
Published online 9 July 2018 Nucleic Acids Research, 2018, Vol. 46, No. 16 8299–8310
doi: 10.1093/nar/gky610

Germline DNA replication timing shapes mammalian
genome composition
Yishai Yehuda1,2,†, Britny Blumenfeld1,†, Nina Mayorek3, Kirill Makedonski4, Oriya Vardi1,
Leonor Cohen-Daniel3, Yousef Mansour3, Shulamit Baror-Sebban4, Hagit Masika4,
Marganit Farago4, Michael Berger3, Shai Carmi5, Yosef Buganim4, Amnon Koren6 and
Itamar Simon1,*

1Department of Microbiology and Molecular Genetics, IMRIC, Hebrew University-Hadassah Medical School,
Jerusalem, Israel, 2Department of Bioinformatics, Jerusalem College of Technology, Jerusalem, Israel, 3 The
Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty
of Medicine, The Hebrew University, Jerusalem, Israel, 4Department of Developmental Biology and Cancer
Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, 5Braun School of Public
Health and Community Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel and 6Deptartment of
Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA

Received March 04, 2018; Revised June 24, 2018; Editorial Decision June 25, 2018; Accepted June 26, 2018

ABSTRACT

Mammalian DNA replication is a highly organized
and regulated process. Large, Mb-sized regions are
replicated at defined times along S-phase. Replica-
tion Timing (RT) is thought to play a role in shap-
ing the mammalian genome by affecting mutation
rates. Previous analyses relied on somatic RT pro-
files. However, only germline mutations are passed
on to offspring and affect genomic composition.
Therefore, germ cell RT information is necessary
to evaluate the influences of RT on the mammalian
genome. We adapted the RT mapping technique for
limited amounts of cells, and measured RT from two
stages in the mouse germline - primordial germ cells
(PGCs) and spermatogonial stem cells (SSCs). RT in
germline cells exhibited stronger correlations to both
mutation rate and recombination hotspots density
than those of RT in somatic tissues, emphasizing the
importance of using correct tissues-of-origin for RT
profiling. Germline RT maps exhibited stronger cor-
relations to additional genetic features including GC-
content, transposable elements (SINEs and LINEs),
and gene density. GC content stratification and mul-
tiple regression analysis revealed independent con-
tributions of RT to SINE, gene, mutation, and recom-
bination hotspot densities. Together, our results es-
tablish a central role for RT in shaping multiple levels
of mammalian genome composition.

INTRODUCTION

DNA replication follows a highly regulated temporal pro-
gram consisting of reproducible RT of different genomic re-
gions (1–9). RT is conserved across species (2,10–12), and
within a species ∼50% of genomic regions have stable RT
across cell types, while the other 50% have variable RT be-
tween cell types (13,14). The importance and role of this
temporal organization are still unclear.

RT correlates with many genomic and epigenomic fea-
tures including transcription (2,15–17), gene density (18),
chromatin state (19,20), retrotransposon density (17,21),
lamina proximity (19), topological state (22–24), and GC
content (2,24–26). RT is also associated with mutation
rates both in cancer (27,28) and in the germline (29,30).
Late replicating regions are enriched with point mutations
(30,31), whereas the association between copy number vari-
ations (CNVs) and RT is more subtle and depends on the
mechanism of CNV generation (32) and on the organism
(reviewed in (33)). We recently investigated the correlation
between RT and GC content and found that different sub-
stitution types have different associations with RT: late-
replicating regions tend to gain both As and Ts along evo-
lution. whereas early replicating regions tend to lose them
(24). Measuring the levels of free dNTPs at different time
points along S phase revealed an increase in the dATP +
dTTP to dCTP + dGTP ratio along S, suggesting that
a replication timing-dependent deoxynucleotide imbalance
may underlie this mutation bias.

The association between RT and germline mutation fre-
quency points to the importance of RT in shaping the
genome sequence. To fully understand this association
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would require profiles of replication timing in germ cells.
However, all previous studies used somatic tissue RT pro-
files as proxies for the investigation of the evolutionary im-
pacts of RT. Thus, it is crucial to measure the RT in germ
cells.

Germ cells refer to all the cells in an organism that pass
on their genetic material to progeny. Mouse oogenesis and
spermatogenesis involve 25 and 37–62 cell divisions, respec-
tively (34). Mutations occurring at each step of this process
are inherited by the next generation and thus all steps in this
process are important from an evolutionary standpoint. RT
has been measured in an in vitro model of the early stages of
this process (embryonic stem cells (ESCs) to epiblast stem
cells (EpiSCs) (13)), but there is no data regarding replica-
tion timing at later stages during which the majority of cell
divisions occur (34) and during which a high percentage of
germline mutations likely accumulate. In order to start fill-
ing this gap, we have measured RT at two different stages
along the germline: primordial germ cells (PGCs, isolated
directly from gonads of E13.5 mouse embryos) and sper-
matogonial stem cells (SSCs, isolated directly from testes of
p5 pups). While SSCs can be grown in culture, the most rele-
vant germline cells are those directly derived from animals,
such as PGCs. However, only small amounts of such cells
can readily be obtained. The current methods for measur-
ing genome wide RT (reviewed in (35) and (20)), are usually
applied to millions of growing cells (2,36), which is not fea-
sible for many cell types including in vivo germ cells.

By improving the RT mapping method, we were able to
generate reliable RT maps from as few as 1000 S-phase cells.
We first demonstrated the reliability of this method on small
populations of mouse embryonic fibroblasts (MEFs). We
then measured the RT of in vivo PGCs and of in vitro grown
SSCs. RT patterns of germ cells were highly correlated to
each other, and were more similar to early embryonic tissues
than to somatic cells. Both germline mutation and recombi-
nation hotspot densities correlated more strongly with the
RT of the germ cell compared to that of somatic tissues, as
expected. Mapping RT in the germline enabled us to sim-
ilarly explore other genomic features such as GC content,
LINE, SINE and gene density, all of which correlated bet-
ter with germ cell RT. GC content stratification, as well as
multiple regression analyses revealed that germ cell RT con-
tributes to SINE, gene and recombination hot spot densities
as well as to mutation rates, independently from the contri-
butions of GC content. Taken together, our results suggest
a role for germ cell RT in shaping multiple features of the
genome sequence.

MATERIALS AND METHODS

Tissue culture

Mouse embryonic fibroblasts (MEFs) were cultured in
DMEM medium (BI) supplemented with penicillin, strep-
tomycin, L-glutamine and 20% (v/v) heat-inactivated
(56◦C, 30 min) FBS (BI). L1210 were cultured in L-15
medium (BI) supplemented with penicillin, streptomycin,
L-glutamine and 10% v/v heat-inactivated FBS (BI). Cells
isolated from the bone marrow of female C57BL6 mouse
(10 weeks old) were grown in RPMI 1640 media (Gibco)
supplemented with 10% fetal bovine serum (Hyclone),

penicillin–streptomycin (Gibco), L-glutamine (Gibco) and
50 �M of �-mercaptoethanol (Gibco) on irradiated ST2
feeder cells. IL-7 conditioned medium (collected from
J558L-IL7 secreting cells provided by A. Rolink) was added
to the cells to select for pre-B cell populations for 14 days.

Isolation and activation of CD8+ cells

C57Bl/6J mouse spleen was processed and erythrocytes
were lysed (155 mM NH4Cl, 10 mM KHCO3, 0.1 mM
EDTA). For each experiment, 3 × 106 splenocytes were
moved to a 24-well plate and activated for 24–48 h in RPMI
medium (BI) containing 1�g/ml anti CD3 (2C11, BioLe-
gend) and supplemented with penicillin, streptomycin, and
10% (v/v) heat-inactivated (56◦C, 30 min) FBS (BI). Acti-
vated splenocytes were stained with anti CD8-Pacific blue
(J3.6.7, BioLegend) 1:500 and anti CD90.2-APC (H12, Bi-
oLegend) 1:500. Cells were then fixated as described below.

Isolation of PGCs

Either Oct4-GFP+/+ (129/b6 strain; Jackson Labs) or
Sox2-GFP+/– (129 strain; Jackson Labs) mice were used
for the isolation of PGC cells. These mice were bred to
WT mouse strains (B6 M2rtTA+/+ mice; Jackson Labs)
and females were sacrificed on day 13.5 of pregnancy. GFP
positive cells were isolated from E13.5 gonads of either
Oct4-GFP+/+ or Sox2-GFP+/– mouse embryos, resulting
in a pure population of PGCs (37), according to the fol-
lowing procedure. Embryos were dissected in PBS under
the microscope, GFP-positive gonads were chosen by flu-
orescent microscopy and 4–8 embryos were processed per
experiment. Gonads and mesonephros were first dissected
and then separated into single cells using trypsin (BI) and
700 �g/ml DNaseI (sigma), followed by neutralization us-
ing FBS (BI). Cells were washed with PBS (BI), and fil-
tered through 35�m mesh into 5ml polystyrene tubes (BD).
GFP+ cells were isolated using FACSARIA III (BD) using
cold conditions, into new 5 ml polystyrene tubes, and fixated
as described below. The identity of the PGCs was assessed
by RT-PCR (Supplementary Figure S1). Most PGC sam-
ples were isolated from Oct4-GFP mice. The only sample
derived from Sox2-GFP mice (male 2) was very similar to
all other samples (Supplementary Figure S2).

Preparation and growing of SSCs

SSC culture was prepared from the testis of 4–7 days old F1
C57/Bl6 crossed with DBA male mice, according to Kub-
ota et al. (38) with minor modifications. Testis cells suspen-
sions were obtained using trypsin (BI) and DNaseI (Sigma).
Thy1+ cells were isolated using magnetic microbeads con-
jugated with anti-Thy-1 antibody (Miltenyi Biotec). Cells
were examined for their replenishment potential in busul-
fan treated NODSCID mice.

SSCs were seeded on irradiated MEFs and grown in
StemPro-34 medium (Invitrogen) as described by Kanatsu-
Shinohara et al. (39). Cells were supplemented with 1% FBS
(BI), human GDNF 20 ng/ml (R&D systems), human LIF
50ng/ml (PeproTech), human FGF basic 1 ng/ml (Pepro-
Tech) and mouse EGF 20 ng/ml (PeproTech). Cells were
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cultured for 4–6 weeks and split every 5 days. The identity
of the SSCs was assessed by RT-PCR (Supplementary Fig-
ure S1).

Fixation

MEFs and SSCs were washed with ice-cold PBS (BI), de-
tached using trypsin (BI), and neutralized using the growth
medium. Pre-B cells in suspension were carefully collected
with their growth medium. All cells were moved to a 5ml
Polystyrene tube (BD). All following reactions until filtra-
tion were done in the same tube and samples were kept at
4◦C along the entire process. Cells were gently washed twice
with ice-cold PBS, and resuspended in 250 �l cold PBS.
PGCs were diluted with up to 250 �l cold PBS. CD8+ cells
were diluted to 1.0 × 106 cells per 250�l cold PBS. For all
cells, 100% high purity EtOH (Gadot) was added dropwise
while slowly vortexing to a final volume of 75% EtOH. Cells
were then incubated for 1–24 h at 4 ◦C.

Propidium iodide staining

Fixed cells were washed twice with 1ml cold PBS and spun
down at 500 g for 10 min at 4 ◦C after each wash. Cells
were resuspended in 0.2 ml PI-mix (PBS with 50 �g/ml
propidium iodide (PI) (sigma) and 50 �g/ml RNAse-A
(sigma)) and filtered through a 35 �m mesh into a new 5ml
polystyrene tube (BD). In order to enhance cell recovery an-
other 0.2 ml PI-mix was added and filtered to the new tube.
For higher amounts of cells, we kept a concentration of 2.0
× 106 cells per ml of PI-mix. PI-stained cells were incubated
for 15–30 min in the dark before sorting.

Flow cytometry

Cells were sorted using FACSARIA III (BD) based on their
PI– intensity to G1 and S phases (40), using a flow rate of 1.
Sorted cells were collected into 1.5 ml Protein-LoBind tubes
(Eppendorf) and moved to ice.

DNA elution

DNA was extracted using DNeasy-kit (QIAGEN) and
eluted twice with 2 × 200 �l of the kit elution buffer (AE).
DNA was moved to a 1.7 ml MaxyClear tube (Axygen)
which is compatible with the PureProteom Magnetic Stand
(Milipore). 1.8x Agencourt AMPure XP beads (Beckman
Coulter) were used to lower the elution buffer volume and
gDNA was eluted from beads in 50 �l EB (Qiagen). DNA
amounts were measured using Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific).

Sonication

Samples of 50 �l gDNA were transferred to a microTUBE
Screw-Cap (520096, Covaris). Sonication was performed
in the M220 Focused-ultrasonicator (Covaris) using 50 W,
20% Duty Factor at 20◦C for 120 s, in order to reach an aver-
age target peak size of 250 bp. Sonication was verified using
the D1000 or D1000 High Sensitivity ScreenTape using the
Electrophoresis 2200 TapeStation system (Agilent).

Library preparation for whole genome sequencing

Library preparation was done similar to Blecher-Gonen
et al. (41) with some changes. Briefly, Sonicated DNA
was subjected to a 50 �l end repair reaction using 1 �l
End repair mix (E6050L, NEB), cleaned by 1.8× Ampure
XP beads, followed by a 50�l A-tail reaction using 2 �l
Klenow fragment exo- (M0212L, NEB). The products were
cleaned by 1.8× beads and were ligated by 2 �l quick lig-
ase (M2200, NEB) to 0.75 �M illumina compatible forked
indexed adapters. Ligation products were size selected by
0.7× PEG (considering the PEG in the ligation buffer) in
order to remove free adaptors. 12–19 cycles of amplification
were performed by PFU Ultra II Fusion DNA polymerase
(600670, Agilent) with the following Primers:

P7 5′AATGATACGGCGACCACCGAGATCTACACT
CTTTCCCTACACGAC 3′,

P5 5′ CAAGCAGAAGACGGCATACGAGAT 3′.

Amplified DNA was size selected for 300–700 bp frag-
ments by taking the supernatant after using 0.5× beads
(which removed fragments greater than 700 bp) followed by
a 1.0× beads cleaning (which removed remaining primers
and adapter dimers). The final quality of the library was
assessed by Qubit and TapeStation. Libraries were pooled
and sequenced on NextSeq (illumina) for 75 bp paired-end
sequencing, generating 10M reads per each library.

Generation of RT maps

RT measurements were performed as described (40). Briefly,
sequencing reads were mapped to the mm9 genome us-
ing Bowtie 2. Discordant reads and PCR duplicates were
removed. Every 200 G1 phase reads were binned in or-
der to establish genomic windows. Corresponding S phase
reads were counted in order to determine an S/G1 ratio for
each window. Ratio data was normalized by subtracting the
mean and dividing by the standard deviation. Continuous
data was smoothed and interpolated using the Matlab csaps
function (with a smoothing parameter of 10−16) at a reso-
lution of 100 kb (approximate average size of the windows).
Continuous segments containing less than 15 informative
windows were removed from the analysis.

Published Replication Timing profiles were obtained
from replicationdomain.com accessions: Int26004257,
Int62905691, Int3190888, Int20705995, Int93235019,
Int83562596, Int52548116, Int87752970, Int17857752,
Int62150809, Int88652090. Data was smoothed and inter-
polated similar to smoothing of RT profiles generated in
our lab.

Determination of differential regions

Differential regions were determined using the likelihood
ratio test at each genomic window. The null model assumes
that at a given point, all six RT measures come from the
same distribution with a given mean. The alternative model
assumes that the replicates of each sample belong to two
separate distributions each with its own mean. Probabilities
were calculated using the normal distribution probability
density function. The variances used were estimated as the
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average of the normally distributed genome-wide variance
of each sample.
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A chi squared P value was calculated for −2ln value of
the ratio with 1 df. FDR correction (Benjamini-Hochberg)
was used to control for multiple testing. All regions with a q
value below 0.01 were selected as differential and extended
until the q value exceeded 0.05. Regions were further filtered
to include only those that contain at least one window with
a mean RT difference >0.5 between the two samples.

Statistical analyses

For analyses including multiple datasets, RT data was fil-
tered to only include windows containing informative data
in all datasets. In addition, sex chromosomes were ex-
cluded from the analyses, resulting in ∼20000 windows
or 2Gb. Where applicable, RT data was filtered to in-
clude only the RT switching regions as determined by
Hiratani et al. (13). Clustering was performed using the
python seaborn clustermap using the correlation metric
and the average method. Correlations were calculated ac-
cording to Spearman and confidence intervals were calcu-
lated by bootstrapping the data (n = 1000). LINE, SINE
and GENEID data were obtained from the UCSC genome
browser. Gene content was calculated as the percentage
of bases covered by genes (from start to end of transcrip-
tion) for each window. For inter-mammalian divergence,
we used published mouse-rat divergence data in which ex-
ons, splicing junctions and CpGs were excluded (30). Re-
combination hot spots were taken from (42). All genomic
features were analyzed in 100 kb windows besides for re-
combination hot spots which are sparser and thus were
analyzed in 1 Mb windows. Chromatin accessibility data
was downloaded from the GEO database (GSM2442671,
GSM2098124, GSM1014153, GSM1014149) (43–45) and
calculated in 100 kb windows by counting the num-
ber of peaks overlapping each window. Chromatin marks
were downloaded from the GEO database (GSM936100,
GSM1586501, GSM2067718) (46–48) and calculated in
100 kb windows by counting the number of peaks over-
lapping each window. SSC and PGC expression was down-
loaded from the GEO database (GSM1911697, GSE79552
– using the 11.5d PGC) (44,49) and calculated as the FPKM
sum over 100 kb windows.

Principal component analysis (PCA) was performed us-
ing the python sklearn PCA function. For stratification
analyses utilizing fixed GC content, genomic windows were
sorted according to GC content and split into four equally
sized bins. Genomic windows were similarly split into RT
bins by binning the genome into five equally sized bins. Any
intersection of RT and GC bins containing fewer than 50
or 15 windows for the 100 kb or megabase windows data
respectively, were removed from analysis. Multiple regres-
sion analysis was performed using the python statsmod-
els OLS function. Autocorrelations were performed using
the plot acf function from the python statsmodels package.
Partial correlations were calculated using a custom script
based on the Matlab partialcorr function.

DATA ACCESS

The data have been deposited in NCBI’s Gene Expression
Omnibus (50) and are accessible through GEO Series acces-
sion number GSE109804.

RESULTS

RT maps from small amounts of cells

One of the major limitations in RT mapping is the require-
ment of many cells. Current protocols usually require at
least 105 S-phase cells (40). In order to overcome this limi-
tation and to extend the technology for mapping RT from
in vivo samples we optimized the RT profiling technique to
minimize cell loss by optimizing fixation conditions, avoid-
ing material transfer between tubes, using a slow flow rate
during cell sorting and optimizing DNA extraction and li-
brary preparation protocols (see supplementary methods).
Using this improved technique, we measured RT of MEFs
using 103, 104 or 105 S-phase cells.

Triplicates were highly similar for 104 and 105 samples
(R > 0.91 and R > 0.95, respectively) and quite similar even
in the 103 triplicates (R > 0.76). Moreover, the RT maps
from all cell numbers were quite similar to each other and
to published RT map (13) and distinct from RT profiles gen-
erated from other tissues (Figure 1). Moreover, autocorre-
lation analyses performed on the different samples were al-
most identical (Supplementary Figure S3). Taken together,
our results demonstrate the ability to obtain reliable RT
maps from as little as 1000 S phase cells.

In order to further demonstrate the usefulness of our
methodology for measuring RT of cell types for which the
biological material is limited, we applied our technique to in
vivo cell population of CD8+ cells. To this end, we isolated
CD8+ cells from mouse peripheral blood, activated them
in vitro, isolated 2000–5000 G1 and S phase cells and mea-
sured their RT. As expected, the RT of these cells was dis-
tinct from the RT of MEF cells and resembled the published
RT profile of CD4+ cells (Figure 1), further supporting the
accuracy of our methodology.

Replication timing profiles of the mammalian germline

To evaluate germ cell RT we concentrated on the two stages
in mouse germline development in which most germ-cell di-
visions occur: PGC and SSC (Figure 2A). Following the
double FACS procedure and our cell recovery improve-
ments (see supplementary methods) we were able to iso-
late ∼1000–2000 G1 and S phase PGCs for each experi-
ment (from 4–8 embryos). We used G1 and S phase PGCs
in triplicates from both male and female embryos, and 104

G1 and S phase SSCs in triplicates, in order to generate RT
maps (see methods). Despite the small amounts of PGC
cells used, PGC and SSC RT maps showed high repro-
ducibility (R > 0.8 and R > 0.85, respectively) and corre-
lated with many genomic features as well as gene expression
(Supplementary Figure S4), as had been shown for other RT
maps (20). Interestingly, we found high similarity between
the different PGC samples regardless of their sex (Supple-
mentary Figure S2). Moreover, as expected, PGC and SSC
RT showed specific association with chromatin accessibility
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Figure 1. RT mapping of small populations of cells. ( A) RT maps of 103,104 and 105 MEF cells, in triplicates, along a ∼80 Mb region on chromosome 1.
(B) PCA analysis of RT profiles. Plot of PC1 vs PC2 for RT profiles of multiple MEF samples (described in A or published) and other somatic cells either
sequenced by us (L1210, Pre-B and CD8) or published (CH12 and CD4). The MEF samples mapped in this paper are color coded as in A. CD8 samples,
also achieved from small populations of cells are colored in gray. (C) A heatmap of spearman correlation coefficients between different RT profiles.

in germ cells (Supplementary Figure S5), further support-
ing their accuracy.

The PGC and SSC profiles were very similar to each other
(R = 0.86), as expected due to their being from the same
lineage, but showed significantly less similarity to the MEF
RT profile (R = 0.74 for both PGC and SSC) (Figure 2B, C
and Supplementary Figure S4B). We identified statistically
significant differential RT regions (see Materials and Meth-
ods) between SSCs, PGCs and MEFs (Figure 2B, C), refer-
ring to the subset of genomic regions in which the RT of
two tissues differ. Overall, we found ∼400 Mb and 370 Mb
of differential RT between MEFs and SSC or PGC, respec-
tively (Figure 2C). On the other hand, the SSC and the PGC
profiles were very similar (Figure 2B, C), with only 14 Mb
of differential RT. We confirmed the accuracy of these dif-
ferential regions by analyzing their chromatin accessibility
using published PGC data (44). Indeed, earlier-replicating
regions in PGC or SSC were significantly more accessible
than regions replicating later in the germ cells (Figure 2D).
Differential regions between germline tissues and another
somatic tissue (pre-b cells) showed similar results (Supple-
mentary Figure S6).

In order to put the germ cell RT maps in a broader con-
text, PGCs and SSCs were compared to many published RT
maps, expanding the work of Hiratani et al. (13). As was
previously reported, embryonic tissues RT clustered into
early and late embryonic stages (13). The germ cells clus-
tered as a third embryonic cells cluster, distinct from termi-
nally differentiated cells (Figure 2E and F).

Mutation rate and recombination hotspot density correlate
most strongly with the RT of germ cells

Although the mechanism(s) responsible for the association
between mutation rates and replication timing is still un-
der investigation, it is clear that it stems from differences
between early and late replicating regions, either in muta-
tion rates directly or in DNA repair rates (33). As inter-
mammalian divergence (defined as the amount of sequence
differences between mouse and rat per genomic window)
(30) reflects germline mutation rates, we expected it to more
strongly correlate with germ cell RT than with somatic cell
RT. Indeed, we found stronger correlations between inter-
mammalian divergence and PGC or SSC RT than MEF
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Figure 2. Germ cell RT. (A) Schema of the germline including the main stages from the zygote to the gonads, both for male and female mice. The number
of cell divisions in each stage is shown (data taken from (34)). (B) RT map of triplicates of PGCs, SSCs and MEFs (105) along ∼14 Mb region of mouse
Chr2. Below, three graphs are shown depicting the FDR-corrected q values of the likelihood ratio test for a pairwise comparison between two cell types.
Differential regions are highlighted in green. (C) Bar graphs showing the total size (in megabases) of the differential regions, each bar graph is divided into
two portions depicting the size of the regions that are earlier in the SSC (Blue), PGC (light blue) and MEF (red). (D) Boxplots showing the distribution
of PGC chromatin accessibility data (number of NOME-seq peaks per window; (44)) in regions showing differential RT between SSC or PGC and MEF.
Chromatin accessibility distribution was separated into MEF early versus germ cells early. P values (two sided t test) are shown above the box plots. (E)
RT profiles from the current work along with published embryonic tissues (13) were hierarchically clustered. Only switching RT regions (see methods) were
included. (F) PCA of RT profiles, plot of PC1 versus PC2 for RT profiles of different types, using the same color code and regions as in (E). Similar results
were obtained by comparing germ cells to Pre-B cells (Supplementary Figure S6).

RT (R = −0.63 and −0.65 versus −0.52; Supplementary
Figure S7A). To further emphasize this trend, we used pub-
lished data that divided the mouse genome into two types
of regions––those that show similar RT across 28 mouse RT
datasets (constitutive RT) and those that show variability
between tissues (developmental or switching RT) (13). As
expected, in switching RT regions the correlation was much
stronger in germ cells than in somatic cells (Figure 3A–C).
Further analysis of the differential regions between MEFs
and germ cells revealed that Germ-Earlier MEF-Later re-
gions have significantly lower mutation rates than Germ-
Later MEF-Earlier regions (Figure 3D), further demon-
strating that the mutation rates follow germ cell RT more
strongly than somatic cell RT. Analysis using differential
regions from pre-b cells versus germ cells showed similar
results (Supplementary Figure S8).

Another germ cell related feature is meiotic recombina-
tion hotspots (42). In order to analyze its association with
germ cell RT, we took advantage of the recently published
dataset depicting the genome-wide recombination hotspots

using Spo11 pull-down in mouse sperm cells (42). Analyz-
ing the recombination hot spots data (in 1 Mb windows)
revealed a stronger correlation with germ cell RT for both
PGC and SSC (Figure 3E–H and Supplementary Figure
S7B) compared to somatic cell RT. Taken together, these re-
sults emphasize the centrality of replication timing in deter-
mining germline mutation and recombination rates, and es-
tablish a resource for further studies of the influence of repli-
cation timing on germline genetic and epigenetic events.

Germline RT is associated with GC content and gene and
transposon densities

Having demonstrated that germline RT provides the best
proxy, so far, for germline mutation and recombination
rates, we turned to search for additional genetic properties
that specifically relate to germline RT. Finding such fea-
tures, would suggest that they originated in the germ cells
possibly as a consequence of RT. On the other hand, finding
a feature that is associated with the RT in all tissues to the
same extent, would suggest that this feature is most prob-
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Figure 3. Mutation rate and recombination hotspots correlate better with germ cell RT. The stronger association between inter-mammalian divergence
(A–D) and recombination hot spots (E–H) with germ cell RT is shown as RT maps (A, E), box plots in 5 RT bins (B, F), and bar graphs capturing
the Spearman correlation coefficients along with confidence intervals (bars) for multiple cell types (C,G) and boxplots (as in Figure 2D) showing the
distribution in differential regions (D,H). B, C, E and F were calculated using only the switching RT regions of the genome (13). Similar results were
obtained by comparing germ cells to Pre-B cells (Supplementary Figure S8).

ably affecting the RT and thus it has the same effect in all
tissues.

We explored four additional genomic features that are
known to be associated with RT but for which the causative
relationship with RT has been unclear – GC content, and
SINE, LINE and gene density. Early replicating regions
tend to have higher GC content (2,21). LINEs are known
to populate mainly late replicating regions (17), whereas
SINEs and genes are known to populate mainly early repli-
cating regions (21,26). We have previously shown that the
genomic GC distribution (GC content) depends on RT, in a
mechanism by which RT affects the type of mutations that
occur at early and late S (24). According to this explanation,
we expect to obtain higher correlations to GC content when
using germ cell RT data. Indeed, using the same strategy as
with mutation rates, we found stronger correlations of GC

content with germ cell RT than with somatic cells RT (Fig-
ure 4A and Supplementary Figure S9). Interestingly, using
the same approach, we found that LINE, SINE and gene
density also correlate better with RT in germ cells (Figure
4B–D and Supplementary Figure S9). Similar results were
found using pre-B cells instead of MEFs (Supplementary
Figure S10).Thus, our findings suggest that it is less likely
that either gene or retrotransposon densities affect RT, but
rather point to an influence of RT on those features through
a germline-related mechanism (see Discussion).

RT directly associates with SINE, gene, mutation and recom-
bination hotspot densities

The aforementioned correlations between germ cell RT and
the density of various genetic features do not necessarily im-
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Figure 4. Cell-type specific association of RT with additional genomic features. RT association with GC content (A), LINE counts (B), SINE counts (C)
and gene coverage (D) in 100 kb windows. Left: Bar plots showing the spearman correlation coefficients (along with confidence intervals) with the RT of
different cell types, in the switching RT regions of the genome; Right: Box plots (as in Figure 2D) showing the distribution of these features in differential
RT regions. Similar results were obtained by comparing germ cells to Pre-B cells (Supplementary Figure S10).

ply independent associations between them. We have previ-
ously shown that RT has a causative role in determining the
genomic GC content (24). Therefore, we wanted to assess
the unique contribution of RT to five genomic features inde-
pendently from the contribution of GC content. To this end,
we stratified the RT data according to GC content and ana-
lyzed the association between RT and each genomic feature
in each bin (Figure 5A and Supplementary Figure S11A).
We found that for LINE density, the contribution of RT
was small relative to the contribution of GC content. On the
other hand, for SINE density, mutation rate and recombi-
nation hotspot density, germ cell RT was a major contrib-
utor even after accounting for GC content. Gene density
showed an intermediate pattern in which RT contributed
only in genomic regions of low GC content, and was not
important in other parts of the genome.

To corroborate this point further, we built a multiple re-
gression model, which allowed us to see the additional con-
tribution of RT over the contribution of GC content. We
simultaneously built two models either starting with GC
content or with germ cell RT. These models revealed that
for LINE the additional contribution to the percent vari-
ance explained (PVE) of RT beyond GC content was very

small. On the contrary, when predicting SINE density, gene
density, mutation rate and recombination hotspots density,
adding RT as a predictor increased the PVE by a factor of
20%, 25%, 34% and 35%, respectively, relative to the PVE
from using only GC content (Figure 5B and Supplemen-
tary Figure S11B). Further confirmation of this conclu-
sion was obtained by partial correlation analysis (Supple-
mentary Figure S12). Taken together, these results demon-
strated the independent association between RT and multi-
ple genomic features, suggesting it may has a causative role
in their formation.

DISCUSSION

By improving the RT profiling technique, we were able for
the first time, to map the RT of in vivo mouse germline cells.
We have profiled both E13.5 PGCs and in vitro-grown SSCs,
and found that their RT profiles are similar. Our results add
a new dimension to previous efforts to map the RT of multi-
ple mouse developmental stages (13). We found that the two
stages of germ cell development clustered together, and to
a lesser extent, clustered with other embryonic tissues while
remaining distinct from terminally differentiated cells. The
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Figure 5. Independent association of RT with genomic features. (A) Scatter plot showing the association between RT and GC content and its stratification
into four GC content groups; associations between multiple genomic features and RT stratified by GC content, are shown using the same colors as in the
scatter plot. (B) Barplots depicting relative contribution of RT and GC content to percent variance explained for LINE, SINE, gene coverage, mutation
rate and recombination hot spots. For each predicted feature, the model was created twice beginning with either RT or GC content. The order of the
addition of the predictors to the model is from bottom to top. Similar results were obtained with SSC RT data (Supplementary Figure S11).

similarity between the RT maps of PGCs and embryonic
tissues is not surprising since PGCs are taken from an early
embryonic stage prior to terminal differentiation. Though
SSCs are isolated from young mice and therefore may re-
flect later developmental stages, our finding of their simi-
larity to embryonic stages most probably stems from their
germline origin. Further research is needed to expand our
study to additional germ cells models (51–54), which reflect
other stages in germ cells development.

It is well established now that RT is associated with both
germline and somatic mutations (reviewed in (33)), however,
due to a lack of information regarding germ cell RT, previ-
ous studies of germline mutations used somatic cell repli-
cation profiles as a proxy. By profiling RT in germ cells, we
showed that the correlation between mutation rate and RT
is stronger than when using somatic cell RT profiles. More
generally, obtaining germline-specific RT data is very im-
portant for understanding the regional variation in muta-
tion rate (RViMR) along the genome (55–57). It has been
shown that RViMR is dependent mainly on RT and tran-
scription activity (27), which both differ between tissues.
Using the correct tissue data improves RViMR estimation
(58,59) and accordingly, germ cell RT data is especially im-
portant for estimation of germline RViMR. Obtaining a
correct cancer related RViMR turned out to be crucial for
the identification of new cancer-associated genes (27). Simi-
larly, obtaining a reliable germline RViMR is important for
understanding the selection forces acting on various genes
(60,61), for interpreting the importance of genetic variation
and de novo mutations for diseases (62), and for reliably per-
forming inter species alignments (63). Performing similar
experiments in human germ cells will be even more infor-
mative, since i) there is more data regarding mutations and
CNVs in humans than in mice, and ii) getting a better esti-
mate for the local mutation frequency in humans may allow
better understanding of disease-related mutations.

We found that the strongest correlations for germline
mutation rate and for recombination hotspots density are

found with germ cell RT profiles. This suggests that the
strength of the correlation is indicative of the tissue of ori-
gin of the studied association. Indeed, correlation between
RT and an epigenetic feature (like chromatin accessibility)
is found to be stronger when both the RT and the chromatin
accessibility data are from the same tissue (Supplementary
Figure S5). Interestingly, the improvement of the correla-
tion between RT and recombination hot spots in the germ
cells was not as strong as the improvement seen with muta-
tion rates. This can be explained by the fact that the actual
tissue of origin for recombination hot spots is not the SSC
or the PGCs but rather later stages in the germline – when
cells enter meiosis. Expanding our study to the meiosis-
associated replication may resolve this point.

We found the strongest correlation between RT and GC
content in germ cells, supporting our previous finding that
the mutation spectrum in genomic late replication domains
shapes mammalian GC content (24). Expanding this idea
to other genomic features such as SINE, LINE and gene
density, revealed that all these features also correlate more
strongly with germ cell RT profiles, suggesting that germline
tissues are indeed the relevant tissues of origin for these cor-
relations. This finding implies that it is less likely that these
features are involved in affecting RT, either directly or in-
directly, since in that case we would expect them to influ-
ence RT in all tissues similarly. Rather, our findings sug-
gest that the association of these features with RT occurs
in the germline, probably through RT’s effect on genome
stability (33). Nevertheless, it does not necessarily imply
that RT is directly affecting these features, since it can be
that other processes, associated with RT, like certain chro-
matin modifications, chromatin accessibility, or the associ-
ation of certain proteins with chromatin in germ cells, are
the direct effectors. Recently, ChIP-seq experiments were
performed on PGCs and SSCs using antibodies against a
number of histone modifications, including the H3K27me3
and H3K9me2, that mark closed chromatin (46–48). Mul-
tiple regression analysis of these modifications (summed in
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100Kb windows) revealed that these marks have small or no
contribution to the prediction of all other genomic features
over RT (Supplementary Figure S13). Additional germ cell
chromatin data, such as ATAC-seq, would be required for
further evaluating this point.

By using the germ cell RT data we were able, for the first
time, to address the relative contribution of RT and GC con-
tent to multiple genomic features. Interestingly, we found an
independent contribution of RT to all examined genomic
features besides LINE density. It was shown that L1 ele-
ments (LINE) are associated with AT-rich, late-replicating
regions, whereas Alu elements (SINE) are associated with
GC rich, early-replicating regions. Detailed analysis of old
and new SINE and LINE elements revealed that both inte-
grate preferably into AT rich regions, but SINEs are pref-
erentially deleted from those regions and thus old SINEs
are enriched in high GC, early replicating regions whereas
new SINEs are enriched in low GC, late replicating regions
(64,65). Our results, showing GC-content independent RT
association only with SINEs but not LINEs densities, sug-
gest that RT plays a role in the deletion process rather than
in the integration process. This conclusion is consistent with
the finding that both point mutations and deletions are
more prevalent in late replicating regions (33). We assume
that a similar mechanism involving differences in genome
stability in early and late regions is involved in determining
gene distribution.

Previous work has shown that the strongest correlation
between RT and both GC content and retroelement den-
sity is obtained when using ectoderm tissue RT profiles (13),
but the reason for this phenomenon remained obscure. Al-
though we cannot explain these results, they are consistent
with the similarity we found between germ cell RT profiles
and ectodermal tissue RT profiles (Supplementary Figure
S14). The independent association between mutation rate
and RT has been reported before using somatic cells RT
data (30). Our new germ cell RT data confirms previous
results and further demonstrates the importance of RT in
determining germline mutation rates.

The association between recombination hot spots and
somatic cells RT was studied in humans and revealed a
stronger association in females than in males (32). This
study estimated recombination events by analyzing 15000
Icelandic parent-offspring pairs. Using a direct measure-
ment of the locations of the DNA recombination asso-
ciated double strand breaks (Spo11 oligo mapping) in
mouse sperm cells, we were able to show a moderate, yet
stronger, correlation between germ cell RT and recombina-
tion hotspots density (in 1Mb windows). Interestingly, our
results differ from the previous report in two aspects: (i) We
found a much stronger correlation with male recombination
hotspots than previously reported. (ii) In the current study,
we found that RT contributes to recombination hotspots
even after controlling for GC content whereas the previous
report suggested that the association between RT and re-
combination strongly depends on GC content. Differences
between the studies in (a) the organism studied (mouse ver-
sus human); (b) the source of the RT data (germ cell ver-
sus somatic cells) and (c) the definition of a recombination
hotspot (DSB versus recombination events) may explain
this discrepancy.

By improving the RT profiling protocol (see supplemen-
tary methods) we were able to produce reliable RT maps
from as little as 1000 G1 and S phase cells. This develop-
ment paves the way for similar experiments in which RT
can be determined for other samples with limited numbers
of cells, in particular in vivo cell populations. As far as we
know, RT profiling of in vivo vertebrate cells was done only
in zebrafish (66); this is the first time it has been performed
in mammalian cells. This technique is especially relevant in
the field of cancer, in which it was shown that using the
correct tissue of origin RT can best explain mutation rate
(58,59). Currently, there are no RT profiles of primary tu-
mors and the association between RT and mutation rates
has been based so far on tissue culture cells. Measuring RT
from in vivo tumors may help elucidate the correct mutation
rate and aid in understanding the mutational spectrum in a
given cancer.

In summary, by optimizing the RT profiling methodol-
ogy we were able to determine the RT of two types of mouse
germ cells. These novel RT profiles allow the identification
of the tissue of origin of many genomic features. More-
over, they suggest a fundamental role for RT in determining
multiple facets of genomic composition. Further research is
needed for understanding the precise mechanisms by which
this is achieved.
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