobacter pylori is retarded by

ferric ions (Fe3+) suggesting that bismuth drugs may

utilize certain iron-transport pathways in the pathogen

[9]. A number of protein targets of bismuth drugs, in

particular those from the H. pylori have been identified by

metallomic and metalloproteomic approach [10�,11]. Sev-

eral comprehensive reviews summarized the chemistry

and biological chemistry of bismuth as well as its medical

applications are available recently [1,2�,6,11,12]. Here we

will only focus on some recent advances in the structures

and protein targets of bismuth drugs as well as design of

potentially active new bismuth complexes.

Structural models of bismuth drugs
In spite of extensive clinical usage of bismuth drugs, the

structures of these drugs have not been unveiled until the

past two decades. Various bismuth citrate complexes with

different bismuth to citrate ratios have been crystallized

at different pH values. Among these, the structure

obtained under acidic condition (pH 3) most probably

represents real situation in the stomach [13]. Colloidal

bismuth subcitrate (CBS) is likely to assemble into sheets

and then three-dimensional polymers using bismuth

citrate dinuclear units [Bi(cit)2Bi]2� as building blocks

to form a protective coating on the ulcer craters [13].

Crystal structures of four bismuth citrate complexes

obtained at the acidic pH values in the presence of either

ethylenediamine or pyridine [14] reveal that bismuth

citrate dimeric units [Bi(cit)2Bi]2� (Figure 1a) serve as

the basic building blocks leading to polymeric structures

with regular meshes and internal cavities. The protonated

ethylenediamine, despite unobservable in the structure

(Figure 1b), and pyridine moieties (Figure 1c) are

embedded probably by diffusion or electrostatic inter-

action in the polymeric framework to achieve charge

balance since all citrate anions found in the structures

are deprotonated leading to citrate tetrannions

([C6H4O7]4�). The composition of the bismuth citrate

complex frameworks depends on the size and level of

protonation of the inserted cations, the pH values as well

as the time of crystallization. The structural model of

ranitidine bismuth citrate (RBC) was constructed based

on the framework of crystal structure of complex 1 [14].

Ranitidine molecules can be readily embedded into the

cavities perpendicular to the bc plane with H-bonds

formed between ranitidine and the bound citrate ligands,
www.sciencedirect.com
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Figure 1d. In addition, the sulfur atoms of ranitidine form

H-bonds with a water molecule that coordinates to bis-

muth. Based on X-ray crystal structures as well as ESI-MS

of bismuth citrate complexes, it is likely that bismuth

citrate-based drugs degrade under gastric acidic condition

(pH � 3), from 3-D polymer framework to 2-D polymeric

sheets and finally to a basic dimeric unit such as

[Bi(cit)2Bi]2� that can be absorbed or transported by

membrane receptors.

Bismuth subsalicylate (Pepto-Bismol1, BSS) is one of the

most commonly used bismuth drugs [11]. Structural

characterization of bismuth carboxylates is challenging

owing to difficulties in controlling hydrolysis of

these complexes or the formation of coordination oligo-

mers/polymers. Recently, structures [Bi38O44(Hsal)26-

(Me2CO)16(H2O2)]�(Me2CO4) and [Bi9O7(Hsal)13(Me2-

CO)5]�(Me2CO)1.5 (Figure 1e) may provide an insight

into the nature of BSS and a basis for studies the mode

of action of the drug [8]. The crystals of [Bi9O7(Hsal)13-

(Me2CO)5]�(Me2CO)1.5 initially predominate with only

relative small amounts of the large cluster with 38 bismuth

atoms that appeared to be the least soluble and most

thermodynamically stable form when extending crystal

growth times. The structure contains a basic building

block [Bi6O8]2+ polyhedron as found in other bismuth

oxo clusters [15], which have six octahedral Bi atoms with

the eight O atoms located over all of the triangular faces.

The cores of the two structures are the Bi9 clusters com-

prised of a central Bi6 octahedron but with only seven of the

eight trigonal faces capped by an O atom as shown in

Figure 1f. In both structures, bismuth also coordinated to

the solvent molecules of acetone, which can be replaced by

other solvent molecules such as DMF (dimethyflorma-

mide) when crystallized in this solvent [7��]. Interestingly,

the core of [Bi9O7(Hsal)13(Me2CO)5]�(Me2CO)1.5 lies at

the heart of [Bi38O44(Hsal)26(Me2CO)16(H2O2)]�(Me2CO4)

combined with the presence of Bi-coordinated solvent

molecules in these structures reveals a possible

process for hydrolysis and core formation, and indicates

that the complex [Bi9O7(Hsal)13(Me2CO)5]�(Me2CO)1.5

gave rise to the complex [Bi38O44(Hsal)26(Me2CO)16-

(H2O2)]�(Me2CO4).

The first structure of BSS without organic auxiliaries

obtained from X-ray diffraction data of bismuth disalicylate

powder [7��] gave rise to two-dimensional polymers held

by Bi-O linkages and O–H� � �O hydrogen bonds with one

bismuth atom, one salicylate mono-anion and one salicy-

late dianion in each unit. The monoanionic salicylate

coordinates to a single Bi3+ ion through its carboxylate

group only and the dianionic salicylate employs the phen-

oxide oxygen atoms as bridging ligands to form four-

membered Bi2O2 rings. An additional oxygen atom from

a water molecule is bonded to bismuth. Such a structure of

BSS resembles bismuth complexes with substituted

benzoic acids [16].
www.sciencedirect.com 
New bismuth complexes and their activities
Over the past decade, significant work has been devoted

into the development of new bismuth drugs [2�,17,18].

Various new bismuth-containing complexes have been

synthesized and showed promising in vitro activities

against H. pylori [17,18]. Importantly, some bismuth-

containing complexes have been demonstrated to exhibit

new in vitro activities including antifungal, antiviral or

even anticancer activities [19–24].

Bismuth drugs such as BSS, CBS and RBC are effective in

treating and eradicating Helicobacter pylori together with

antibiotics. However, these non-steroidal anti-inflamma-

tory drugs (NSAIDs) may also cause gastrointestinal

damage. Bismuth derivatives of NSAIDs exhibited good

in vitro activity against the three strains of H. pylori with the

minimum inhibitory concentrations (MIC) � 6.25 mg/mL,

which are better than commercially used BSS (8 mg/mL),

laboratory prepared bismuth salicylate (�12.5 mg/mL) and

CBS (�12.5 mg/mL) [18]. Therefore, these compounds

may have great potential in the treatment of H. pylori
infection while allowing the concomitant therapeutic

benefits of NSAID treatment. Similarly, heteroleptic bis-

muth sulfosalicylate complexes [PhBi(HSsal)H2O]/ and

[PhBi(HSsal)H2O]/ as well as bis-phenylbismuth sulfo-

nates [Ph2Bi(O3SR)]/ (R = p-toly, mesityl or S-(+)-10-

camphoryl) [17,25] showed significant activities against

H. pylori with MIC < 6.25 mg/mL. Some cyclic organobis-

muth compounds bearing a nitrogen or sulfur atoms as

additional ring member also exhibit various antibacterial

activities including Gram-positive and Gram-negative bac-

teria [26]. Although these bismuth-containing complexes

showed in vitro activities against H. pylori and other patho-

gens, there appears to be lack of in vivo data and more

works are warranted to promote medical application of

these complexes.

Beside antibacterial activity, bismuth complexes of sub-

stituted benzoic acids also exhibit significant anti-Leish-

manial activity against the promastigotes of L. major

V121 [27]. Heterocyclic organobismuth compounds

[ClBi(5-R-C6H3-2-SO2C6H4-10-) (R = Me, Ph, MeO,

Cl, H, t-Bu, CF3, F, Me2N) exert antifungal activities

against Saccharomyces cerevisiae and the activity depends

on the lipophilicity of the compounds: the higher the

lipophilicity, the lower the antifungal activity [19]. Some

organobismuth compounds have been also found to

exhibit anti-tumor potentials [2�,24]. Bismuth xanthate

complexes [Bi(S2COR)3] (R = Et, i-Pr, cyclohexyl) were

shown to exert cytotoxic activities against Calu-6 (lung

adenocarcinoma) with a similar IC50 values of cisplatin

[28], indicating that these compounds have potency

comparable to cisplatin. Moreover, these bismuth com-

plexes also exerted cytotoxic activities against cisplatin-

insensitive MCF-7 (mammary carcinoma) [28]. Bismuth

dithiocarbamate complexes with general formula of

[Bi(S2CNR2)] were also demonstrated  to exhibit potent
Current Opinion in Chemical Biology 2012, 16:74–83
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Figure 1

(e) (f)

(a)

(b) (c)

(d)

L´

L
L

L´

c

cb

a
a

b

3
O2N

O
1 2 4

NN SN

90º

L˝

L˝

Current Opinion in Chemical Biology

Current Opinion in Chemical Biology 2012, 16:74–83 www.sciencedirect.com



Bioinorganic chemistry of bismuth Li and Sun 77
in vitro cytotoxicity against a panel of seven human

cancer cell lines [23]. Some heterocyclic organobismuth

compounds have potent cytotoxic activities against var-

ious cancer cell lines with IC50 in the range of 0.059–
5.1 mM, in particular, are sensitive towards leukemic cell

lines [20,29]. These bismuth compounds such as bi-

chlorodibenzo[c,f][1,5]thiabismocine may induce apop-

tosis in HL-60 cells through the activation of caspase,

production of ROS, and perturbation of mitochondria

[20], they may also target tubulin to induce G2/M arrest

in HeLa cells probably by interacting with the colchi-

cines-binding site through its thiolate (–SH) groups [29].

This type of organobismuth compounds may be utilized

as antimitotic agents and in the treatment of refractory

acute promyelocytic leukemia similar to arsenic trioxide.

The antiviral activity of bismuth complexes was explored

over the severe acute respiratory syndrome coronavirus

(SARS-CoV), an enveloped, single-stranded RNA

positive-strand virus that killed hundreds of people

worldwide when is broken out in 2003 [30]. A series of

bismuth complexes including bismuth nitrilotriacetate

Bi(NTA), bismuth tricysteine Bi(Cys)3, RBC, bismuth

ethylenediaminetetraacetate (Bi(EDTA)) as well as bis-

muth complexes with various N,O-containing chelate

ligands including bismuth porphyrin complexes were

examined against the SARS-CoV helicase [21,22], which

was postulated to be the potential target for anti-SARS

therapy [30]. The majority of bismuth complexes tested

exhibited activities against SARS-CoV helicase ATPase

and duplex-unwinding activities with the highest activi-

ties found for RBC and bismuth porphyrin complexes at

IC50 values of less than 1 mM. Bi(EDTA) and other two

bismuth complexes with N,O-containing chelate ligands

showed almost no activity, indicating that different inhi-

bition activities of these complexes are correlated to their

different coordination environments, that is, the higher

affinity of bismuth towards the chelate ligands, the lower

activities. The treatment of SARS-CoV infected cells by

bismuth-containing complexes such as RBC and Bi2-hTF

(hTF = human transferrin) confirmed an inhibitory role of

bismuth during later stages of the replicative cycle [22].

The studies represent the first attempt in using bismuth

as anti-virus agent although further work is required to

elucidate such activities.

Potential protein targets of bismuth drugs
The mechanism of action of bismuth drugs is complicated

and not fully understood. It is generally believed that

bismuth drugs are taken up into gastric mucus to form a
(Figure 1 Continued) Structures and structural models of bismuth citrate a

block with ball-stick model and polyhedral; (b) the polymeric framework of 

represented by adjacent green, blue and purple polyhedral respectively; (c) t

pyridine rings in the channels (represented as space-filling mode); (d) struct

channel; (e) core structure of bismuth subsubsalicylate [Bi9O7(HSal)13((CH3)2
(stick structures) and (f) structure of the Bi9O7 core showing the octahedral a

faces capped by an oxygen atom (red balls).
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protective coating probably as BiOCl and bismuth citrate

complexes on the ulcer crater. They may inhibit Helico-
bacter pylori adherence and also bind strongly to connec-

tive tissue proteins, mucus glycoproteins and enzymes

[1,2�]. Accumulative studies demonstrated that proteins

(peptides) are likely to be the potential targets of the

drugs. Bismuth drugs have been shown to interact with a

range of proteins such as human serum transferrin [31,32],

lactoferrin [33], serum albumin [32,34], and metallothio-

nein [35]. The binding of bismuth to lactoferrin may

deprive of iron acquisition of H. pylori since the bacteria

utilize host-specific lactoferrin for iron acquisition [36].

The level of bismuth uptake by H. pylori single cell is also

found to be reversibly correlated to the level of iron [9].

Bismuth drugs have also been demonstrated to inhibit

several enzymes from H. pylori. It inhibits the activity of

yeast alcohol dehydrogenase by interfering with the zinc

site and altering enzyme native structures [37]. Once

bismuth is up-taken by the pathogen H. pylori, it may

target several proteins inside the pathogen to inhibit

synthesis of essential enzymes such as urease and hydro-

genase or other nickel-binding proteins, which are critical

for bacterial survival. Very recently, the metallomics/

metalloproteomics approach has been used to investigate

the role of metals in biological systems [38�,39�] and to

search for putative binding proteins (targets) of bismuth

drugs inside the bacterium [10�,40,41]. The recent

advances in this area are updated since other information

has been summarized elsewhere [1,2�,6,11].

Urease, accountable for up to 10% of the total cellular

proteins, is an essential nickel-containing enzyme for H.
pylori colonization and virulence. It catalyzes the hydroly-

sis of urea to yield carbamate and ammonia and thus

neutralizes its immediate environment of the bacterium

to aid its survival under acidic conditions of the gastric

lumen and mucosa. Bismuth complexes such as, RBC as

well as some triarylbismuthanes can inhibit urease

activity [42,43]. Inhibition of jack bean urease by the

triarylbismuthanes compounds is in good agreement with

observed antibacterial activity of the compounds against

H. pylori [43]. Both Bi(EDTA) and Bi(Cys)3 are competi-

tive inhibitors of jack bean urease, while RBC is a non-

competitive inhibitor. Kinetic analysis demonstrated that

Bi(EDTA) is both a competitive inhibitor and a time-

dependent inactivator of the recombinant Klebsiella are-

ogenes urease. Such an inhibition is probably due to the

binding of bismuth to the cysteine residues of the enzyme

(Cys319 in Klebsiella areogenes and probably Cys592 in

jack bean urease) at the entrance of the active site [42].
nd bismuth subsubsalicylate (BSS). (a) Dimeric bismuth citrate building

bismuth citrate linked by three types of bismuth citrate building blocks

he two-dimensional polymeric structure of the polymeric framework with

ural model of rantidine bismuth citrate with ranitidine inserted in the

CO)5] showing the shrouding of the Bi9O7 core by 13 salicylate ligands

rrangement of the bismuth atoms (ark brown balls) with seven octahedral
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The survival of H. pylori requires a constant supply of

Ni2+ ions for the synthesis and activities of the Ni2+-

containing enzymes. Like other bacteria, H. pylori has to

be able to strike a delicate balance between the import of

Ni2+ ions, their efficient intracellular storage and delivery

to Ni2+-dependent metalloenzymes when required. H.
pylori is able to synthesize a small histidine-rich cyto-

plasmic protein Hpn (28 histidine out of 60 amino acids)

and histidine-rich glutamine-rich proteins Hpnl (18 his-

tidine and 30 glutamine out of 71 amino acids), which may

play roles of storage of nickel ions as a ‘reservoir’,

donation of nickel to other proteins and detoxification

via sequestration of excess nickel ions depending on the

exogenous nickel levels [44–46]. Both in vitro and in vivo
experiments suggested that Hpn and Hpnl sequester

nickel ions at neutral pH but donate them probably for

urease activation under acidic condition [44,45,47]. H.
pylori lacking hpn/hpnl gene, cultured in vitro, are more

susceptible to Ni2+ and Bi3+ than the wild-type strain.

Both essential metal ions such as Ni2+, Zn2+, Cu2+ and

therapeutic metal ions, for example, Bi3+ bind to Hpn in
vitro, indicating that Hpn may serve as a potential target

for bismuth therapy. Hpn binds ca. 4.8 � 0.2 Ni2+ and

3.8 � 0.2 Bi3+ per monomer probably via multiple imi-

dazole groups and four Cys residues with dissociate con-

stants (Kd) of 7.1 and 11.1 mM respectively [47,48], while

Hpn-like (Hpnl) binds ca. 2.0 � 0.1 Ni2+ per monomer

(Kd of 3.8 � 0.2 mM) and two histidine residues (His29

and His31) were identified to play a critical role in binding

of Ni2+ [45,49]. Whether Hpnl interacts with bismuth

drugs is not known and may warrant for studies. Recently,

fluorescence resonance energy transfer (FRET) approach

has allowed studies of metal binding properties of Hpn

(where the protein sequence is inserted between the

FRET partners CFP and YFP) both in vitro and in vivo.

It was found that when Hpn-FRET was expressed in a

model system, for example, E. coli, FRET change was

only observed with addition of bismuth subsalicylate

(Pepto Bismol) but not Ni2+ and Zn2+, clearly indicating

that Hpn is a potential target for bismuth in vivo [50��].
The binding of bismuth to the protein may therefore

interfere with its normal functions.

Systematic identification of potential targets of metallo-

drugs is achievable nowadays by metallomic/metallopro-

teomic approach as shown in Figure 2a. Immobilized-

metal affinity chromatography (IMAC) in combination

with two dimensional electrophoresis (2-DE) and

MALDI-TOF mass spectrometry is a particularly useful

tool for elucidating the metabolism of intracellular metal

ions and identifying molecular targets or binding proteins

associated with the disease etiology and pathology for

metallodrugs [10�,40]. This approach has been used for

the first time to search the potential protein targets of

bismuth drugs in H. pylori on a genome-wide scale. A

comparative proteomic analysis of H. pylori cells before

and after treatment of CBS was performed [41]. Eight
Current Opinion in Chemical Biology 2012, 16:74–83 
proteins were found to be significantly upregulated or

downregulated, Figure 2b. These proteins are mainly

involved in either cellular processes (HspA, HspB,

putative alkyl hydroperoxide reductase TsaA and neu-

trophil-activating protein NapA), or oxidative stress

resistance (thioredoxin), and hemoglobin. The upregu-

lated expression of thioredoxin, a low redox potential

reductant, may reflect the response of H. pylori to the

high level of oxidative stress. Using immobilized-bismuth

affinity chromatography (Bi-IMAC), seven bismuth-bind-

ing proteins were subsequently identified from H. pylori
cell extracts Figure 2c. Interestingly, the intracellular

levels of four proteins, for example, HspA, HspB, NapA,

TsaA were decreased upon addition of CBS, Figure 2c,

suggesting that these proteins directly bind to bismuth.

The other bismuth-binding proteins identified include

fumarase and urease subunit UreB and a translational

factor Ef-Tu. Furthermore, it was found that bismuth led

to around 8-fold decrease in cellular protease activity and

elevated the levels of lipid hydroperoxide and hemin in

the whole cell extract of bismuth-treated H. pylori cells

than those untreated cells [41].

To validate the potential targets of bismuth drugs ident-

ified by metalloproteomic approach subsequent studies

have been carried out [51,52��,53]. For example, fumar-

ase, an enzyme that catalyzes the reversible hydration of

fumarate to malic acid, binds one Bi3+ per monomer,

leading to an apparent non-competitive inhibition of

the enzyme [53]. HspA, a member of the GroES chaper-

onin family, is a small protein with a unique histidine/

cysteine-rich domain at the C terminus with the sequence

shown in Figure 3a. Apart from the normal function of

GroES, for example, aiding protein folding in conjunction

with GroEL, it also plays a role in nickel regulation: to

facilitate nickel acquisition by donation of nickel to

appropriate proteins (and enzymes), and to detoxificate

excess nickel [51]. Recombinant HspA from H. pylori was

found to bind about two Bi3+ ions (or two Ni2+) per

monomer of the protein, Figure 3b, and the C-terminal

Cys–Cys motif and histidine residues are probably

involved in the binding, similar to Hpn [44,48,51,54].

The potential roles of the His-rich and Cys-rich terminus

in vivo was examined by comparison of the growth of E.
coli cells expressing the wild type or C-terminal deletion

mutant in M9 minimal medium supplemented with metal

ions in a concentration-dependent manor [51]. E. coli cells

expressing the C-terminal deletion mutant were more

susceptible to increasing concentrations of nickel ions. By

contrast, Bi3+ retarded the growth of the wild type-con-

taining cells [51]. Surprisingly, apart from the C-terminal

metal binding domain, three residues (His45, Cys51, and

Cys53) are found to be critical for Zn2+ binding in vivo but

not for other transition metal ions such as Ni2+, Cu2+,

Fe3+, Mn2+ [52��]. These residues are located at the N-

terminal apical domain and were probably originated

from negative selection (Figure 3d) and make up an
www.sciencedirect.com
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Figure 2
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(a) Schematic chart of metalloproteomics in identification of bismuth-binding (including bismuth) proteins and motifs. (b) Two-dimensional gel

electrophoresis image of cell extracts of H. pylori (strain 11637) in the absence and presence of bismuth drugs. (c) Two-dimensional gel

electrophoresis image of fractions of cell extracts eluted from bismuth column from untreated and bismuth drug treated H. pylori cells, showing

bismuth binding proteins, that is, UreB, HspA, HspB, TasA, NapA and fumerase.
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Figure 3
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spectra. (c) Bismuth but not nickel induces HspA from a heptamer to a dimer. (d) Negative selection of the three metal-binding residues, His49, Cys51

and Cys53 as demonstrated in the position-specific polymorphy. The substitution modes are identified from the alignment of multiple Hspa (GroES)
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state of HspA in the presence of bismuth. For clarity, only the front subunit is highlighted, and the rest are shaded in gray.
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oxidation-sensitive zinc binding site since the Zn2+-

bound HpGroESDMBD restored the activity of enzyme

alkaline phosphatase (AP). Equilibrium dialysis study

showed that bismuth binds to the C-terminal deleted

HpGroES (HpGroESDMBD) in a similar pattern to Zn2+

with an affinity 40-fold higher than that bismuth binding

to the C-terminal metal binding domain [52��]. Compe-

tition experiments between Bi3+ and Zn2+ reacting with

HpGroESDMBD indicated that bismuth is able to

replace the bound zinc from the protein, Figure 3e.

Significantly, the binding of bismuth to GroES altered

its quaternary structure from its native heptamer to a

dimer, which is attributable to bismuth binding to the N-

terminal zinc-site, not the C-terminal metal binding

domain, Figure 3f. Taken together, once bismuth drugs

entered the H. pylori, they may interfere with nickel

homeostasis by binding to nickel storage proteins

(Hpn/Hpnl), and accessory proteins (HspA) responsible

for hydrogenase or urease synthesis. The bismuth drugs

are also likely to inhibit protease and urease activity; and

modulate cellular oxidative stress.

Conclusions and perspectives
Bismuth drugs have been used clinically for its antimi-

crobial activity. Structural characterization of bismuth

drugs shed light on assembly and decomposition of the

drugs. Extensive studies have been carried out to explore

other potentials of bismuth drugs and amazingly, bismuth

also exhibits in vitro activities such as anti-Leishmanial

activity, anti-tumor activity that both antimony and

arsenic possess. Currently, no bismuth-containing com-

pounds are in clinical trial for treatment of either cancer or

viral infection. Nevertheless, some recent in vitro data are

quite encouraging [20]. Further extensive explore may be

needed in future. Moreover, pretreatment of bismuth

drugs can reduce the side-effects of anticancer drugs such

as cisplatin [55], which may also offer a potential for the

application of bismuth in the treatment of cancer.

In spite of extensive studies, our knowledge on the

mechanism of action of bismuth drugs is still very limited.

Accumulated data indicated that proteins (and enzymes)

are likely to be the targets of bismuth drugs. The inter-

actions of bismuth drugs with a number of proteins have

been characterized individually. Recently, an integrated

view on potential bismuth drugs inside H. pylori was given

with the aid of metallomics/metalloproteomics approach

[41,56]. The strategy can readily be extended to study the

mechanism of other metallodrugs as well as to evaluate

uptake, storage and excursion of transition metal ions

[10�,38�].
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