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ABSTRACT
Introduction: Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that primarily affects
females, typically resulting in a period of developmental regression in early childhood followed by
stabilization and severe chronic cognitive, behavioral, and physical disability. No known treatment
exists beyond symptomatic management, and while insights into the genetic cause, pathophysiology,
neurobiology, and natural history of RTT have been gained, many challenges remain.
Areas covered: Based on a comprehensive survey of the primary literature on RTT, this article describes
and comments upon the general and unique features of the disorder, genetic and neurobiological
bases of drug development, and the history of clinical trials in RTT, with an emphasis on drug trial
design, outcome measures, and implementation.
Expert opinion: Neurobiologically based drug trials are the ultimate goal in RTT, and due to the
complexity and global nature of the disorder, drugs targeting both general mechanisms (e.g., growth
factors) and specific systems (e.g., glutamate modulators) could be effective. Trial design should
optimize data on safety and efficacy, but selection of outcome measures with adequate measurement
properties, as well as innovative strategies, such as those enhancing synaptic plasticity and use of
biomarkers, are essential for progress in RTT and other neurodevelopmental disorders.
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1. Introduction

During the last decade, there has been a dramatic increase in
research aimed at treating neurodevelopmental disorders.
These efforts have been the consequence of a better under-
standing of the genetic basis of several of these disorders and
the subsequent development of experimental models, primar-
ily mouse models. Although genetic treatment strategies have
been successful in the laboratory setting, their clinical applica-
tion is still hypothetical. Consequently, most of the emphasis
on novel treatment development has focused on pharmaco-
logical approaches targeting processes downstream to the
primary genetic abnormality [1,2]. Perhaps, the best-studied
neurodevelopmental disorder from this targeted therapeutics
perspective has been fragile X syndrome (FXS). Drug develop-
ment for FXS generated considerable excitement, as a result of
almost 50 publications on animal models examining several
neural mechanisms and drug candidates (e.g. GABA-B ago-
nists, mGluR5 antagonists) [3]. Despite this initial enthusiasm,
the outcome of ongoing or completed trials has been at best
mixed. No clinical study has replicated the dramatic effects in
mouse models [3,4].

While the cause(s) for the presumed failure of the FXS trials
is/are still unknown, the focus of drug development in neuro-
developmental disorders has shifted to other conditions,
including Rett syndrome (RTT). RTT is a neurodevelopmental
disorder with unique features (e.g. female predominance,
dynamic clinical evolution, wide range of manifestations and
severity; [5]), which are discussed in the next section.

Nonetheless, the identification of a common genetic cause
of most cases (i.e. Methyl-CpG-binding protein 2 (MECP2) def-
icit mutations), a relatively well-defined natural history, and
extensive neurobiological data from postmortem and animal
studies are factors that make RTT a good candidate for the
development of targeted treatments [6]. Two recent compre-
hensive reviews cover multiple aspects of RTT treatment and
drug trials [7,8]. Therefore, in this review, we focus on unique
opportunities and challenges related to developing neurobio-
logically targeted treatments for RTT, including their implica-
tions for other neurodevelopmental disorders.

2. RTT diagnosis, clinical features, and management

2.1. Definition and diagnosis

RTT (OMIM #312750) is an X-linked neurodevelopmental dis-
order that affects predominantly females with an incidence of
approximately 1 in 10,000 female births. It was first described
by Dr. Andreas Rett in 1966, but was not widely recognized in
the USA until the report in the English literature by Hagberg
and colleagues in 1983 [9,10]. Despite the report of the asso-
ciation of RTT with mutations in the MECP2 gene in 1999 by
Amir et al., it remains a clinical diagnosis [11]. Clinical diag-
nostic criteria were initially published in 1988 and have been
periodically updated, with the most recent revision published
by Neul et al. in 2010 [5]. The diagnostic criteria for classic/
typical RTT reflect the most common and characteristic pre-
sentation. In contrast with previous criteria, the 2010
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guidelines do not require postnatal deceleration of head
growth, since it is not seen in all girls with RTT. However,
when this finding is present, it should suggest consideration
of the diagnosis of RTT. The essential diagnostic criterion
required for both typical and atypical RTT is a history of a
period of regression followed by recovery or stabilization. In
addition, the 2010 guidelines include four main criteria:
regression of (1) purposeful hand use and (2) spoken lan-
guage, and the development of (3) gait abnormalities and (4)
hand stereotypies. Two exclusionary criteria are meant to
address any other primary cause of neurological dysfunction
and a history of significantly abnormal development in the
first 6 months of life [5].

All 4 main criteria are required for the diagnosis of typical
RTT, while the diagnosis of atypical RTT requires 2 of the 4
main criteria and 5 of 11 supportive criteria. The supportive
criteria capture many of the clinical features seen in RTT:
breathing abnormalities when awake, bruxism when awake,
sleep disturbances, abnormal muscle tone, vasomotor distur-
bances of the extremities, scoliosis/kyphosis, growth retarda-
tion, small cold hands and feet, unprovoked laughing/
screaming, diminished pain response, and intense eye
gaze [5].

2.2. Clinical features and evolution

Girls with RTT typically have a relatively normal period of
development for the first 6 months of life followed by variable
delay (even stagnation) and then a regression of developmen-
tal skills after the first year of life [5,12]. The regression parti-
cularly involves loss of expressive language skills and
purposeful hand movements, but it can extend to gross
motor and socialization skills [12]. It is typically during this
regressive period when some girls may meet diagnostic cri-
teria for autism spectrum disorder [13]. Loss of skills is variable
in length in RTT; however, development commonly stabilizes
by 30–36 months of life [12]. There may be further loss of
motor skills in late adolescence or early adulthood, when
parkinsonian features become prominent in a large proportion
of individuals [14]. Following stabilization of skills, many girls
with RTT develop intense eye gaze and increased social aware-
ness. It is also in this post-regression period when most girls

with RTT develop the pathognomonic stereotypic hand beha-
vior, which includes repetitive wringing, washing, tapping,
clapping, or mouthing among others [15]. Girls with RTT may
partially regain some of the skills lost during the regression;
however, significant loss of verbal skills and purposeful hand
use remains a hallmark of the disorder.

Among the most characteristic features of RTT is decelera-
tion of head growth, frequently seen between 6 and
24 months of age. Acquired microcephaly occurs in 80% of
girls with RTT, although 20% of patients will have a normal
head circumference [16]. Approximately, 80% of girls with RTT
develop ambulation but with an abnormal gait that is
described as dyspraxic; among those who develop ambula-
tion, one-third will lose this skill [12]. Patients with RTT present
with many associated neurologic and medical comorbidities
that complicate medical management [17]. Seizures that
evolve into epilepsy develop in 60–80% of patients, typically
at the end of the regression period or beginning post-regres-
sion. There is no characteristic seizure type, and in a substan-
tial proportion of individuals, they are difficult to manage or
control [18,19]. Despite the impact of seizures on RTT’s quality
of life (QoL), relatively little is known about antiepileptic drug
efficacy, although ongoing studies attempt to address this
critical issue.

Gastrointestinal problems are common and sometimes
severe in RTT. They include gastroesophageal reflux, air swal-
lowing with abdominal distention, chronic constipation, and
abdominal pain due occasionally to gallbladder disease
[20,21]. Problems with oral motor control frequently present
with feeding issues, not uncommonly requiring G-tube place-
ment. Growth and nutritional issues are frequently encoun-
tered in RTT and require close monitoring and aggressive
support [16,20]. Orthopedic issues are also common, with
scoliosis occurring in approximately 85% of affected girls and
requiring surgical stabilization in 13% [22,23]. Highly prevalent
related issues are bone health (i.e. increased risk of osteoporo-
sis; [24]) and increased muscle tone (including dystonia and
contractures at multiple joints; [17]). Development of rigidity
over time, along with other parkinsonian features, further
complicates the late stages of evolution in RTT [14].

Under the category of autonomic dysfunction, common
problems include dysregulation of respiration, both hyperven-
tilation and breath-holding, and of limb temperature, mani-
festing as cool/cold and purple/mottled extremities [5,25].
Whether these abnormalities have significant systemic conse-
quences is still a matter of debate. As survival and QoL con-
tinue to improve in RTT, some manifestations are emerging as
major concerns. Among them are behavioral problems, includ-
ing anxiety-like and disruptive behavior, which have begun to
be characterized in a more systematic way [26,27]. New tech-
nologies applied to communication therapies and rehabilita-
tion (e.g. eye tracking-based devices; [28]) are also effective
and promote better development and QoL.

2.3. Management

The multisystem involvement seen in RTT requires a coordi-
nated multidisciplinary approach to medical care and manage-
ment. There are no current therapies specific for the disorder.

Article highlights

● RTT is a unique neurodevelopmental disorder characterized by a
dynamic clinical course with complex multisystem involvement.

● Insights into the pathophysiology, neurobiology, and natural history
of RTT are providing a foundation upon which to develop and test a
variety of novel pharmacologic interventions.

● RTT and other neurodevelopmental disorders have overlapping ther-
apeutic targets and face similar challenges with respect to clinical
trial implementation.

● Development of biomarkers and other validated outcome measures is
critically important for RTT drug trials.

● Innovative strategies in trial design will be necessary to continue to
translate preclinical findings into effective treatments for persons
with RTT and other rare disease populations.

This box summarizes key points contained in the article.
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Most medical management is symptomatic, targeting the
aforementioned problems. In addition to traditional drug
treatments (e.g. antiepileptic drugs for seizures and SSRIs for
anxiety), preventive approaches are becoming standards of
care. The latter include aggressive nutritional management,
with particular attention to adequate caloric intake and cal-
cium and vitamin D metabolism, prevention of gastrointestinal
and orthopedic complications, as well as the entire range of
rehabilitation therapies. Some of these RTT-specific
approaches have been formalized as management guidelines
[24,28–32], with others still under development.

3. Genetics, neurobiology, and bases for new
treatments

Other reviews, such as those mentioned in the introduction
[7,8], have covered many of the key issues regarding the
genetics and neurobiology of RTT and how these have influ-
enced drug treatment development. Therefore, here we will
focus on data that are unique to RTT and some that are
applicable to other neurodevelopmental disorders, with an
emphasis on implications for drug trials. Figure 1 provides an
overview of the neurobiological mechanisms underlying RTT.

3.1. MECP2 and RTT

Until the identification of MECP2 as the gene responsible for
the majority of RTT cases (i.e. the pre-MECP2 era), most of the
knowledge on the neurobiology of the disorder was based on
the study of postmortem brain and other tissue samples from
affected individuals and experimental paradigms modeling
these abnormalities [33,34]. These studies provided some of

the bases of our current understanding of RTT, which has been
to some extent correlated to a deficit of MeCP2. A notable
example of this is the increase in glutamate NMDA receptor
density in the neocortex at early stages of the disorder [35,36].
While genetic models of disease provide highly specific infor-
mation for understanding pathophysiology and have been
instrumental in studies of RTT, tissue and other biosamples
from patients with the disorder are still valuable and may
clarify continuous discrepancies between animal and human
data, including the response to drugs.

3.2. RTT is associated with MeCP2 deficiency

Regardless of type (e.g. missense, deletion), more than 200
mutations associated with the RTT phenotype lead to a defi-
cient function of the gene product MeCP2 [12,37]. For nomen-
clature on MECP2 and its products, see Neul et al. [5]. However,
not all MECP2 loss-of-function mutations lead to the RTT phe-
notype since other clinical presentations have been described
(e.g. non-syndromic intellectual disability) [5]. Thus, MeCP2
functional deficit is required but not sufficient for RTT features.
The pattern of X chromosome inactivation also influences
variability of the clinical effects resulting from a given MECP2
mutation in a female, and some mutations that result in a non-
RTT phenotype in hemizygous males have little effect in het-
erozygous females. Other MECP2 abnormalities that lead to
gain-of-function have also been described, most commonly
duplication of MECP2. The latter is recognized as the basis of
another phenotypically different entity affecting mainly males.
MECP2 duplication syndrome has a less distinctive profile than
RTT, including intellectual disability, seizures, and upper
respiratory tract infections, with other features still under

a

b

Figure 1. Model of neuronal pathology in Rett syndrome based on dendritic development in the prefrontal cortex. (a) During normal development, onset of MeCP2
expression coincides with early neuronal differentiation. Levels of MeCP2 function, depicted as intensity of blue label, increase steadily after afferents (e.g.,
monoamines) begin to influence cortical neuronal differentiation. Direct targets of MeCP2, such as BDNF, in conjunction with other synaptic signals have a
particularly strong effect on the process of dendritic pruning. (b) Marked reduction in MeCP2 function and deficient afferent input in neurons carrying a MeCP2
mutated allele impairs appropriate dendritic expansion. The abnormality extends and worsens during dendritic pruning because of the abnormally high levels of
MeCP2 targets (i.e., BDNF) and additional neurotransmitter disturbances (glutamate receptor activity). The ultimate neuronal phenotype is characterized by a smaller
cell with markedly decreased MeCP2 expression and dendritic arborizations. RTT neurons carrying the normal allele are also affected. Because of decreased local
(neighboring neurons with mutated allele) and distant (monoaminergic) synaptic signals, and secondary abnormalities such as increases in BDNF and glutamatergic
activity, these neurons are unable to reach normal soma and dendritic size and remain as low-expressing (MeCP2lo) cells. GFs: growth factors. Used with permission
from Ref. [34].
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characterization. Although a large body of information is avail-
able on genotype–phenotype correlations in RTT [37,38], and
the most common specific mutations have been well charac-
terized, efforts at correcting the gene defect have been thus
far unsuccessful [39,40]. This contrasts with the success in
reactivating conditional mutations in mouse models [41]. Of
course, these experimental models, which use the Cre-Lox
technology and in general lead to hemizygous null mutations
in male mice, do not accurately reflect the human disorder
that is caused by heterozygous mutations in females asso-
ciated with variable but partial deficits in gene function.
Nonetheless, by substantially correcting the RTT-like pheno-
type in adult mice, these studies have confirmed that RTT is
not a degenerative disorder and that some degree of recovery
is possible. Two promising strategies are the use of read-
through compounds, targeting approximately 30% of non-
sense MECP2 mutations in RTT [37], and the selective activa-
tion of the X chromosome carrying the normal MECP2 allele
[42]. The latter chromosomal activation/deactivation strategy
is an area of intense investigation that has already delivered
exciting results in Down syndrome [43].

3.3. RTT is a global disorder of neuronal differentiation

One of the earliest findings in RTT was the demonstration of
increased cell packing density and reduction in dendritic
arborizations, without neuronal loss or overt gliosis
[33,34,44]. These neuropathological findings from the pre-
MECP2 era have been replicated in virtually every cellular
and whole-organism model of MeCP2 deficiency [34,41]. The
link between MECP2, a gene coding for a methyl-binding
protein of ubiquitous localization, and a disorder of dis-
rupted neuronal differentiation was initially surprising.
Nonetheless, the increasing body of data on the critical
role of transcriptional and translational control in the fine
regulation of synaptic function supports the relevance of
regulators such as MeCP2 and FMRP (the protein deficient
in FXS) in neuronal and synaptic development [45]. Early
work supported a specific role for MeCP2 in gene silencing
via recruitment of histone deacetylases (enzymatic hypoth-
esis); however, more recent data indicate that this protein
has a more complex involvement in transcriptional regula-
tion that includes not only specific gene targeting but also
global epigenetic changes [41]. Cell death and other regres-
sive cellular processes have not been linked to RTT or
MeCP2 deficiency under physiologic conditions, further
highlighting the developmental bases of RTT. Nevertheless,
some key cellular homeostatic processes may also be
affected by MeCP2 deficiency, including mitochondrial func-
tion [46] and regulation of oxidative stress [47]. Whether the
disruption of these mechanisms is a direct or secondary
consequence of deficient MeCP2 function is still unknown
[48]. Morphological and biochemical evidence, better exem-
plified by volumetric magnetic resonance imaging analyses
[49], emphasize the widespread nature of the cellular
abnormalities in RTT. These data confirm the need for early
intervention, at least in the early postnatal period but ideally
during prenatal life. The lack of neurodegeneration in RTT
also supports the notion that interventions in this disorder

may be effective throughout the life span of an affected
individual.

3.4. Glia are also affected in RTT

A major and relatively recent shift in our thinking about RTT
neurobiology originates in studies implicating astrocytes and
microglia in the pathophysiology of the disorder. Although
neuronal expression of MeCP2 is relatively higher than in
other cells in the CNS, the brain predominant MeCP2E1 iso-
form is also expressed in astrocytes [50] and these cells seem
to be critical for neuronal and synaptic homeostasis [51,52].
Restoration of MECP2 expression in astrocytes [53], and even
oligodendrocytes [54], ameliorates RTT features in experimen-
tal models. Time-dependent increases in myoinositol, detected
by magnetic resonance spectroscopy [55], suggest a process
of progressive astrocytic activation in RTT that correlates with
earlier postmortem data [56]. While they are members of the
monocyte/macrophage lineage and not true glial cells, micro-
glia have also been shown to contribute to RTT pathophysiol-
ogy. Although the precise mechanism mediating adverse
microglial effects on neurons is still debated [57,58], excessive
release of glutamate [59,60] and inflammatory cytokines have
been replicated in different studies [61,62]. Elevated levels of
glutamate, in conjunction with increased NMDA glutamate
receptor function, have been postulated to play a key role in
at least the early stages of RTT (see #3.6 below). Thus, not only
global targeting of neuronal mechanisms but also astrocytic
and microglial function may be an effective strategy in drug
development for RTT.

3.5. RTT involves multiple neural pathways and
neurotransmitters

To date, anatomical studies have demonstrated variable invol-
vement of virtually every neural pathway [34]. Likewise, every
neurotransmitter system has been implicated in the pathophy-
siology of RTT. Although in the pre-MECP2 era the study of
cerebrospinal fluid (CSF) and brain postmortem samples
mainly revealed abnormalities in monoamine and opioid
levels [33,63], the current view, expanded by mouse models
of RTT, is that all major pathways and neurotransmitter sys-
tems are involved in the disorder. It is not difficult to under-
stand the complexity of neurochemical abnormalities in RTT if
one considers the ontogeny of MeCP2 expression in humans.
Early expression is found in monoaminergic brainstem nuclei,
followed by basal forebrain cholinergic nuclei, eventually
reaching glutamatergic and gamma-aminobutyric acid
(GABA)-ergic cortical neurons [64]. Whether a particular neu-
rotransmitter plays a greater role in RTT pathogenesis and
symptomatology appears to be rather time dependent,
although this is still an issue under active discussion. In the
next subsection, we provide more details about glutamatergic
dysfunction, probably the best characterized neurotransmitter
abnormality in RTT, and its potential role in the developmental
regression that characterizes RTT [65]. More recently, MeCP2-
related deficits in GABAergic neurons have been linked to a
variety of clinical features in RTT [66–68]. MeCP2 deficiency in
GABAergic neurons and abnormalities in GABA receptors may
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also lead to impairments in other GABA-dependent regulatory
processes [69], excitatory-inhibitory imbalance [70], and epi-
leptogenesis [71]. The potential role of GABAergic abnormal-
ities in disrupting critical periods of cortical plasticity [69]
emphasizes the time dependency of neurotransmitter dys-
function in RTT. Although little is known about RTT in adult-
hood, the prevalent parkinsonian features during this period
[14] suggest a prominent dopaminergic deficit. In addition to
the relatively global neurotransmitter changes summarized
above, there are complex patterns of interrelated abnormal-
ities involving specific brain regions. The best examples are
the changes in noradrenergic, serotoninergic, glutamatergic,
and GABAergic components involving brainstem nuclei that
regulate breathing [68,72,73]. The multiple disruptions in neu-
rotransmitter systems suggest that, unless targeting the per-
iod in which the specific neurotransmitter abnormality plays
the greatest role, the effects of treatment may be limited in
range and duration. Moreover, the complexity of neurotrans-
mitter balances, such as those involving glutamate and GABA,
encourage a cautious approach since drug treatments may
lead to worsening of symptoms or significant side effects.

3.6. Excessive glutamatergic activity may be linked to
developmental regression in RTT

In the pre-MECP2 era, most of the data on CSF and postmor-
tem samples demonstrated abnormalities, primarily decreases
in monoamine levels [63]. A few studies also reported gluta-
matergic abnormalities, including changes in density or levels
of glutamate receptors. Specifically, reductions in AMPA glu-
tamate receptors and increases in NMDA glutamate receptors
with relative preservation of GABA receptors in the cerebral
cortex were observed [36]. Interestingly, the glutamate recep-
tor changes, in particular those involving NMDA receptors,
were age dependent with higher levels in younger individuals
that decreased below normal levels in late childhood. Some of
these abnormalities were also found in other brain regions,
such as the basal ganglia, although data are more limited
[63,74]. Extension of this work to mouse models has confirmed
the age-dependent change in NMDA receptors and further
characterized the regional selectivity of these patterns (neo-
cortex and striatum but not hippocampus or thalamus) [35], as
well as delineated an evolution that mimics the regression
period in affected patients [75]. Glutamate levels per se also
appear to be elevated during early childhood in RTT, as
revealed by CSF [76] and magnetic resonance spectroscopy
[55] studies. This combination of high levels of free glutamate
with elevated density of NMDA receptors, particularly during
early childhood, supports specific windows and pharmacolo-
gical agents for intervention in RTT [77]. Dopaminergic ago-
nists may provide the counterpart to NMDA receptor
antagonists at later stages of the disease, as discussed above.

3.7. RTT is a complex and dynamic disorder with
multiple potential drug targets

Based on the genetics and neurobiology of RTT reviewed
here, there are multiple potential therapeutic targets. Gene
and protein replacement have been difficult and present the

additional challenge of providing the correct dosage of
MeCP2. The fact that MECP2 duplications are associated
with a severe neurological phenotype underscores the
importance of a balanced amount of MeCP2 [41]. In a wide-
spread CNS disorder such as RTT, the use of drugs that can
target multiple neural networks and processes (e.g. growth
factors) is particularly appealing. Nonetheless, even general-
ized processes may change over time. An example is the level
of brain-derived neurotropic factor (Bdnf) in Mecp2-deficient
mice; while Bdnf levels are normal to elevated at early stages
due to reduced transcriptional silencing, the decrease in
synaptic complexity present in adult animals is associated
with reduced levels [78]. Thus, the use of BDNF and the
related protein insulin-like growth factor-1 (IGF-1) in patients
with RTT needs to be carefully monitored to address these
changes. As general pharmacological agents, drugs that tar-
get specific neurotransmitter systems may be more effective
at specific periods. Moreover, during these time windows,
their actions could extend beyond a set of pathways and
become more generalized. Consequently, it is critical to
develop methods for detecting the stages of RTT and mon-
itoring neuronal and glial abnormalities in a noninvasive
manner. These biomarkers are becoming available; examples
include blood-based assays of monocyte/microglia gluta-
mate release [59] and neurophysiologic indices of disease
progression [79]. However, more work needs to be done in
this area in order to more accurately match pathophysiology
and treatment in RTT. The next section reviews the range of
drugs tested in clinical trials in RTT. Additional information
about therapeutic targets and details on specific trials can be
found in Pozzo-Miller et al. [7] and Katz et al. [8].

4. Drugs tested in RTT trials

As discussed in the previous section, the most feasible strat-
egy for treating RTT is to target events downstream to the
primary gene abnormality and MeCP2 deficit. Multiple global
and cell- and pathway-specific targets have been identified.
The MECP2 era has provided mouse models revealing that,
even late in disease progression, it is possible to significantly
improve symptoms, leading to enthusiasm from researchers,
patients, and advocates. Table 1 lists the various drugs that
have been used in clinical trials for patients with RTT, includ-
ing those that address general cellular processes, growth fac-
tors, and neurotransmitter modulators.

Prior to the discovery that pathogenic alterations in MECP2
are the primary cause of RTT [11], drug trials were limited by a
lack of understanding of the genetic basis of RTT and an
inherent inability to perform preclinical studies using an
appropriate animal model. Researchers used clinical findings,
particularly metabolic disturbances, to guide treatment strate-
gies. Patients with RTT were noted to have elevated blood
lactate and pyruvate levels and low plasma carnitine levels,
leading to clinical trials of the ketogenic diet and L-carnitine
[88,89,100]. The study of naltrexone was based on the obser-
vation of increased CSF β-endorphin levels in the CSF of multi-
ple RTT patients and in specific regions of a postmortem brain
specimen from a single RTT patient, as well as animal studies
in which intraventricular endorphin administration led to an
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RTT-like phenotype (including motor dysfunction, seizures,
breathing abnormalities, and stereotypic behaviors) that was
reversible with naloxone [101]. Efforts were also made to
investigate treatments that ameliorate other apparently simi-
lar human disorders, such as akinetic mutism (bromocriptine;
[98]) and refractory seizures (ketogenic diet; [88]).

Even after the discovery of the molecular basis of RTT (e.g.
the MECP2-targeted trial era), many studies have continued
to test the effectiveness of treatments with global effects
that are not specifically targeted to MeCP2 but to changes
presumably secondary to the deficient function of this pro-
tein. Trials of omega-3 fatty acids have been designed to
address increased markers of oxidative stress [91,92,102].
Methyl donors such as folate/betaine, folinic acid, and crea-
tine have been used in trials based on clinical observations
(low levels of folate in CSF) as well as knowledge of MeCP2
function (DNA methylation) [80,82–84,103]. Some recent and
current trials continue to employ a general therapeutic
approach targeting mitochondrial function with drugs such
as EPI-743 and triheptanoin [81] (ClinicalTrials.gov identifier
NCT02696044). Individuals with RTT have altered cholesterol
metabolism [25], and lovastatin is currently under clinical trial
evaluation (ClinicalTrials.gov identifier NCT02563860). In
addition to these metabolic and homeostatic processes,
other potential general targets are astrocytic- and micro-
glial-specific mechanisms.

General synaptic regulators, such as BDNF or IGF-1, have
the advantage of impacting multiple CNS regions and the
promise of restoring balance by ‘cooperating’ with ongoing
compensatory mechanisms. Their downside is the obvious
potential for excessive synaptic modulation and for disrupting
regions with preserved function. In 2001, there was one pub-
lished open-label trial of cerebrolysin, a neuropeptide prepara-
tion that includes nerve growth factors [94]. Recently, there

have been several trials of full-length recombinant IGF-1 and
an active tripeptide component of IGF-1 (trofinetide) that may
have a greater effect on glial processes [104]. There are also
ongoing trials of two BDNF-boosters, glatiramer acetate and
fingolimod (ClinicalTrials.gov identifiers NCT02153723,
NCT02061137).

Restoring neurotransmitter balance is another approach
based on solid research. However, in this case the challenge
is to determine which neurotransmitter abnormality to target
and when to intervene. While some neurotransmitter distur-
bances seem to be linked to specific periods of the disorder
(e.g. enhanced NMDA receptor activity and regression),
whether a particular individual is experiencing such an
abnormality in neurotransmission is unclear. Data from
mouse models are not easy to translate to patient populations;
availability of biomarkers reflecting neurotransmitter or synap-
tic abnormalities is essential and some progress has been
made in this area [59,79]. Another challenge is to determine
which neurotransmitter(s) to target when more than one is
presumably involved. This issue is most likely to be raised
when trying to correct a specific phenotype; success has
been achieved in Mecp2 mouse models in improving breath-
ing abnormalities by simultaneously modulating GABAergic
and serotoninergic neurotransmission [105]. Whether this can
be accomplished in patients with RTT, without substantial side
effects, is still unknown. Clinical findings of impaired dopami-
nergic activity led to a trial of bromocriptine even before the
discovery of MECP2’s relationship to RTT [98]. Another drug
with effects on monoamine neurotransmitters is desipramine,
a tricyclic antidepressant that blocks the uptake of norepi-
nephrine (ClinicalTrials.gov identifier NCT00990691).
Dextromethorphan (DM) and ketamine have been studied
due to their NMDA receptor antagonist activity [99]
(ClinicalTrials.gov identifiers NCT01520363, NCT02562820).
This is an area of active research and subunit-specific modu-
lators of NMDA receptors are under development [106].

5. Outcome measures and biomarkers in RTT trials

In both the pre-MECP2 and MECP2 eras, a combination of ad
hoc and standardized measures have been used as trial end-
points. Most of these are clinical evaluations (i.e. based in
medical history or physical examination); however, a few
laboratory/diagnostic tests and other objective measures
have also been used. The following paragraphs summarize
and comment on the application of outcome measures in
RTT drug trials, which are also listed in Table 2. A detailed
list of end points employed in each RTT trial is provided in the
review by Katz and colleagues [8].

5.1. Distinctive RTT symptoms and signs

RTT is characterized by a unique combination of features.
Some of these specific symptoms and signs have been eval-
uated as individual end points in many clinical trials (e.g.
bruxism, breathing abnormalities), using nonstandardized
assessments in most cases. In the MECP2 era, several trials
have employed multidimensional instruments covering a
range of cognitive (including communication), motor,

Table 1. Drugs used in clinical trials for Rett syndrome by mechanism.

Drug References

General effects
Creatine [80]
EPI-743 [81] and ClinicalTrials.gov identifier

NCT01822249
Folate/Betaine [82]
Folinic acid [83–87]
Ketogenic diet [88]
L-carnitine [89]
Lovastatin ClinicalTrials.gov identifier NCT02563860
Naltrexone [90]
Omega-3 fatty acids [91–93]
Triheptanoin ClinicalTrials.gov identifier NCT02696044
General synaptic regulators
Cerebrolysin [94]
Fingolimod ClinicalTrials.gov identifier NCT02061137
Glatiramer acetate [95] and ClinicalTrials.gov identifiers

NCT02153723, NCT02023424
IGF-1 [25,96] and ClinicalTrials.gov identifier

NCT01777542
Trofinetide (NNZ-2566) [97] ClinicalTrials.gov identifiers

NCT01703533, NCT02715115
Neurotransmitter modulators
Bromocriptine [98]
Desipramine ClinicalTrials.gov identifier NCT00990691
Dextromethorphan [99] and ClinicalTrials.gov identifier

NCT01520363
Ketamine ClinicalTrials.gov identifier NCT02562820
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behavioral, and other RTT-specific parameters. The most
widely used has been the Motor Behavioral Assessment
(MBA), a comprehensive neurologic evaluation of individuals
with RTT, initially described in 1990 [107], but more widely
applied to RTT research since its incorporation into the NIH-
funded natural history study (current: U54 HD061222). Other
clinical instruments more recently used in drug trials include
the Clinical Severity Scale (CSS; [108]) and the International
Scoring System (ISS; [109]). Although the MBA, CSS, and ISS
provide information predominantly about current status by
direct observation, these measures were developed as pheno-
typing tools with face validity. Their measurement properties
in terms of sensitivity (i.e. change with intervention), reliability,
and other validity parameters are unknown.

5.2. General neurological and physical measures

These include nonstandardized assessments of motor function
and seizure frequency and severity. Growth parameters,
mainly head circumference but also height and weight, repre-
sent more objective and standardized parameters [16].
Recently disorder-specific published growth curves allow
appropriate interpretation of these parameters for patients
with RTT.

5.3. Specialized neurological measures

A variety of standardized or structured measures of motor and
cognitive function have also been employed. These include
the Bayley Scales, Vineland Scales, and Hand Apraxia Scale.
Despite their at least partially validated nature, these instru-
ments have not been adapted to RTT or tested in terms of
sensitivity to change. Careful interpretation of the data is,
therefore, needed [27].

5.4. Behavioral instruments

Behavioral problems, other than autistic features, have only
been recently recognized. The only available comprehensive
and disorder-specific measure, the Rett Syndrome Behavioral
Questionnaire (RSBQ), has been applied to clinical trials in the
last 5 years. Another standardized instrument, the Anxiety,
Depression, and Mood Scale (ADAMS), has been used in two
recent IGF-1 trials [25]. As reported by us [26], the RSBQ and
the ADAMS, a scale developed for general use in individuals
with intellectual disability, have less than optimal measure-
ment properties. Nonetheless, the ADAMS appears to be bet-
ter than other instruments in evaluating social anxiety. Despite
the extensive use of the RSBQ, there is a need for an RTT-
specific instrument with strong psychometric properties for
assessing a wide range of abnormal behaviors.

5.5. Clinician and caregiver assessments (CGI, VAS)

In contrast to their use in clinical trials for FXS and autism
spectrum disorder, the Clinical Global Impression-Severity
(CGI-S), the Clinical Global Impression-Change/Improvement
(CGI-C/CGI-I), and the Visual Analog Scale (VAS) have only
occasionally been employed as inclusion criteria or measures
of efficacy in trials for RTT. This is probably a reflection of the
complex clinical manifestations of RTT, including cognitive,
motor, and behavioral features, which are better defined by
disorder-specific scales. However, the recent introduction of
the CGI-S/CGI-I and VAS to several trials using IGF-1-like com-
pounds in RTT represents both a change in study design and
standards and a new emphasis on behavioral symptoms, tra-
ditionally assessed by CGIs. From secondary outcome mea-
sures in the IGF-1 trials in Boston [25] to primary end points
in the IGF-1 trial in Italy [96] and the adolescent/adult trofine-
tide trial [97], the refinement of CGI definition and anchors
[113] have certainly encouraged the application of the CGI in
RTT trials. Use of the VAS in RTT and other

Table 2. Most common outcome measures used in clinical trials for RTT.

Type of outcome
measure Examples [original or RTT-specific reference] Trials utilizing the outcome measure

Distinctive RTT symptoms
and signs

Motor Behavioral Assessment (MBA) [107] [25,80,82,89,90,97,103] ClinicalTrials.gov identifier NCT02715115
Clinical Severity Scale [108,109] [25,81,91–93,97,102] ClinicalTrials.gov identifiers NCT01253317, NCT01822249,

NCT02023424
General neurologic and
physical measures

Nonstandardized assessments of motor function and
seizure frequency/severity [see trials]

[83,84,88,96,103] ClinicalTrials.gov identifiers NCT02023424, NCT02563860,
NCT02696044

Growth parameters [16] [81,82] and ClinicalTrials.gov identifier NCT02023424
Specialized neurological
measures

Vineland Adaptive Behavior Scales [110] [90,97,99] and ClinicalTrials.gov identifiers NCT00593957, NCT01253317
Hand Apraxia Scale [111] [89,100,103]

Behavioral Instruments Rett Syndrome Behavioral Questionnaire (RSBQ)
[112]

[25,81] and ClinicalTrials.gov identifiers NCT01253317, NCT01777542,
NCT01822249, NCT02562820,

Anxiety, Depression, and Mood Scale (ADAMS) [26] [25] and ClinicalTrials.gov identifier NCT01253317
CGI and VAS Clinical Global Impression (CGI) Scale [113] [96]

[97,114] and ClinicalTrials.gov identifiers NCT01253317, NCT02715115
Visual Analog Scale (VAS) [115] [97] and ClinicalTrials.gov identifiers NCT01253317, NCT02715115

Laboratory and
neurophysiologic
measures

EEG and other neurophysiological measures [116] [25,83,88,90,94,96,97,99,103,117] and ClinicalTrials.gov identifiers NCT01253317,
NCT02023424, NCT02562820, NCT02563860, NCT01777542

Plethysmography [118,119] [25,88,90,97] and ClinicalTrials.gov identifiers NCT00990691, NCT02023424,
NCT02562820, NCT02563860, NCT01822249, NCT01777542

Blood-based oxidative stress markers [see trials] [91–93,102] and ClinicalTrials.gov identifier NCT01822249
Quality of life measures Pediatric Quality of Life Inventory (PedsQL) [120] ClinicalTrials.gov identifiers NCT01822249, NCT02563860

Overall Well-Being Index [121] [89,103]
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neurodevelopmental disorders is driven by the interest in
capturing clinical improvements of significance for individual
patients, given the phenotypic diversity of these conditions.

5.6. Laboratory and neurophysiological measures

A variety of EEG parameters, frequently spike counts, have
been used as endpoints since the pre-MECP2 era [25,83,122].
More recently, other biomarkers have been employed. These
include plethysmography-derived parameters (e.g. apnea
index), autonomic measures, and blood-based oxidative stress
markers [25,92]. Most of these outcome measures are of
unknown clinical or functional significance and have thus
remained secondary or exploratory endpoints.

5.7. QoL measures

A relatively new category of outcome measure, QoL assess-
ments, is critical for demonstrating the clinical impact of vir-
tually all of the aforementioned parameters. These measures
themselves can also be adequate end points. Those employed
in RTT include the Pediatric Quality of Life Inventory (PedsQL;
[120]), the Overall Well-Being Index [83], and the short form 36
(items) health status questionnaire (SF-36; [100]).

Overall, the vast majority of outcome measures used in RTT
drug trials have not been disorder validated according to
regulatory standards. This represents an area of great need
since imprecise measurements may lead to over- or under-
estimation of drug efficacy. Another important issue is the
dynamic nature of neurodevelopmental disorders such as
RTT. Therefore, selection of adequate measures for a specific
stage in the development or evolution of the disorder is also
critical. For example, head circumference is an objective, quan-
titative measure; however, its use beyond the first few years of
life is not adequate. There is great interest in developing
biomarkers that can detect drug effects and, consequently,
be used as endpoints. Although some progress has been
made in this area in FXS and autism spectrum disorder
[123,124], limited efforts have been reported in RTT
[25,59,79]. Objective outcome measures may not only impact
clinical trial design but also clinical care.

6. Expert opinion: the unique and common
challenges in developing drug trials for RTT

As summarized in the preceding sections, a wide range of
clinical trials using a variety of drugs and outcome measures
has been already implemented in RTT. Some trials have
focused on specific clinical manifestations or mechanisms,
while others have intended to modify the course of the dis-
order and, therefore, have targeted multiple symptoms. Only a
few of these studies have been designed on the basis of
neurobiological mechanisms. Overall, of the 9 positive trials
in RTT (4 in the pre-MECP2 era; [8]), several have been open
label (including one phase I study) and none has been repli-
cated. What is the reason for these inconsistent results and
lack of clear positive effects? An analysis of the presumably
better ‘targeted’ trials in RTT identifies unique challenges
linked to the symptoms and evolution of the disorder.

However, other issues seem to be shared with most neurode-
velopmental and pediatric neuropsychiatric disorders. We
review here major issues that may impact drug trial design
and implementation in RTT.

6.1. Transition from animal to human studies: sooner
rather than later

One of the most difficult issues is to determine when animal
data are sufficient for transitioning into phase I human trials.
The experience from FXS indicates that correction in mice,
sometimes almost complete, does not guarantee a successful
application of the new treatment in humans [3]. Conversely,
the lack of marked improvement of a particular symptom in
mice does not mean that this is not possible in humans (e.g.
minimal change in abnormal behaviors including anxiety in
Fmrp-deficient mice). We postulate that the best use of mouse
and other animal models is to demonstrate ‘proof of principle’
efficacy of a drug, regardless of the range of positive effects.
Of course, replication of efficacy and use of best practices in
preclinical models is essential, as recommended by the NIH
[125] and specifically discussed in the context of RTT [126]. In
the case of RTT, it is also ideal if work on hemizygous Mecp2
null mice can be complemented with data from heterozygous
mouse models. Animal work is crucial for other purposes, such
as toxicology. Because animal model research is essential for
drug discovery, it is a necessary first step. Nonetheless, ulti-
mately the study of affected individuals is the only final
demonstration of safety and efficacy. Consequently, we
recommend that the animal–human transition occurs as
soon as possible.

6.2. Trial design: optimizing data collection while
addressing unique features of RTT

The fact that preclinical studies do not guarantee the success
of human drug trials is only one of the factors that make trial
design a key issue. The experience with FXS and the initial
targeted trials in RTT demonstrates that range of symptoms
and magnitude of effect in mouse studies do not translate
directly into clinical trials. For instance, the mouse trial with
IGF-1 (mecasermin) resulted in marked improvements in loco-
motor activity, social behavior, heart rate, breathing patterns,
and anxiety [127], while the phase I human trial revealed
changes only in the latter two parameters, and the effects
on breathing were restricted to apnea [25]. Similarly, adminis-
tration of trofinetide to Mecp2-deficient mice resulted in
marked improvements [128] that, in contrast, were wide ran-
ging but very mild in the first trial with RTT patients [97].
Consequently, adaptive response and other dynamic trial
designs become critical to advancing the field. These
approaches allow changes in outcome measures and drug
administration schedules within a single study, combining
the features of phase I (safety, tolerability) and phase II (effi-
cacy) trials and increasing the probability of a successful out-
come. The importance of dosing and schedule of
administration, though a general issue in drug trials, takes a
unique dimension in a medically vulnerable population
affected by a disorder such as RTT [17]. Both adolescent/
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adult trofinetide trials, for RTT and FXS, showed a dose-depen-
dent effect [97,129]. These trials also reported linear pharma-
cokinetics; however, the related IGF-1 phase I trial showed a
complex nonlinear pharmacokinetics in line with the receptor-
binding features of the drug [25]. Dosage and administration
issues have to be tested in patients, since it is difficult to
model in mice the variable polypharmacology needed to
manage individuals with RTT. Drug interactions and side
effects are not only considerations in a trial’s inclusion criteria
but also in the potential application of a drug to the target
population (i.e. avoiding superselection in trials).

6.3. Considering heterogeneity and evolution of RTT in
the design of drug trials

Phenotypic heterogeneity is not unique to RTT but is also
present in many neurodevelopmental disorders. This needs
to be taken into consideration for the appropriate balance of
statistical power and feasibility; clinical severity indices such as
the Clinical Severity Scale (CSS) and the CGI, or a focus on
specific symptoms, are adequate solutions. A unique RTT fea-
ture is, however, its evolution. Although most neurodevelop-
mental disorders are dynamic, the distinctive and diagnostic
regression period and the recently recognized late decline are
challenges to trial design in RTT [5,65]. To our knowledge, the
IGF-1 (mecasermin) trials are the first pediatric RTT studies to
define inclusion criteria on the basis of the period of develop-
mental regression and not age. Distinguishing between lack of
efficacy and the ‘natural decline’ of the disorder makes data
interpretation very difficult for interventions during the regres-
sion period with the potential for false-negative results.
Paradoxically, reversal of regression is definitively one of the
major goals of drug trials in RTT. Although there are not yet
solutions to this conundrum, use of objective measures (e.g.
head circumference) is even more critical at this stage.
Nevertheless, if efficacy is demonstrated at older ages (i.e.
using 12 months after the loss of the last skill as the opera-
tional definition of post-regression) [79], optimizing dosage
and administration may demonstrate unquestionably a
drug’s positive effects. Similarly, although the decline at the
other end of the age spectrum is less pronounced, strategies
applied to neurodegenerative disorders could assist with trial
design and analysis for studies of adults with RTT.
Unfortunately, the easiest methodological solution to both
heterogeneity and evolution (i.e. different developmental
slopes) is large cohort size, which is both logistically and
financially undesirable.

6.4. Combining drugs with cognitive stimulation for
optimizing response

Like many neurodevelopmental disorders, RTT is considered to
be a disorder of synaptic plasticity and most drugs used in
trials target synaptic activity. For this reason, enhancing synap-
tic activation during drug action is a new strategy for optimiz-
ing trial outcome. While this approach has been employed in
anxiety trials, no drug study to date has applied it to neuro-
developmental disorders. However, an upcoming trial in
young children with FXS will combine the mGluR5 antagonist

mavoglurant with a language learning paradigm (U01
NS096767-01. Effects of AFQ056 on Language Learning in
Young Children with Fragile X Syndrome, P.I.: E. Berry-Kravis).
Theoretically, these combined trials need to be implemented
at the earliest possible ages, when synaptic plasticity is great-
est. This is a particular challenge in RTT given that diagnosis,
the earliest time point for intervention, typically coincides with
the period of regression [130].

6.5. Implementing trials in a rare disorder like RTT

Implementing drug trials in rare diseases is challenging
because of their low prevalence. In the case of RTT, additional
factors that impact trial design are the severity of the disorder
and the medical fragility of affected patients. Randomization
to placebo and parallel design are not well accepted by many
caretakers. This leads to blinded crossover designs that
increase length and potential complications of the study,
since it becomes difficult to differentiate a drug’s adverse
effects from expected medical complications of RTT. On the
other hand, the perception of a poor prognosis with current
treatments increases interest in drug trial participation. A new
variable in recruitment and retention of subjects in clinical
trials is social media, which could be an important modality
for recruitment and dissemination of both useful and harmful
information. Examples of the latter include sharing test
answers for inclusion criteria, inaccurate data on adverse
events, and attempts to unblind a trial.

6.6. Limited availability of adequate outcome measures

In a previous section, we summarized outcome measures
employed throughout the history of drug trials in RTT. We
also commented on their unique features and shortcomings.
We concluded that most outcome measures used in RTT have
not been disorder-validated according to regulatory standards.
This means that the measures have not demonstrated ade-
quate reliability, validity, and other measurement properties,
such as sensitivity to change, according to the Food and Drug
Administration (FDA) and the European Medicines Agency
(EMA). More important than satisfying regulations is the
need for high sensitivity endpoints, since early phase trials
tend to use relatively lower doses because of concerns about
adverse events. The experience from the trofinetide trials
emphasizes the importance of attempting higher dosages in
RTT, but doing so cautiously with the help of sensitive out-
come measures. As reported in FXS and autism spectrum
disorder, the limited availability of outcome measures with
adequate measurement properties has been one of the main
obstacles for progress in the field [123,131]. An additional
challenge in RTT is the need to measure neurological out-
comes in nonverbal, motor-impaired, commonly nonambula-
tory subjects. This affects not only instruments that directly
evaluate cognition, communication, or motor function but
also tests that require interaction with the subject. Objective
endpoints and tests, usually termed biomarkers, are therefore
desirable for RTT trials. Their development is still in early
stages [79] and should be accelerated.
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6.7. Demonstrating improvements in function and QoL

A recent emphasis of regulatory agencies is that efficacious
drugs should also demonstrate improvements in levels of
functioning and particularly QoL. In neurodevelopmental dis-
orders, functioning is typically captured by adaptive behavior
scales [27] or instruments measuring activities of daily living
[132], both providing a more direct view of the actual capacity
and level of independence of the patients. QoL has been
studied at the level of individuals with RTT [133] and their
caretakers [134] using the Child Health Questionnaire 50 and
the Optum SF-36v2 Health Survey, respectively. Interestingly,
while in children and adolescents with RTT clinical severity was
directly correlated with poor physical QoL, motor function was
inversely correlated with psychosocial QoL. These QoL instru-
ments and data had previously been useful for assessing
potential behavioral outcome measures [26]. Although already
applied in some clinical trials, we expect the use of QoL
measures to become standard in RTT drug studies.

6.8. From the clinic to drug trial: repurposing drugs and
pragmatic trials

While designing drug trials on the basis of neurobiological
mechanisms downstream to the genetic defect is the gold
standard, this could be a very lengthy process. Alternatives
include repurposing drugs, which allows omitting steps
focused on safety and tolerability, and pragmatic trials that
utilize clinical care as the setting for comparing the efficacy of
common treatments. Of these, repurposing drugs has been a
strategy applied multiple times in RTT with medications as
different as bromocriptine, glatiramer acetate, and IGF-1.
Most likely, the field of RTT clinical trials will continue to
pragmatically combine drug repurposing with the testing of
experimental medications.

With only a few completed mainly early phase clinical trials,
it is difficult to predict the future of neurobiologically targeted
treatments in RTT. The pre-MECP2 era, in which drug develop-
ment was based on a limited body of knowledge on disrupted
neural mechanisms in RTT, was certainly disappointing.
However, it did set the stage for the current trials based on
preclinical work in mouse models. Despite the modest positive
effects of most trials, which could be the result of low dosages
(e.g. adolescent/adult trofinetide trial), there is considerable
enthusiasm and several trials are at different stages of plan-
ning (see Katz et al. [8] for a systematic review). This active
pipeline is driven in part by a continuous process of drug
development in mouse models. The addition of other animal
models, such as rats with Mecp2 mutations, is likely to further
accelerate the identification of new candidate drugs. As for
FXS, the initiation of new drug trials is slowed by the clinical
team bottleneck (i.e. limited number of qualified clinical inves-
tigators designing and implementing trials). Patient availability
is not a limiting factor at this point; however, trial fatigue and
disappointment may become issues if outcomes are not
clearly positive.

The RTT field faces some of the same challenges posed by
other neurodevelopmental disorders. One such challenge
relates to multiple investigator-initiated trials with design

shortcomings and/or lack of industry support. Underpowered,
nonrandomized controlled studies lead to quick dismissal of
potentially useful drugs. Trials that are lengthy because of
recruitment and other protocol issues result in disengagement
and confusion. Approval of drugs by regulatory agencies should
be a goal per se, since drug availability and affordability are
essential for medical impact in any clinical population. A limita-
tion in the development of treatments specifically for RTT thus
far includes a primary focus on two mechanisms or targets,
namely IGF-1 compounds and glutamate modulators. The
GABAergic system remains largely unexplored clinically, to
some extent because of lack of clarity on the type and timing
of abnormalities. The dynamic evolution of RTT, with its identi-
fication only after loss of skills is evident, represents another
challenge for trial design that is further exacerbated by hetero-
geneity in its clinical course and severity. Targeting develop-
mental regression is a logical goal that requires a better
understanding of this phenomenon, and NMDA receptor-
mediated toxicity seems the most plausible mechanism thus
far. Timing of intervention and adequacy of outcome measures
and biomarkers for selecting cohorts and detecting effects
continue to be the main issues in trial design. Unfortunately,
most trials have been launched without sufficient knowledge of
the measurement properties of outcome measures that have
been developed without systematic validation. There has been
some progress in this area (e.g. modification of the Motor
Behavioral Assessment scale for the trofinetide adult trial), but
this is still insufficient. Promising biomarkers, such as the
plethysmography-based apnea and hyperventilation indices
for the IGF-1 trials, are objective and have face validity that
makes them ideal endpoints. However, their acceptability by
regulatory agencies is still an issue.

In conclusion, we are at the beginning of a difficult but
potentially highly rewarding stage in drug trials for RTT. The
suggestion of effectiveness of trofinetide in adults with RTT raises
the possibility of successful treatments throughout the life span
of an individual with the disorder. Strategies applied in other
neurodevelopmental disorders, such as synaptic plasticity
enhancement, may increase the prospects of clinical trials in RTT.
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